-
马尾松Pinus massoniana曾经是南方集体林区的主要造林树种,在荒山绿化、生态服务和发展经济中起过不可替代的重要作用。但长期大面积纯林营造,林地出现地力衰退、生产力降低、生态服务功能下降等不良现象,特别是马尾松林经营长期遭受松材线虫Bursaphelenchus xylophlius病的困扰。据国家林业和草原局统计,近30 a来,全国因松材线虫病损失的松树累计达数十亿株,造成的直接经济损失和生态服务价值损失高达上千亿元,松材线虫病已成为全球森林生态系统中最具危险性、毁灭性的病害之一[1]。对于松材线虫病发生的疫区疫点,相关办法都要求“加强疫情科学除治,全面实施以清理病死、枯死、濒死松树为核心措施”。各地据此采取了皆伐、择伐等干扰方式清除疫木,以防止松材线虫的进一步扩散。大多相关研究集中在松材线虫病入侵后皆伐形成的除治迹地上马尾松林群落演替、林分结构、植物多样性和种群生态位的评价上[1-4]。但采伐疫木对受害马尾松林综合林分结构长期影响的相关研究较少。林分结构不但包括树种、胸径、树高、年龄、林木个体大小差异等非空间结构,也包括林木分布格局、单木竞争指数等空间结构,是林分未来生长变化的决定性因素之一[5-6]。在生产实践中,采伐疫木后的马尾松群落结构将会发生哪些变化,有必要对受害马尾松林的健康经营开展研究。本研究在浙江省杭州市临安区选择松材线虫病入侵过的马尾松人工纯林,以未受松材线虫病危害的林分为对照,探讨疫木卫生伐后的天然更新对马尾松人工纯林林分结构的影响,比较2种类型的林分在树种组成、胸径结构、树高结构、林木个体大小差异、聚集指数和竞争指数等方面的差异,以期为松材线虫病入侵后的马尾松林分的经营管理提供参考。
-
研究样地位于浙江省杭州市临安区(29°56′~30°23′N,118°51′~119°52′E)。该地属中亚热带季风气候,温暖湿润,四季分明,具有春多雨,夏湿热,秋气爽,冬干燥的气候特征,全年平均气温16.4 ℃,年均降水量1 628.6 mm,无霜期年平均为237 d[7]。该地先锋群落为马尾松林,地带性植被为亚热带常绿阔叶林,优势种主要有青冈Cyclobalanopsis glauca、苦槠Castanopsis sclerophylla等。研究区气候条件适宜马尾松的生长,但长期遭受松材线虫病危害。
-
在杭州市临安区河桥镇选择1994年同一批造林的马尾松纯林作为研究对象。21世纪初该马尾松人工纯林有部分遭受松材线虫病,为防止病害蔓延,2005年开始每年进行卫生伐,其他马尾松林木均予以保留,保护天然更新的非松科Pinaceae植株,持续7 a,共采伐约1 500株·hm−2。疫木伐除后,任其自然恢复更新。2017年8月,按照立地环境基本因子一致的原则,从中分别选择未入侵过的小块马尾松林(对照)和卫生伐过的马尾松林作为调查对象,2种类型的林分分别设置了5块30 m×30 m的标准样地。样地土壤为黄壤,土层厚度为0.8 m,坡向为西北坡,坡度35°~40°,立地条件差,pH 6.2。样地边界和林木坐标用全站仪测定,对样地进行了每木检尺,起测胸径为5 cm,调查因子包括树种、胸径、坐标、树高等。样地基本情况见表1。
表 1 卫生伐后的马尾松林分基本特征
Table 1. Characteristics of P. massoniana stands after sanitation thinning diseased trees
处理 密度/(株·hm−2) 胸径/cm 树高/m 郁闭度 马尾松 阔叶树 马尾松 阔叶树 马尾松 阔叶树 对照 1 800 13.0±2.4 12.5±1.7 0.9 卫生伐 300 1 000 17.6±2.8 7.1±1.8 12.5±2.2 5.6±1.1 0.6 -
物种丰富度是指样地内出现的物种数目。树种重要值是研究某个种在群落中的地位和作用的综合数量指标,物种丰富度和树种重要值反映了植物多样性。重要值计算采用的公式为:重要值
$= $ (相对多度+相对频度+相对显著度)/3。其中:相对多度$= $ (某个种的多度/所有物种的多度之和)×100%;相对频度$= $ (某个种的频度/所有物种的频度之和)×100%;相对显著度$= $ (某个种的胸高断面积之和/所有物种的胸高断面积之和)×100%。 -
林木个体大小差异在植物种群中普遍存在,相邻林木个体的大小会影响目标个体的胸径、高度的生长,在群落发展和维持群落物种多样性方面也具有深远意义,反映植物个体大小差异的指数采用库兹涅茨系数(KC)、基尼系数(GC)和洛伦茨不对称系数(LAC)[8]。
用二元材积公式[9]计算马尾松和阔叶树的单株林木材积,计算公式为[4]:
$$ {V_{{\text{马尾松}}}} = 0.000\;062\;341\;803{D^{1.855\;149\;7}}{H^{0.956\;824\;92}}\text{;} $$ (1) $$ {V_{{\text{阔叶树}}}} = 0.000\;068\;563\;4{D^{1.933\;221}}{H^{0.867\;885}}\text{。} $$ (2) 式(1)~(2)中:V为单株材积(m3);D为胸径(cm);H为树高(m)。
库兹涅茨系数(KC)是指单株材积为林分前20%的林木个体的材积之和在林分蓄积量中所占的比例,这个指数的数值越大,表示林木分化越严重,个体差异越大。基尼系数( GC)可用于研究林分内各林木之间差异性的大小[4, 8],计算公式为:
$$ {G_{\rm{C}}} = \frac{{\mathop \sum \limits_{i = 1}^n \left( {2i - n - 1} \right){x_i}}}{{{n^2}u}}\text{。} $$ (3) 式(3)中:n为林分内林木的株数;xi为林木个体按材积大小升序排列时对应的第i株林木的材积;u为林分平均材积。洛伦茨不对称系数(LAC)用于反映林木个体大小等级对不一致性程度的贡献,当LAC>1时,表示不一致性的产生主要在少数较大的林木个体中;当LAC<1时,表示不一致性的产生主要在大多数较小的林木个体中[4, 8]。将林分n株林木按单株材积从小到大排序(x1,x2,…,xn),LAC的计算公式为:
$$ {L_{\rm{AC}}} = \frac{{m + \theta }}{n} + \frac{{{L_m} + \theta {X_{m + 1}}}}{{{L_n}}}\text{;} $$ (4) $$ \theta = \frac{{u - {X_m}}}{{{X_{m + 1}} - {X_m}}}\text{。} $$ (5) 式(4)~(5)中:m为恰好小于林木平均材积μ的林木序号;Lm为前m株林木个体材积之和;Ln为n株林木个体材积之和;θ为参数;Xm为排序第m株林木的材积;Xm+1为排序第m+1株林木的材积。
-
聚集指数是由CLARK等[12]提出的,用于检验种群空间分布格局的常用指数,是最早采用的与距离有关的空间格局指数[13]。采用最近邻单株距离的平均值与随机分布下的期望平均距离之比来表示:
$$ R = \dfrac{{\dfrac{1}{N}\mathop \sum \limits_{i = 1}^N {r_i}}}{{\dfrac{1}{2}\sqrt {\dfrac{S}{N}} }}\text{。} $$ (6) 式(6)中:R为聚集指数;ri为第i株树木到其最近邻木的距离;N为样地内林木株数;S为样地面积。若R>1,林木呈均匀分布;若R<1,则林木趋于聚集分布;若R
$= $ 1,林木则表现为随机分布。 -
竞争指数采用HEGYI[14]的计算公式:
$$ {C_i} = \mathop \sum \limits_{j = 1}^n \frac{{{d_j}}}{{{d_i} {L_{ij}}}}\text{。} $$ (7) 式(7)中:Ci为对象木i的竞争指数;Lij为对象木i与竞争木j之间的距离;di为对象木i的胸径;dj为竞争木j的胸径;n为对象木i的竞争木株数,本研究采用4邻近树法,n
$= $ 4。 -
采用Excel 2003进行数据处理与图表制作,SPSS 20.0进行单因素方差分析(one-way ANOVA),LSD方法进行显著性检验(α
$= $ 0.05)。利用ArcGIS和ForStat软件对2种林分进行空间分析。数据为平均值±标准差。 -
由表2可知:马尾松人工纯林的重要值仍然为100.00%。在受害马尾松纯林疫木卫生伐后的林分中,马尾松的重要值下降至38.41%,仍然为群落的第1优势种;出现了大量天然更新的阔叶树种,短柄枹Quercus glandulifera的重要值为35.59%,是群落的第2优势种;檵木Loropetalum chinense的重要值为10.91%,是群落下层林分中主要的伴生树种;白栎Quercus fabri的重要值为10.54%,是继短柄枹之后的又一主要乔木树种;另外还有少量的无患子Sapindus mukorossi、枫香Liquidambar formosana、薄叶山矾Symplocos anomala和合欢Albizia julibrissin等乔木树种分布。可见,松材线虫入侵后的马尾松人工纯林在疫木卫生伐后经过长期恢复已演替为马尾松落叶阔叶混交林。而且该混交林分没有发现马尾松的小树和幼树,预示着未来该林分的阔叶树重要值将超过马尾松,形成阔叶树马尾松混交林。
表 2 疫木卫生伐后马尾松林分的树种组成
Table 2. Tree species composition of P. massoniana stands after sanitation thinning infected trees
处理 树种 重要值/% 对照 马尾松 100.00 卫生伐 马尾松 38.41 短柄枹 35.59 檵木 10.91 白栎 10.54 无患子 2.24 枫香 1.25 薄叶山矾 0.55 合欢 0.52 -
由图1可知:马尾松人工纯林的林分平均胸径为13.0 cm,其中,10、12和14 cm径阶的林木株数最多,分别为22.8%、29.6%和21.8%,呈单峰状左偏正态分布,小径阶和大径阶林木各占一小部分。疫木卫生伐后形成的马尾松阔叶混交林林分平均胸径为9.1 cm,林木大多数分布在6和8 cm径阶,株数分别占49.2%和23.4%,而且随着胸径的增大呈下降趋势,呈现反J型曲线,较大径阶22和24 cm的株树比例比马尾松人工纯林高。未遭受松材线虫入侵的马尾松林依然保持单层林;疫木卫生伐后经过长期恢复由单层纯林演变为由马尾松占据的主林层与阔叶树组成的次林层的复层混交林分(表1)。
-
由表3可知:马尾松人工纯林疫木卫生伐后,库兹涅茨系数(KC)增加,说明较大个体林木和较小个体林木分化更严重;基尼系数(GC)增加,说明林木个体大小不一致性增大;洛伦茨不对称系数(LAC)由略小于1增加为略大于1,说明林木个体差异的产生主要在于大多数较小的林木个体变为少数较大的林木个体。
表 3 卫生伐后马尾松林的林木个体大小差异
Table 3. Individual size inequality of P. massoniana stands after thinning diseased trees
处理 KC GC LAC 对照 0.35±0.08 a 0.26±0.05 a 0.97±0.15 a 卫生伐 0.74±0.13 b 0.66±0.09 b 1.04±0.23 a 说明:同列不同字母表示同一指标不同处理间差异显著 (P<0.05) -
由表4可知:马尾松人工纯林聚集指数(R)>1,表现为均匀分布,疫木卫生伐后形成的马尾松阔叶林的R
$= $ 0.95<1,呈现聚集分布。马尾松人工纯林的平均竞争指数(Ci)为8.16,疫木卫生伐后形成的马尾松阔叶林的平均竞争指数增加至10.12。表 4 卫生伐后马尾松林的聚集指数和竞争指数
Table 4. Aggregation index and competition index of P. massoniana stands after sanitation thinning infected trees
处理 聚集指数(R) 竞争指数(Ci) 对照 1.27±0.21 a 8.16±3.52 a 卫生伐 0.95±0.14 b 10.12±5.60 b 说明:同列不同字母表示同一指标不同处理间差异显著 (P<0.05) 由图2可知:马尾松人工纯林各径阶处受到的竞争压力基本一致,未发生很大的变化。疫木卫生伐后形成的马尾松阔叶林于6 cm径阶处林木受到的竞争压力最大,其次是8 cm径阶林木,各径阶处受到的竞争压力差异较大。
-
本研究对入侵过的马尾松林连续几年开展疫木卫生伐,腾出林分生长空间,促进阔叶树种的天然更新。疫木采伐十几年后,受害马尾松林未再发现疫木,但是松木损失严重,只剩300株·hm−2马尾松。说明林业部门规定的及时卫生伐的处理措施在实践中有一定效果,能在一定程度上抵御林分尺度的松材线虫病的自然扩散。
中国营造的人工林大多为纯林,马尾松林也不例外。马尾松人工纯林的林分结构极其简单,树种单一,乔冠草各层次的植物多样性低[15-16],这为松材线虫病的入侵扩散提供了便利条件。松材线虫入侵马尾松林后,如果不加以人为干预,松林必然全部死亡[17]。本研究采取的疫木卫生伐对原马尾松纯林的林分结构产生了重要影响,经过十几年的恢复,使得马尾松人工纯林显著具有天然林的特点,具体表现在:树种组成由马尾松单一树种变为马尾松和落叶阔叶树种短柄枹为主的马尾松落叶阔叶混交林,进入了马尾松纯林的下一个演替阶段;胸径结构由正态分布变为反J型曲线,异龄林特征明显;垂直结构由单层林变为复层林;林木分布从均匀分布变为随机分布;林木大小个体差异变大,两级分化加剧。上述变化是松材线虫入侵松林后人为间伐干扰的结果;也与马尾松林是亚热带的先锋群落,群落本身并不稳定紧密相关[1]。
疫木卫生伐后形成的林窗会加快群落天然更新速度,短柄枹、白栎等演替早期的落叶乔木阔叶树种迅速占领了松木采伐移除后的生态位(表2),促使受害马尾松纯林向混交林演替的速度加快。这与王懿祥等[8]的研究结果相同,疫木卫生伐提高了林分林木个体大小的不一致性(表3)。这是由于疫木卫生伐后出现了大量天然更新的阔叶树,这部分林木个体较小;另外一方面,疫木卫生伐促进了保留木(马尾松)的生长,特别是加快了原优势木的生长,使其成长为较大的林木个体。因而也使得林木个体大小不一致性变为由少数较大的林木个体产生(LAC<1);林分的胸径结构变为反J型曲线(图1)。疫木卫生伐后形成的混交林竞争指数显著增加,林木之间的竞争压力变动加大(表4),这是由于大量天然更新的幼树其竞争指数较大的缘故,径阶-竞争指数关系图(图2)也反映了林木所受的竞争压力随着径阶的增大而减小,林木个体大小不一致性的增加也使得林木之间的竞争指数变动增加。在经营中应选出阔叶目标树,间伐邻近竞争木,减小竞争压力,促使阔叶目标树生长[18]。
马尾松人工纯林树种单一,结构简单,生态系统极其不稳定,对松材线虫的抵抗能力极差,应避免营造马尾松纯林[4]。松材线虫作为一个外来的选择因子,虽然会毁掉松林,但也能促使整个生态系统朝向更为稳定的方向发展。对于疫木卫生伐后形成的马尾松与以短柄枹和白栎为主的混交林而言,也正处于演替早期阶段,本身并不稳定。在森林经营条件许可的情况下,可以在林分内选择目标阔叶树,间伐邻近林木以减少竞争压力促使目标树生长;同时参考当地地带性植被常绿阔叶林的树种组成,及早补植地带性植被的建群种和优势种以及伴生种,如青冈、苦槠、木荷Schima superba等,加快群落演替速度,提高抗病害能力。
Effects of sanitation cutting pine wilt diseased trees on the stand structure of pure Pinus massoniana plantation
-
摘要:
目的 探讨松材线虫Bursaphelenchus xylophlius病疫木采伐对马尾松人工纯林林分结构的影响,对松材线虫病入侵后的马尾松林分的经营管理有理论和实践价值。 方法 在浙江省杭州市临安区,分别选择松材线虫病危害及周边未受害的马尾松Pinus massoniana人工纯林设置样地并进行调查。 结果 疫木卫生伐12 a后的结果表明:与马尾松纯林相比较,卫生伐之后马尾松重要值显著下降,从100.00%降至38.41%;胸径结构由正态分布变为反J型曲线;树高结构由单层林变为复层林;林木大小个体差异显著增加,两级分化显著加剧;林木分布从均匀分布变为随机分布;林木竞争压力增加,6 cm径阶林木竞争压力最大。 结论 卫生伐促使受害马尾松纯林向混交林演替的速度加快,多个林分结构指标发生了重大变化,单层马尾松同龄纯林演替为复层马尾松落叶阔叶树混交异龄林。图2表4参18 Abstract:Objective This study aims to explore the effects of sanitation cutting of the diseased pine trees infected by Bursaphelenchus xylophlius on the stand structure of pure Pinus massoniana plantation and provide a reference for the management of P. massoniana invaded by B. xylophlius. Method Field plots were selected of both a pure P. massoniana plantation infected by B. xylophlius and its neighbouring plantation uninfected to be investigated in Lin’an, Zhejiang, China. Result After 12 years of sanitation cutting, compared with the uninfected pure P. massoniana plantation, it is shown that the importance values of P. massoniana significantly decreased from 100.00% to 38.41%. The stand diameter distribution followed an inverse J-shaped curve. In terms of height stricture, single storied stand changed into multi-storied stand. The individual size inequality significantly increased. The distribution pattern of trees changed from uniform distribution to random distribution. The competitive index of trees significantly increased, and that of trees at 6 cm diameter class was the highest. Conclusion The sanitation cutting accelerated the succession speed of the infected pure P. massoniana, with significant changes in several stand structure indicators and the single-storied even-aged pure P. massoniana stand succeeded by the mixed multi-storied uneven-aged P. massoniana and broad-leaved trees stand. [Ch, 2 fig. 4 tab. 18 ref.] -
蚂蚁作为膜翅目Hymenoptera蚁科Formicidae昆虫,在自然界中具有不可忽视的作用,具备改良土壤、分解有机质、促进土壤碳氮循环、维持微生态平衡等重要作用[1−2],常被用作各类环境生物多样性的指示物种[3−4]。全世界已记载的蚂蚁共有16亚科342属14 187种[5],蚂蚁是地球上分布最广、种类及数量最多的社会性昆虫[6]。
当前,中国的蚂蚁群落研究集中在西南地区[7−9],而对西北地区蚂蚁群落研究报道较少。在新疆地区蚂蚁研究方面,吴坚等[10]记录了新疆地区2亚科、5属、14种;夏永娟等[11−12]记录了新疆地区3亚科、16属、43种,其中1新种;COLLINGWOOD等[13]报道准葛尔盆地及其邻近山区的蚂蚁46种,其中27种为中国新纪录种;黄人鑫等[14]报道了新疆蚂蚁42种新记录种。通过上述研究共记载了新疆蚂蚁3亚科20属118种,其中分布于天山的种类仅46种。可见,对新疆蚂蚁的研究,尤其是天山地区的研究还十分有限,且仅限于区系和分类,缺乏蚂蚁物种多样性的研究。近期,翟奖等[15]研究了新疆天山东部与邻近地区蚂蚁分布规律,共报道2亚科、14属、29种,发现蚂蚁物种主要集中在土壤温润、树木高大的人工林内;杨林等[16]对新疆天山中部的蚂蚁物种多样性进行了分析,共报道蚂蚁2亚科27种,北坡的蚂蚁物种多样性显著高于南坡,且中海拔区域的物种多样性最高。这些研究丰富了天山地区蚂蚁分布和物种多样性的研究,也使分布于天山的物种增加至50种。
天山中-西段主要位于克拉玛依的奎屯至阿克苏地区的库车一线区域,由北坡、山间谷地和南坡组成,于2022年7—8月对新疆天山中-西段的蚂蚁多样性进行调查,探讨蚂蚁群落结构、物种多样性与海拔和植被的关系等问题,并与天山中部的蚂蚁多样性进行比较,以全面揭示干旱区蚂蚁物种多样性随着海拔和植被的变化如何变化,以期为该地区的生物多样性保护提供基础资料。
1. 材料与方法
1.1 样地设置
新疆天山中-西段海拔为781~3 235 m,依地形划分为北坡独山子垂直带、山间起伏盆地的乌拉斯台和那拉提2个垂直带及南坡的库车垂直带,共4个垂直带。海拔每上升250 m,选取植被典型的1块50 m×50 m样地进行调查,共设置33块样地,其中垂直带中海拔最低的1块样地位于奎屯市独山子区天景颐园,海拔为781 m。各垂直带调查样地的位置及自然概况见表1。受野外自然条件限制,选定样地的海拔会有一定误差,控制在±50 m内。
表 1 新疆天山中-西段蚂蚁群落调查样地概况Table 1 Survey sites of ant communities in the middle-western section of Tianshan Mountains in Xinjiang垂直带 样地
编号海拔/m 纬度(N) 经度(E) 土壤类型 土壤湿度 植被类型 乔木郁闭度 盖度/% 地被物厚度/cm 灌木 草本 地被物 独山子 1 781 44°19′01.12″ 84°52′42.12″ 黄壤 潮湿 落叶阔叶林 0.5 0 70 70 1.0~2.0 2 1 050 44°12′39.95″ 84°50′46.69″ 黄壤 干燥 落叶阔叶林 0.3 5 75 75 0.5~1.0 3 1 278 44°09′56.52″ 84°49′39.46″ 黄沙土 干燥 灌丛 0 30 80 80 0.5~1.0 4 1 540 44°07′11.10″ 84°49′31.52″ 黄沙土 干燥 灌丛 0 30 70 70 0.5~1.0 5 1 726 44°06′08.44″ 84°48′15.93″ 黄沙土 潮湿 灌丛 0 40 60 60 1.0~2.0 6 2 029 43°53′15.47″ 84°29′59.35″ 黄壤 湿润 草丛 0 0 95 95 0.5~1.0 7 2 285 43°50′12.22″ 84°28′14.13″ 棕黄壤 湿润 灌丛 0 30 80 80 2.0~3.0 8 2 549 43°47′27.07″ 84°27′51.96″ 棕壤 湿润 草丛 0 0 95 95 1.0~2.0 9 2 773 43°46′43.76″ 84°27′21.36″ 灰黄壤 湿润 锦鸡儿灌丛 0 30 95 95 1.0~2.0 10 3 023 43°45′14.16″ 84°26′13.54″ 黄沙土 湿 草甸 0 0 95 95 1.0~2.0 11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0 乌拉斯台 11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0 12 3 024 43°42′27.20″ 84°26′51.60″ 棕壤 湿 草丛 0 0 80 80 1.0~2.0 13 2 760 43°41′15.80″ 84°23′57.55″ 棕壤 湿 柏木灌丛 0 50 90 90 1.0~2.0 14 2 533 43°40′02.69″ 84°24′24.03″ 棕壤 湿润 灌丛 0 30 90 95 0.5~1.0 15 2 295 43°37′57.52″ 84°18′48.52″ 棕壤 湿润 云杉林 0.6 20 70 100 2.0~3.0 16 2 000 43°21′36.52″ 84°22′00.32″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0 17 1 798 43°20′12.98″ 84°21′30.23″ 棕壤 湿润 针阔混交林 0.4 0 95 95 1.0~2.0 那拉提 18 1 802 43°13′43.85″ 84°19′15.64″ 棕壤 湿润 针阔混交林 0.5 30 95 95 2.0~3.0 19 2 020 43°13′31.38″ 84°19′24.66″ 棕壤 湿润 针阔混交林 0.5 70 50 100 1.0~2.0 20 2 288 43°11′26.28″ 84°19′42.82″ 棕壤 湿润 草丛 0 0 100 100 1.0~2.0 21 2 548 43°10′06.98″ 84°21′04.21″ 棕壤 湿润 高山柳灌丛 0 90 100 100 2.0~3.0 22 2 547 42°41′24.77″ 83°41′18.64″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0 23 2 785 42°34′51.52″ 83°36′53.84″ 棕壤 湿润 草丛 0 10 95 95 1.0~2.0 24 3 055 42°30′50.27″ 83°28′54.46″ 棕壤 湿 草丛 0 0 70 70 1.0~2.0 库车 25 3 058 42°28′36.91″ 83°26′04.32″ 棕壤 湿 草丛 0 0 95 95 1.0~2.0 26 2 759 42°27′50.54″ 83°24′29.82″ 黄壤 湿润 灌丛 0 50 95 95 1.0~2.0 27 2 508 42°27′38.24″ 83°23′21.49″ 暗棕壤 湿润 云杉林 0.5 20 95 100 2.0~3.0 28 2 233 42°26′31.70″ 83°15′21.55″ 黄壤 湿润 草丛 0 0 90 90 1.0~2.0 29 2 052 42°25′05.20″ 83°16′01.70″ 黄壤 湿润 草丛 0 10 98 98 1.0~2.0 30 1 773 42°13′34.37″ 83°13′57.53″ 黄沙土 湿润 灌丛 0 40 50 50 0.5~1.0 31 1 539 42°07′16.52″ 83°09′02.09″ 红壤 干燥 灌丛 0 30 10 30 0.5 32 1 269 41°51′24.16″ 82°49′08.19″ 黄沙土 干燥 疏灌丛 0 10 10 10 0.5 33 1 009 41°44′01.62″ 82°55′43.37″ 黄沙土 干燥 落叶阔叶林 0.2 30 30 30 0.5 说明:乌拉斯台垂直带在该海拔梯度内可选择的典型植被类型样地较少,为更直观地揭示蚂蚁物种数量变化,选择独山子垂直带海拔为3 235 m的样地(编号11)为乌拉斯台垂直带起始点。灌丛指多种灌木组成的灌丛,高于1.0 m,区别于单树种灌丛;疏灌丛指盖度小于10%的灌丛。锦鸡儿Caragana sinica;柏木Cupressus funebris;云杉Picea asperata;高山柳Salix cupularis。土壤湿度以含水量<12%为干燥,12%~15%为湿润,15%~20%为潮湿,>20%为湿。 1.2 调查及标本制作方法
参考文献[1],在新疆天山中-西段不同海拔采用样地调查法和搜索法进行蚂蚁群落调查,在选定样地内沿对角线选取5个1 m×1 m的样方,每个样方间隔10 m,在采集地表蚂蚁前,先测量每个样方内地被物的厚度。分别采集样地地表样、土壤样和树冠样的蚂蚁,并将蚂蚁保存至装有无水乙醇的离心管,贴上标签。样方调查结束后,5人同时对样地内样方外周围地表、石下、树冠和朽木等微生境进行搜索调查,时间为1 h。将采集到的蚂蚁装入离心管并作标签和记录。依据同种同巢、同种形态相同原则对采集的标本进行归类、编号、登记,将每号标本制作成不超过9头的三角纸干制标本,多余的个体用无水乙醇浸渍保存,依据相关分类学文献[1, 10]鉴定蚂蚁标本,尽可能鉴定到种。
1.3 群落结构分析方法
按照黄钊等[8]的方法,以各类蚂蚁物种个体数占群落物种总数的比例(β)来揭示群落结构特征,采用常规划分标准分为5个类型,即类型 A 为 β≥10.0% ,优势种;类型B为 5.0%≤β<10.0% ,常见种;类型C为 1.0%≤β<5.0% ,较常见种;类型D为 0.1%≤β<1.0% ,较稀有种;类型E为 β<0.1%,稀有种。
1.4 多样性指标测定方法
利用Estimate S 9.1.0 对数据进行处理[17−18],采用5项主要指标测定物种多样性:物种数目、Shannon-Wiener 多样性指数、Pielou 均匀度指数、Simpson 优势度指数、Jaccard 相似性系数[1, 19],利用SPSS软件中的one-way ANOVA对各垂直带蚂蚁多样性的各个指数进行方差分析并进行多重比较;采用Pearson相关分析方法[20]分析蚂蚁群落多样性各个指数与海拔的相关性,若存在显著相关性,则使用线性和二项式模型进行拟合,基于拟合系数(R2)评价拟合度,并进行显著性t检验,同时分析蚂蚁群落多样性指标与植被特征的相关性。
2. 结果与分析
2.1 蚂蚁群落的结构分析
在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,经鉴定共29种,隶属于2亚科12属。其中优势种3种,分别为草地铺道蚁Tetramorium caespitum、黑毛蚁Lasius niger和丝光蚁Formica fusca;常见种3种,分别是黄毛蚁L. flavus、光亮黑蚁F. candida和工匠收获蚁 Messor structor;角结红蚁 Myrmica angulinodis、红林蚁F. sinae等10种为较常见种;凹唇蚁F. sanguinea、喜马毛蚁L. himalayanus 和纹头原蚁Proformica striaticeps 3种为较稀有种;诺斯铺道蚁T. nursei、堆土细胸蚁Leptothorax acervorum等10种为稀有种(表2),较常见种和稀有种种类较多。
表 2 新疆天山中-西段蚂蚁群落结构Table 2 Ant community structure of the middle-western section of Tianshan Mountains in Xinjiang编号 物种名称 N/头 β/% 物种类型 编号 物种名称 N/头 β/% 物种类型 1 草地铺道蚁Tetramorium caespitum 31 856 23.38 优势种 16 弯角红蚁Myrmica lobicornis 1 411 1.04 较常见种 2 黑毛蚁Lasius niger 22 629 16.61 优势种 17 凹唇蚁Formica sanguinea 1 002 0.74 较稀有种 3 丝光蚁Formica fusca 17 991 13.20 优势种 18 喜马毛蚁Lasius himalayanus 736 0.54 较稀有种 4 黄毛蚁Lasius flavus 12 247 8.99 常见种 19 纹头原蚁Proformica striaticeps 139 0.10 较稀有种 5 光亮黑蚁Formica candida 10 500 7.71 常见种 20 诺斯铺道蚁Tetramorium nursei 129 0.09 稀有种 6 工匠收获蚁Messor structor 9 688 7.11 常见种 21 堆土细胸蚁Leptothorax acervorum 128 0.09 稀有种 7 角结红蚁Myrmica angulinodis 4 406 3.23 较常见种 22 蒙古原蚁Proformica mongolica 116 0.08 稀有种 8 红林蚁Formica sinae 4 023 2.95 较常见种 23 长柄心结蚁Cardiocondyla elegans 12 0.01 稀有种 9 阿富汗红蚁Myrmica afghanica 3 903 2.86 较常见种 24 广布弓背蚁Camponotus herculeanus 5 0 稀有种 10 艾箭蚁Cataglyphis aenescens 3 695 2.71 较常见种 25 吉市红蚁Myrmica jessensis 4 0 稀有种 11 满斜结蚁Plagiolepis manczshurica 3 030 2.22 较常见种 26 婀娜收获蚁Messor aralocaspius 3 0 稀有种 12 草地蚁Formica pratensis 3 009 2.21 较常见种 27 蒙古切胸蚁Temnothorax mongolicus 3 0 稀有种 13 类干蚁Formica approximans 2 043 1.50 较常见种 28 针毛收获蚁Messor aciculatus 1 0 稀有种 14 掘穴蚁Formica cunicularia 1 933 1.42 较常见种 29 条纹切胸蚁Temnothorax striatus 1 0 稀有种 15 中亚凹头蚁Formica mesasiatica 1 604 1.18 较常见种 合计 136 247 100 说明:N为个体数,β为各类蚂蚁物种个体数占群落物种总数的比例。 2.2 蚂蚁群落的多样性指标分析
2.2.1 物种累积曲线分析
随着调查样地的增加,实际观察物种数(S)、基于多度(个体数量)的预测值(ACE)、Chao 1和Chao 2值均先急剧上升,后缓慢上升,最后趋于稳定(图1)。蚂蚁物种S为29,与丰富度估计值(ACE值为30.03,Chao1值为30,Chao 2值为29.97)相接近,实际采集到的物种数约为预测值的96.57%~96.76%,可见抽样充分。
2.2.2 物种数
从物种的实测值来看,新疆天山中-西段4个垂直带的蚂蚁物种数都接近或等于ACE估计值(表3),其中独山子垂直带海拔2 773 m锦鸡儿灌丛、3 023 m草甸、3 235 m草甸,乌拉斯台垂直带海拔3 024 m草丛,那拉提垂直带海拔2 548 m高山柳灌丛、
3055 m草丛及库车垂直带3 058 m草丛样地均未发现蚂蚁。4个垂直带蚂蚁物种数顺序为:独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种)。如图2所示:各垂直带的蚂蚁物种数与海拔存在显著(P<0.05)相关性。总体来看,各垂直带的蚂蚁物种数随海拔升高基本呈下降趋势。独山子、乌拉斯台和那拉提垂直带蚂蚁物种数与海拔的二项式变化趋势与线性变化趋势基本一致,线性模型显示乌拉斯台和那拉提垂直带的蚂蚁物种数与海拔分别呈显著(R2=0.770,P=0.022)和极显著(R2=0.739,P=0.013)负相关关系,二项式变化同线性分析趋势一致,但无显著相关性(P>0.05);而库车垂直带物种数与海拔的二项式模型呈现随海拔升高先升高后下降的单峰曲线。表 3 各垂直带蚂蚁群落多样性指标Table 3 Diversity indexes of ant communities in different vertical zones垂直带 物种数/种 ACE估计值 Shannon-Wiener多样性指数 Pielou均匀度指数 Simpson优势度指数 独山子 18 20.10±0.00 0.515 2±0.153 9 a 0.313 8±0.095 8 a 0.446 3±0.107 8 a 乌拉斯台 10 10.00±0.00 0.539 9±0.221 6 a 0.348 9±0.121 5 a 0.403 7±0.135 8 a 那拉提 14 16.54±1.49 0.596 7±0.265 9 a 0.329 9±0.139 0 a 0.316 8±0.132 5 a 库车 13 13.60±0.00 0.505 8±0.119 1 a 0.408 6±0.103 2 a 0.611 0±0.096 0 a 说明:同列相同字母表示差异不显著(P>0.05)。数值为平均值±标准误。 2.2.3 多样性指数
新疆天山中-西段4个垂直带蚂蚁群落多样性指数变化顺序为:那拉提垂直带(0.596 7)>乌拉斯台垂直带(0.539 9)>独山子垂直带(0.515 2)>库车垂直带(0.505 8),但4个垂直带的蚂蚁多样性指数差异不显著(表3)。如图3所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁多样性指数与海拔存在显著(P<0.05)或极显著(P<0.01)相关性,而那拉提和库车垂直带的蚂蚁多样性指数与海拔的相关性不显著(P>0.05)。总体来看,各垂直带的蚂蚁多样性指数随海拔升高而呈现降低的趋势,二项式变化趋势与线性变化趋势基本一致。其中线性模型显示乌拉斯台垂直带蚂蚁多样性指数与海拔呈显著负相关(P<0.05),二项式变化趋势与线性分析一致,但无相关性。
2.2.4 均匀度指数
新疆天山中-西段4个垂直带蚂蚁群落均匀度指数变化顺序为:库车垂直带(0.408 6)>乌拉斯台垂直带(0.348 9)>那拉提垂直带(0.329 9)>独山子垂直带(0.313 8),但4个垂直带的蚂蚁均匀度指数差异不显著(表3)。如图4所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁均匀度指数与海拔存在显著相关性(P<0.05),而那拉提和库车垂直带的蚂蚁均匀度指数与海拔关系不显著(P>0.05)。其中在独山子垂直带,均匀度指数与海拔的线性模型显著负相关(P<0.05),二项式模型呈现极显著负相关(P<0.01),二项式和线性模型变化趋势不一致;线性模型显示乌拉斯台垂直带蚂蚁群落均匀度指数与海拔化显著负相关(R2=0.697,P<0.05),二项式和线性模型变化趋势不一致,且相关性不显著(P>0.05);线性和二项式模型显示,那拉提和库车垂直带的蚂蚁群落均匀度指数与海拔变化相关性均不显著(P>0.05),但二项式和线性模型变化趋势基本一致。
2.2.5 优势度指数
新疆天山中-西段4个垂直带蚂蚁群落优势度指数变化顺序为:库车垂直带(0.611 0)>独山子垂直带(0.446 3)>乌拉斯台垂直带(0.403 7)>那拉提垂直带(0.316 8),与多样性指数的变化趋势正相反,但4个垂直带的蚂蚁群落优势度指数差异不显著(表3)。相关分析发现:各垂直带的蚂蚁群落优势度指数与海拔的相关性不显著(P>0.05);4个垂直带的线性模型和二项式模型的变化趋势不一致,二项式模型分析均呈先升高后降低的变化趋势(图5),仅独山子垂直带的二项式模型呈显著性(R2=0.846,P<0.01)。
2.3 蚂蚁群落相似性分析
新疆天山中-西段各垂直带蚂蚁群落间相似性系数为0.166 7~0.600 0(表4),处于极不相似至中等相似水平;平均值0.289 0,显示中等不相似水平。其中同处于山间盆地的那拉提与乌拉斯台垂直带的蚂蚁群落间相似性最大(0.600 0),乌拉斯台与独山子垂直带的蚂蚁群落间相似性最小(0.166 7),库车与那拉提垂直带之间相似性较低,处于中等不相似水平,其余垂直带间相似性低,处于极不相似水平。总体来说,新疆天山中-西段蚂蚁群落之间相似性较低,群落结构差异较大。
表 4 新疆天山中-西段各垂直带蚂蚁群落间相似性系数Table 4 Similarity coefficients of ant communities in the middle-western section of Tianshan Mountains in Xinjiang垂直带 垂直带q 乌拉斯台 那拉提 库车 独山子 0.166 7 0.230 8 0.240 0 乌拉斯台 0.600 0 0.210 5 那拉提 0.285 7 平均值 0.289 0 说明:q为相似性系数, 1≥q≥0.75,极相似;0.75 >q≥0.50,中等相似;0.50 >q≥0.25,中等不相似;0.25>q≥0,极不相似。 2.4 蚂蚁群落多样性指标与植被特征相关分析
如表5所示:新疆天山中-西段蚂蚁物种数与乔木郁闭度显著正相关(P<0.05),但与灌木盖度、草木盖度、地被物盖度和地被物厚度相关性不显著;多样性指数、均匀度指数和优势度指数与植被特征的相关性均不显著。
表 5 蚂蚁多样性与植被特征相关分析Table 5 Correlation analysis between ant diversity and vegetation feature植被特征 物种数 多样性
指数均匀度
指数优势度
指数乔木郁闭度 0.424* 0.296 0.285 0.095 灌木盖度 0.049 0.099 0.114 −0.015 草本盖度 −0.226 −0.234 −0.234 −0.072 地被物盖度 −0.161 −0.143 −0.137 −0.075 地被物厚度 −0.148 −0.240 −0.256 −0.071 说明:数值为Pearson相关系数,*表示在0.05水平上显著相关。 3. 讨论
在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,隶属于2亚科12属29种,物种数略高于新疆天山中段[16](2亚科15属27种),与天山东段[15](2亚科14属29种)相等,但明显高于临近的祁连山国家公园青海片区[21](2亚科6属13种),可能是因为天山中部和祁连山国家公园海拔较高,海拔落差较大,其物种丰富度较低,而新疆天山中-西段和东段由于平均海拔较低,蚂蚁物种丰富度较高,相对海拔高度对蚂蚁物种丰富度也有着重要影响。与同为干旱区的伊朗中部相比,新疆天山中-西段的蚂蚁物种数明显低于伊朗中部[22](8亚科12属34种),可能是伊朗中部纬度和海拔均低于新疆天山,表明耐热性较低的物种更喜欢聚集在中部高海波区域[22],而伊朗中部因适合蚂蚁生存的海拔跨度较大造成物种多样性较高,新疆天山中-西段由于低海拔炎热干燥,高海拔温度过低,适合蚂蚁生存的海拔跨度较小而使多样性较低。
目前,全球蚂蚁物种多样性沿海拔梯度变化主要呈现5种模式[23]:①随海拔升高蚂蚁多样性呈递减的趋势(物种多样性最高出现在低海拔区域)[24];②低高原模式(300 m以下最低海拔的高多样性);③单峰模式,即在中海拔区域物种多样性最高,可用“中域效应”来解释(海拔高于300 m)[25];④随海拔升高蚂蚁多样性呈现多个峰值,可用“多域效应”来解释[26];⑤无规律模式。研究表明:在沿海拔梯度的5种模式中,最常见的是单峰模式和递减模式[27−29]。中海拔地区的物种丰富度较高是由于高海拔或低海拔地区的气候严酷和高海拔地区资源的可利用性有限[30−31];物种丰富度随海拔升高而下降,原因是海拔升高,温度和生产力下降[32]。通过对新疆天山中-西段4个垂直带的物种数和多样性指数分析发现:蚂蚁物种多样性沿海拔梯度变化总体呈现随海拔升高而降低的趋势,主要原因是随着海拔的升高气温会逐渐降低而影响蚂蚁的生存;4个垂直带的物种数和多样性指数与海拔变化显著相关,均匀度指数和优势度指数与海拔的相关显著性不尽相同,这与天山中部南北坡的蚂蚁多样性变化规律一致[16]。除了气温以外,还可能受到湿度的制约。与藏东南、四川西部大凉山和云南地区自然保护区不同,新疆天山位居中国内陆,印度洋季风因受到喜马拉雅山脉的阻挡而无法到达,太平洋季风虽可以到达,但距离较远,因此新疆天山常年较干旱,雨水较少,湿度较低,植被类型多以草地及灌木为主,蚂蚁物种丰富度也较低;从4个垂直带来看,蚂蚁物种数独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种),独山子垂直带位于天山北坡,库车垂直带位于天山南坡,可见天山的北坡蚂蚁物种数比南坡要多,可能是因为新疆天山位于北半球,南坡为阳坡,北坡为阴坡,南坡日照时间长,水分蒸发量大,土壤湿度低,蚂蚁物种较少,这与天山中部南北坡的蚂蚁物种分布一致[16]。因此湿度也成为制约蚂蚁物种多样性的因素之一。同时温度和湿度也影响着植被类型、土壤结构和微生境等,故蚂蚁物种多样性受到多种因素的影响。
从群落相似性来看,那拉提与乌拉斯台垂直带的蚂蚁群落间相似性较高,其原因可能是这2个垂直带地理位置相邻,海拔高度和植被类型相似,相同的生境提供了相同的栖息场所和食物资源,从而孕育了较多相同的蚂蚁种类;而其余各垂直带间的群落相似性较低,处于极不相似至中等不相似水平,蚂蚁群落组成差异明显。相关性分析表明:天山中-西段蚂蚁群落的物种数与多样性指数与海拔变化呈显著负相关,海拔梯度显著影响该区域的蚂蚁物种多样性。有研究表明:凋落物覆盖率增高可增加蚂蚁的物种丰富度[33],但蚂蚁物种丰富度与凋落物的数量间无显著相关性,本研究中各垂直带蚂蚁物种数与草本盖度、地被物的盖度和厚度负相关,但相关性不显著,与前人研究结果一致[34];物种数与乔木郁闭度呈显著正相关,在四川王朗自然保护区[ 35]、青藏高原西南坡[36]和西北坡[37]等地区的研究也存在这种相关关系,可能是高大的乔木给蚂蚁提供了较理想的栖息场所、食物来源,蚂蚁群落得以发展。从栖息生境来看,天山中-西段的植被多为草丛和灌丛,仅在海拔相对较低的地方分布有阔叶林、针阔混交林,生态系统脆弱,保护和利用好区域内的昆虫生物多样性,对维持和改善生态系统具有重要意义。
4. 结论
在新疆天山中-西段4个垂直带共记录到蚂蚁2亚科12属29种,优势种为草地铺道蚁、黑毛蚁和丝光蚁。新疆天山中-西段的蚂蚁物种多样性明显高于祁连山国家公园青海片区,与天山东段和中段接近,低于同为干旱区的伊朗中部。整体而言,天山中-西段4个垂直带蚂蚁群落多样性指数随海拔升高而呈现降低趋势。物种数和多样性指数与海拔显著负相关,且物种数与乔木郁闭度显著正相关,海拔显著影响该地区的蚂蚁物种多样性,同时坡向、湿度、植被等也起到重要作用。各垂直带间的蚂蚁群落相似性总体较低,表明蚂蚁群落分化明显。
5. 致谢
感谢西南林业大学图书馆房华老师和研究生杨蕊、韩秀、杨林、钱怡顺在标本采集和样地调查,本科生杨润娇、何丽华、杨洋和潘宇航在标本整理与制作中的帮助。
-
表 1 卫生伐后的马尾松林分基本特征
Table 1. Characteristics of P. massoniana stands after sanitation thinning diseased trees
处理 密度/(株·hm−2) 胸径/cm 树高/m 郁闭度 马尾松 阔叶树 马尾松 阔叶树 马尾松 阔叶树 对照 1 800 13.0±2.4 12.5±1.7 0.9 卫生伐 300 1 000 17.6±2.8 7.1±1.8 12.5±2.2 5.6±1.1 0.6 表 2 疫木卫生伐后马尾松林分的树种组成
Table 2. Tree species composition of P. massoniana stands after sanitation thinning infected trees
处理 树种 重要值/% 对照 马尾松 100.00 卫生伐 马尾松 38.41 短柄枹 35.59 檵木 10.91 白栎 10.54 无患子 2.24 枫香 1.25 薄叶山矾 0.55 合欢 0.52 表 3 卫生伐后马尾松林的林木个体大小差异
Table 3. Individual size inequality of P. massoniana stands after thinning diseased trees
处理 KC GC LAC 对照 0.35±0.08 a 0.26±0.05 a 0.97±0.15 a 卫生伐 0.74±0.13 b 0.66±0.09 b 1.04±0.23 a 说明:同列不同字母表示同一指标不同处理间差异显著 (P<0.05) 表 4 卫生伐后马尾松林的聚集指数和竞争指数
Table 4. Aggregation index and competition index of P. massoniana stands after sanitation thinning infected trees
处理 聚集指数(R) 竞争指数(Ci) 对照 1.27±0.21 a 8.16±3.52 a 卫生伐 0.95±0.14 b 10.12±5.60 b 说明:同列不同字母表示同一指标不同处理间差异显著 (P<0.05) -
[1] 吴敏娟, 尤誉杰, 张晓红, 等. 不同干扰模式对受害马尾松人工纯林林分结构的影响[J]. 应用生态学报, 2019, 30(1): 58 − 66. WU Minjuan, YOU Yujie, ZHANG Xiaohong, et al. Effects of different interference modes on the stand structure of artificial pure forest of Pinus massoniana [J]. Chin J Appl Ecol, 2019, 30(1): 58 − 66. [2] 吕文艳, 王柏泉, 曾德山, 等. 松材线虫病疫木不同伐除方式对森林植物群落演替的影响[J]. 湖北林业科技, 2008, 37(3): 4 − 8. LÜ Wenyan, WANG Baiquan, ZENG Deshan, et al. Effects of different cutting methods of pine wood nematode disease on forest plant community succession [J]. Hubei For Sci Technol, 2008, 37(3): 4 − 8. [3] 王国明, 赵颖, 陈斌, 等. 松材线虫病除治迹地自然恢复过程中物种多样性的动态变化[J]. 浙江林学院学报, 2010, 27(2): 170 − 177. WANG Guoming, ZHAO Ying, CHEN Bin, et al. Dynamic changes of species diversity during the natural restoration process of pine wood nematode disease [J]. J Zhejiang For Coll, 2010, 27(2): 170 − 177. [4] 石娟, 骆有庆, 宋冀莹, 等. 松材线虫入侵后不同伐倒干扰强度对马尾松林植物多样性的影响[J]. 应用生态学报, 2006, 17(7): 1157 − 1163. SHI Juan, LUO Youqing, SONG Jiying, et al. Effects of different cutting intensity on the plant diversity of Pinus massoniana forest after invasion of pine wood nematode [J]. Chin J Appl Ecol, 2006, 17(7): 1157 − 1163. [5] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006. [6] 吴建强, 王懿祥, 杨一, 等. 干扰树间伐对杉木人工林林分生长和林分结构的影响[J]. 应用生态学报, 2015, 26(2): 340 − 348. WU Jianqiang, WANG Yixiang, YANG Yi, et al. Effects of interfering tree thinning on the growth and stand structure of Chinese fir plantation [J]. Chin J Appl Ecol, 2015, 26(2): 340 − 348. [7] 朱婷婷, 王懿祥, 朱旭丹, 等. 遮光对木荷和枫香光合特性的影响[J]. 浙江农林大学学报, 2017, 34(1): 28 − 35. ZHU Tingting, WANG Yixiang, ZHU Xudan, et al. Effect of shading on photosynthetic characteristics of Schima superba and Liquidambar formosana [J]. J Zhejiang A&F Univ, 2017, 34(1): 28 − 35. [8] 王懿祥, 张守攻, 陆元昌, 等. 林木个体大小不一致性指标对人工林间伐方式的即时性响应[J]. 应用生态学报, 2014, 25(6): 1645 − 1651. WANG Yixiang, ZHANG Shougong, LU Yuanchang, et al. The immediate response of individual size inconsistency indexes to the mode of artificial forest thinning [J]. Chin J Appl Ecol, 2014, 25(6): 1645 − 1651. [9] 王懿祥, 张守攻, 陆元昌, 等. 干扰树间伐对马尾松人工林目标树生长的初期效应[J]. 林业科学, 2014, 50(10): 67 − 73. WANG Yixiang, ZHANG Shougong, LU Yuanchang, et al. The initial effect of interfering tree thinning on the growth of target trees in Pinus massoniana plantation [J]. Sci Silv Sin, 2014, 50(10): 67 − 73. [10] 周红敏, 惠刚盈, 赵中华, 等. 林分空间结构分析中样地边界木的处理方法[J]. 林业科学, 2009, 45(2): 1 − 5. ZHOU Hongmin, HUI Gangying, ZHAO Zhonghua, et al. The treatment method of boundary wood in the spatial structure analysis of stands [J]. Sci Silv Sin, 2009, 45(2): 1 − 5. [11] 仇建习, 汤孟平, 沈利芬, 等. 近自然毛竹林空间结构动态变化[J]. 生态学报, 2014, 34(6): 1444 − 1450. QIU Jianxi, TANG Mengping, SHEN Lifen, et al. Dynamic changes of spatial structure of near-natural bamboo forests [J]. Acta Ecol Sin, 2014, 34(6): 1444 − 1450. [12] CLARK P J, EVANS F C. Distance to nearest neighbor as a measure of spatial relationships in populations [J]. Ecology, 1954, 35(4): 445 − 453. [13] 安慧君, 张韬. 聚集指数边界效应的校正方法与应用[J]. 南京林业大学学报(自然科学版), 2005, 29(3): 57 − 60. AN Huijun, ZHANG Tao. Correction method and application of boundary effect of clustering index [J]. J Nanjing For Univ Nat Sci Ed, 2005, 29(3): 57 − 60. [14] HEGYI F. A simulation model for managing jack-pine stands [J]. Growth Models Tree Stand Simu, 1974, 30: 74 − 90. [15] 王懿祥. 人工马尾松和杉木林目标树经营理论与实践[D]. 北京: 中国林业科学研究院, 2012. WANG Yixiang. Theory and Practice of Target Tree Management in Pinus massoniana and Cunninghamia lanceolata Plantation[D]. Beijing: Chinese Academy of Forestry, 2012. [16] 姜俊, 谢阳生, 陆元昌, 等. 不同林龄阶段马尾松人工林群落结构特征及经营策略[J]. 西北林学院学报, 2015, 30(6): 1 − 7. JIANG Jun, XIE Yangsheng, LU Yuanchang, et al. Community structure and management strategy of Pinus massoniana plantation in different ages [J]. J Northwest For Univ, 2015, 30(6): 1 − 7. [17] 柴希民, 蒋平. 松材线虫的发生和防治[M]. 北京: 中国农业出版社, 2003. [18] 张慧, 周国模, 白尚斌, 等. 目标树抚育对亚热带天然次生灌丛群落结构和多样性的影响[J]. 应用生态学报, 2017, 28(5): 1414 − 1420. ZHANG Hui, ZHOU Guomo, BAI Shangbin, et al. Effects of target tree rearing on the structure and diversity of subtropical natural secondary shrub communities [J]. Chin J Appl Ecol, 2017, 28(5): 1414 − 1420. 期刊类型引用(1)
1. 王鹏,王雪峰,赵溪月. 基于双目视觉系统的幼龄格木生长因子测定. 森林与环境学报. 2024(06): 628-638 . 百度学术
其他类型引用(2)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190487