留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松材线虫病疫木卫生伐对马尾松纯林林分结构的影响

张华锋 陈思宇 刘刚 王懿祥

王子研, 王成, 唐赛男, 等. 广州河涌区乡村聚落植物多样性特征及其影响因素[J]. 浙江农林大学学报, 2020, 37(3): 456-464. DOI: 10.11833/j.issn.2095-0756.20190391
引用本文: 张华锋, 陈思宇, 刘刚, 等. 松材线虫病疫木卫生伐对马尾松纯林林分结构的影响[J]. 浙江农林大学学报, 2020, 37(4): 745-751. DOI: 10.11833/j.issn.2095-0756.20190487
WANG Ziyan, WANG Cheng, TANG Sainan, et al. Characteristics and influencing factors of plant diversity in riverside rural settlement in Guangzhou[J]. Journal of Zhejiang A&F University, 2020, 37(3): 456-464. DOI: 10.11833/j.issn.2095-0756.20190391
Citation: ZHANG Huafeng, CHEN Siyu, LIU Gang, et al. Effects of sanitation cutting pine wilt diseased trees on the stand structure of pure Pinus massoniana plantation[J]. Journal of Zhejiang A&F University, 2020, 37(4): 745-751. DOI: 10.11833/j.issn.2095-0756.20190487

松材线虫病疫木卫生伐对马尾松纯林林分结构的影响

DOI: 10.11833/j.issn.2095-0756.20190487
基金项目: 国家自然科学基金资助项目(31770681);浙江省自然科学基金资助项目(LY17C160006)
详细信息
    作者简介: 张华锋,从事森林生态学和森林培育学等研究。E-mail: zhf2402@qq.com
    通信作者: 王懿祥,教授,博士生导师,从事森林生态学和森林经理学等研究。E-mail: wangyixiang@zafu.edu.cn
  • 中图分类号: S718.5

Effects of sanitation cutting pine wilt diseased trees on the stand structure of pure Pinus massoniana plantation

  • 摘要:   目的  探讨松材线虫Bursaphelenchus xylophlius病疫木采伐对马尾松人工纯林林分结构的影响,对松材线虫病入侵后的马尾松林分的经营管理有理论和实践价值。  方法  在浙江省杭州市临安区,分别选择松材线虫病危害及周边未受害的马尾松Pinus massoniana人工纯林设置样地并进行调查。  结果  疫木卫生伐12 a后的结果表明:与马尾松纯林相比较,卫生伐之后马尾松重要值显著下降,从100.00%降至38.41%;胸径结构由正态分布变为反J型曲线;树高结构由单层林变为复层林;林木大小个体差异显著增加,两级分化显著加剧;林木分布从均匀分布变为随机分布;林木竞争压力增加,6 cm径阶林木竞争压力最大。  结论  卫生伐促使受害马尾松纯林向混交林演替的速度加快,多个林分结构指标发生了重大变化,单层马尾松同龄纯林演替为复层马尾松落叶阔叶树混交异龄林。图2表4参18
  • 珠江三角洲地区河湖纵横,是富有岭南特色的水乡聚落聚集地;聚落植被空间特有的线性特征对村民生活、乡村传统文化传承等具有巨大作用,其带状滨河空间具有明显边缘效应和较强的异质性,是城乡最富有魅力的界面,也是理想的生态走廊,成为城乡景观中最具表现力的地带[1]。但乡村聚落居住区人口密集,居住和生产活动频繁,对滨水植物生态系统的结构和功能影响巨大[2-4];植被特征和功能也因居民需求的多样化而呈现出较强多样化特征,并随着线性聚落居民点的分布差异而变化[5-7]。因此,研究人与植物的双向关系、植物在人们居住活动中所发挥的作用以及居住建设活动对植物多样性的影响等,对乡村聚落植物生态环境的改善和聚落文化的传承具有十分重要的意义[8]。目前国内外对滨河乡村植物基本特征、植物群落结构特征、树木健康评价等聚落植物景观[5-9],植物景观与村聚落建筑、农田、道路和水体等景观要素的相互关系[10],乡村人居林分类、结构和配置等[11-17]较为关注,但对基于乡村聚落分布的线性特征及人居需求变化造成植物景观特征变化的研究较少。本研究以典型带状滨河乡村聚落——广州南沙河涌区的3涌为对象,研究聚落带状空间的植物多样性特征以及居住建设活动对其产生的影响,调查不同村落中植物群落的种类及分布变化,分析造成这一变化的影响因素,以期从植物景观建设的视角为中国乡村振兴计划中建设“宜居”的生态环境提出建议[18-20]

    广州南沙河涌区位于广东省广州市最南端,珠江入海口处,是珠江三角洲经济区的几何中心。该区域属亚热带海洋季风气候,年平均气温为21.9 ℃,年平均降水量为1 647.5 mm,雨量充沛,雨热同季,热量和辐射丰富,植被为热带雨林季风植被。区域由北向南按照形成时序依次命名为1涌、2涌、3涌等直至19涌,每条河涌由西闸口和东闸口限制,总面积约160 km2[21]。研究区以南沙河涌区北部的3涌为代表。该涌建成距今约70 a,共有行政村7个,以农田、鱼塘为边界划定乡村植物景观研究范围。调研区域以道路为中心,除大型农业用地外,两侧为建筑、广场、桥、河流、水塘等与村民日常生活密切相关的区域。受城市化建设影响,3涌从西闸至东闸被工厂隔开,根据河涌两岸用地类型对乡村聚落河段进行划分,形成居住农业段(R-A1)-居住段(R)-农业段(A)-居住农业段(R-A2)分布序列。研究区总长为5.3 km,其中居住段占34.0%,农业段约占16.2%,乡村聚落呈非连续分布。

    根据卫星影像资料确定研究区域主要植物种类及基本性质,采用样方法进行实地群落调查。在河涌两岸乡村聚落带(不包含工厂段),每隔200 m设置对应的2个样地,其中R-A1和R段分别有12个,A段8个,R-A2段14个,共46个样地。各样地划出40 m × 40 m 的样方,并在样方内设置乔木样方(5 m × 5 m),灌木样方(5 m × 5 m)和草本样方(1 m × 1 m),记录其中的乔木名称、空间位置、株数、树高、胸径及年龄,记录灌木或草本的名称、空间位置、株数(盖度)和高度。测量对应样地的河道宽度,记录样方内建筑的覆盖面积、数量、高度等基本信息[22]

    2.2.1   多样性指数及重要值计算

    选取相对多度、Shannon-Wiener多样性指数(H)、Patrick丰富度指数(R)、Pielou均匀度指数(J)和重要值[22],指示植物基本多样性特征。

    2.2.2   其他指标计算

    建筑盖度(CB)=(S投影/S)×100%,其中S投影为样方内建筑投影面积,S为样方总面积;河道宽度(WR):成对样地测量4组河道宽度,其平均值即为该组样地对应河道宽度(m)。

    2.2.3   数据统计分析

    利用Excel 2016统计分析植物各项形态指标种类、数量及其变化趋势,利用SPSS进行相关统计分析。

    调查发现:研究区共有植物77种,隶属于44科70属,其中乔木42种,灌木19种,草本13种,藤本3种;乔木占54.55%,具绝对性优势,藤本植物最少。就科属而言,研究区以蔷薇科Rosaceae、棕榈科Palmae植物为主,桑科Moraceae和芸香科Rutaceae次之。

    计算4个河段中乡村聚落植物乔、灌、草的重要值(表1)可知:不同河段的优势乔灌木差异较小,乔木均以龙眼的重要值最高,黄皮Clausena lansium、菠萝蜜Artocarpus heterophyllus和苹婆Sterculia nobilis次之,体现了聚落居民对果树的需求;近西闸口以小叶榕Ficus concinna和白颜树Gironniera subaequalis重要值较高,可能作为风水文化林的形式在河涌区整体植物景观风貌中发挥作用。灌木以九里香Murraya exotica、桂花Osmanthus fragrans和米仔兰Aglaia odorata等观叶观花植物为主,主要见于庭院内外空间,用于满足聚落居民的观赏需求。草本植物以香蕉Musa nana和青皮竹Bambusa textilis为主,成片栽植于河岸边、池塘边和街道两侧。

    表  1  优势种重要值特征
    Table  1.  Significant value characteristics of dominant species
    河段 乔木 灌木 草本
    种名 重要值 种名 重要值 种名 重要值
     R-A1 龙眼Dimocarpus longan 0.26 桂花Osmanthus fragrans 0.46 香蕉Musa nana 0.64
    Amygdalus persica 0.12 散尾葵Chrysalidocarpus lutescens 0.18 青皮竹Bambusa textilis 0.21
    小叶榕Ficus concinna 0.06 九里香Murraya exotica 0.10 大米草Spartina anglica 0.10
    落羽杉Taxodium distichum 0.05 金银花Lonicera japonica 0.07 白花鬼针草Bidens alba 0.05
    菠萝蜜Artocarpus heterophyllus 0.05 米仔兰Aglaia odorata 0.05
     R 龙眼 0.21 桂花 0.37 香蕉 0.45
    白颜树Gironniera subaequalis 0.14 九里香 0.10 青皮竹 0.29
    黄皮Clausena lansium 0.08 散尾葵 0.10 甘蔗Saccharum officinarum 0.12
    大王椰子Roystonea regia 0.07 米仔兰 0.10 紫苏erilla frutescens 0.04
    番石榴Psidium guajava 0.06 月季Rosa chinensis 0.06 狗尾草Setaria viridis 0.03
     A 龙眼 0.20 木薯Manihot esculenta 0.56 香蕉 0.68
    黄皮 0.13 木瓜Chaenomeles sinensis 0.27 青皮竹 0.24
    芒果Mangifera indica 0.11 桂花 0.08 美人蕉Canna indica 0.04
    苹婆Sterculia nobilis 0.07 九里香 0.08 朱蕉Cordyline fruticose 0.03
    番石榴 0.06
     R-A2 龙眼 0.34 朱蕉 0.32 香蕉 0.40
    菠萝蜜 0.11 桂花 0.22 青皮竹 0.27
    大王椰子 0.09 九里香 0.13 大米草 0.22
    黄皮 0.08 变叶木Codiaeum variegatum 0.08 闭鞘姜Costus speciosus 0.05
    罗汉松Sterculia nobilis 0.05 米仔兰 0.08 美人蕉 0.02
    下载: 导出CSV 
    | 显示表格

    研究发现(表2):不同河段群落上层(高于8 m)植被多以落羽杉Taxodium distichum、龙眼Dimocarpus longan、大王椰子Roystonea regia、白颜树及小叶榕为主;不同河段树种丰富度指数不同(图1),其中以R段最高(10),R-A1和R-A2段其次,A段最低(2);即居住密集区植被较为高大,常以古树名木或风水林的形式存在,农业段多为断枝枯木,罕有大型古树,植被多为人工栽植果树。各河段的群落中层植被以龙眼、黄皮、菠萝蜜和苹婆等果树为主,见于道路、庭院河岸等各类植物功能区,白颜树、美丽异木棉Ceiba speciosa和柳树Salix babylonica等景观观赏树种也较为常见,见于街边游憩广场或小游园;中层植被丰富度指数同样以R段最高(18),A段(11)最低。相比之下,因包含小乔木、灌木和大型草本植物,群落下层植被丰富度指数较高,近东闸口的R-A2段丰富度指数达到了29,调查显示该段庭院面积较大,庭院内栽植经济类、观赏类果树等的可选择性较高,而近西闸口的R-A1段则庭院面积相对较小,植被多为盆栽为主,因而丰富度指数略低(11);R和A段丰富度指数基本相当,植被以香蕉、青皮竹及龙眼为主。

    图  1  不同高度层树种丰富度指数
    Figure  1.  Tree species richness at different heights
    表  2  不同高度层树种相对多度
    Table  2.  Relative abundance of tree species at different heights
    河段 0~4 m 4~8 m >8 m
    种名 相对多度/% 种名 相对多度/% 种名 相对多度/%
     R-A1 香蕉 82.02 龙眼 31.08 落羽杉 44.44
    青皮竹 11.43 27.03 龙眼 25.93
    桂花 2.69 落羽杉 13.51 苦楝 Melia azedaeach 11.11
    龙眼 1.85 白颜树 8.11 樟树Cinnamomum camphora 7.41
    橡皮树Ficus elastica 0.50 荔枝Litchi chinensis 4.05
     R 青皮竹 35.41 龙眼 45.22 大王椰子 43.33
    香蕉 32.13 黄皮 14.01 白颜树 23.33
    黄皮 16.39 苹婆 8.92 落羽杉 6.67
    番石榴 4.43 菠萝蜜 5.10 龙眼 6.67
    龙眼. 3.44 罗汉松Podocarpus macrophyllus 3.82 小叶榕 3.33
     A 香蕉 63.51 龙眼 31.65 小叶榕 66.67
    青皮竹 14.85 美丽异木棉Ceiba speciosa 25.32 苦楝 33.33
    龙眼 5.36 黄皮 16.46
    美丽异木棉 4.12 杨桃Averrhoa carambola 6.33
     R-A2 香蕉 37.23 龙眼 52.00 大王椰子 55.56
    龙眼 19.70 柳树Salix babylonica 13.09 小叶榄仁Terminalia neotaliala 27.78
    青皮竹 16.01 菠萝蜜 12.73 龙眼 13.89
    菠萝蜜 5.59 黄皮 7.27
    黄皮 3.56 落羽杉 4.73
    下载: 导出CSV 
    | 显示表格

    图2可知:不同河段植被多样性指数波动较大,总体表现为R(2.52)>R-A2(2.45)>R-A1(1.53)=A(1.53),4个河段不同生活型植被多样性则表现为乔木>灌木>草本。均匀度指数差异较小,总体表现为R-A2(0.67)>R(0.65)>A(0.49)>R-A1(0.45),说明均匀度大小与河段用地类型和地理位置相关;不同河段乔灌草均匀度相对大小不同,R-A1段表现为乔木(0.74)>灌木(0.69)>草本(0.48),R段表现灌木(0.82)>乔木(0.80)=草本(0.80),A段表现为灌木(0.62)>乔木(0.47)>草本(0.43),R-A2段表现为灌木(0.69)>草木(0.68)>乔本(0.65)。4类河段中R段多样性指数和均匀度指数均最高,主要原因是作为居住用地,R段两岸居住建筑分布多,人为活动频繁,受居民需求层次影响,庭院观赏植物更多,植物选择自由度较高,种类也较为丰富。而同为半居住半农业河段,近西闸的R-A1段乔木多样性高于近东闸口的R-A2段,原因在于西闸口居住建筑密度较高,居民更倾向选择乔木;而东闸口居住密度较小,人为干扰较小,大米草Spartina anglica,白花鬼针草Bidens alba等低矮灌木和草本植物更易生长,自然生态性较强。A段为农业用地,虽然干扰频率较低,但在以经济需求为本的人为管理下均质性较高,多为成片果树林或香蕉等可食用类植物,因此各类指数都低于其他河段。

    图  2  植物多样性指数变化趋势图
    Figure  2.  Trend map of the change of plant diversity index

    实地调查发现:河涌南岸居住活动较为频繁,而北岸以农用地为主,因此本研究主要对南岸进行植物多样性与河道宽度和建筑盖度相关关系的分析。

    Pearson相关性检验发现(图3):河道宽度与河段区位相关性显著(r=0.700,P<0.05),河道宽度不受用地的限制,而与河段区位直接相关;多重比较(LSD)发现:与其他河段相比,R-A2段河道宽度更大(P<0.05),其他河段河道宽度则无显著差异。对河道宽度与乔灌草的多样性和均匀度指数的相关性分析发现:河道宽度与草本植物多样性呈显著正相关(r=0.537,P<0.05);单因素方差分析发现:R与R-A2段草本植物多样性差异显著(P<0.05),不同河段表现为R-A2>A>R-A1>R,结合河道宽度认为,河段河道宽度越大,草本植物多样性越高,也就是说,河道宽度较高河段,其河岸带自然性较高,滨河自然野生草本植物生存空间较大,种类也较为丰富。

    图  3  河道宽度与多样性指数分布关系图
    Figure  3.  Distribution relationship between river width and diversity index

    图4所示:不同河段植被均匀度指数变化较小,建筑盖度变化不明显。Pearson相关性分析发现:建筑盖度与灌木均匀度呈显著负相关(r=−0.414,P<0.05),即建筑盖度越大,灌木分布越不均匀;主要原因在于建筑密集区,庭院分布也较为密集,桂花、九里香和散尾葵Chrysalidocarpus lutescens等常用做庭院造景灌木,受人为干较大;而在建筑盖度较低河段,由庭院导致的灌木分布不均匀的现象则相对较弱。

    图  4  建筑盖度与均匀度指数分布关系图
    Figure  4.  Distribution relationship between building coverage and eveness index

    总的来看,乔木和灌木在不同河段多样性差异不显著,受居住活动影响较小,表明整体乡村聚落河岸带植物景观较为统一,稳定性较强。河道宽度与草本植物多样性显著相关,建筑盖度与灌木均匀度显著相关;前者受河涌本身属性影响,而后者与人居庭院灌木选择的多样化相关,且由西闸口至东闸口的不同河段无明显上升或下降的变化规律,但呈现出多样性指数和河道宽度上升的变化趋势,而均匀度变化趋势则较为平缓。

    本次样地调查共记录河涌乡村聚落带内植物44科70属77种,其中乔木42种,灌木19种,草本13种,藤本3种;以蔷薇科和棕榈科植物种类数最多,桑科和芸香科次之。

    不同河段优势植物种类无显著差异,乔木以龙眼、小叶榕和黄皮等为主,灌木以桂花、九里香和米仔兰为主,草本以香蕉和青皮竹为主。突显了居民的生存、感官和审美等不同层次需求。

    由西至东不同河段乔木多样性呈下降趋势,灌木和草本无明显趋势,均匀度无明显变化趋势,但居住段乔灌草的多样性和均匀度指数明显高于其他河段,而农业段各项指数较低于其他河段;主要原因在于农业段受人为管理,栽植经济类树种,异质性较差,而居住密集区植物栽植以居民多样化需求为导向,植物多样性较高。河道宽度与草本植物多样性显著相关,建筑盖度与灌木均匀度显著相关,未发现其他显著相关特征;说明居住建设活动,如河道建设、房屋建设等,对河涌的主体植物,如大型乔灌木的影响较小,但对草本和灌木等低矮植物或盆栽类植物的影响较为显著。

    不同河段间优势树种无明显差异,但不同高度层优势树种不同,下层以香蕉、青皮竹和龙眼为主,中层以龙眼、黄皮、落羽杉和白颜树为主,上层以龙眼、小叶榕和大王椰子为主。

    研究区域虽然是高度人工化的河岸带生态系统,但乡村聚落居民的生活对自然界有很强的依赖性,而聚落树种的选择主要由乡村聚落的主体——人的本能需求为主导,是人为选择,但却是在“无意识”的经验下完成的[23],说明:在乡村聚落长久的历史发展过程中,适应性强、经济价值高的树种获得了聚落居民的青睐而成为地域特征性树种,其重要值也较高。从个人层面到社会层面聚落居民需求可分为3个层次,第1层次,生存、感官和健康,即对植物作为可食用或可利用资源、环境净化和树冠遮光等的需求;第2层次,心理、审美和隐私,即对植物观赏属性、情感寄托和围合私密空间的需求;第3层次,群体、交通、安全和文化,即对植物构成的聚集空间,防护和集体意识形态层面的文化等的需求[24-26]。结合实地调查结果可知:优势植物不仅能够适应地域气候条件,还发挥了多种功能,以较高的经济和观赏等价值而得到广泛应用,并在邻里之间、代际之间传承[26-27]。在河涌区我们也发现:聚落居民需求主要停留在第1和第2层次,以食用和经济需求为首,观赏和感官等需求次之,因此在居民与植物的“双向选择”过程中,保留种类和数量最多的是果树,也就是说果树景观构成了河涌区的主体植物景观,并且不受用地类型和分布位置的限制[28]

    本研究依托河涌乡村聚落的线性特征,针对河涌两岸的用地状况进行植物多样性变化规律及其影响因素进行研究,分析乡村聚落带内植物基本特征、不同生活型及不同高度层的优势植物特征、植物多样性特征,以及居住建设活动对植物多样性特征的影响。唐赛男等[29]对乡村聚落植物多样性及人类活动对其影响的研究发现,不同人类活动影响下植物多样性等特征呈现出显著差异,尤其在典型带状特征河涌乡村聚落中,道路和居住建筑的建设活动对植物多样性的影响较为突出,并在不同用地类型中呈现出一定规律性,与本研究一致。带状河涌乡村聚落中,受居民需求导向影响,优势种以经济可食用植物为主,观赏和文化类为辅;居民居住活动,如居住建筑和庭院建设对乡村聚落整体植物多样性影响不大。以本研究为例,尽管居住用地植物多样性较农业用地高,但在统计学上差异不显著,居住用地仍然以经济类食用树种为主,这与农业用地主要树种相一致。但由于河段区位和居住建设活动的影响,盆栽灌木和草本类植物部分呈现显著差异。因此,在局部区域进行城镇化对大型乔灌多样性特征的影响不具有实际应用价值,但小尺度范围研究能体现出典型河涌的植物种属以及地域居民对植物的需求特征,突显出地域植物文化。

    未来研究应进一步扩大研究范围,选取不同地区同类型以及同地区不同年代的乡村聚落带进行对比研究,增加乡村聚落样本量及其特征的差异性,以进一步说明在城镇化影响下,人类居住活动对植物景观的影响,以及不同地形地貌、气候及文化背景下,滨河乡村聚落植物多样性及其受城镇化影响程度的差异,以及乡村聚落近年来的发展趋势等,分析哪些人类活动以何种程度对乡村聚落的植物景观产生着积极的影响,哪些又产生了强烈的负面影响,去粗取精,探索改善人为干扰负面效应的方法,以指导乡村聚落规划建设活动,对无限制的城市化活动实现科学管控,保留具地域特色的乡村植物景观,建设人与自然和谐相处的乡村聚落生态环境。

  • 图  1  疫木卫生伐后马尾松林分的胸径结构

    Figure  1  DBH structure of P. massoniana stands after sanitation thinning infected trees

    图  2  卫生伐后马尾松林的径阶-竞争指数分布

    Figure  2  Distribution of DBH-competition index of P. massoniana stands after sanitation thinning infected trees

    表  1  卫生伐后的马尾松林分基本特征

    Table  1.   Characteristics of P. massoniana stands after sanitation thinning diseased trees

    处理密度/(株·hm−2)胸径/cm树高/m郁闭度
    马尾松阔叶树马尾松阔叶树马尾松阔叶树
    对照 1 80013.0±2.412.5±1.70.9
    卫生伐 3001 00017.6±2.87.1±1.812.5±2.25.6±1.10.6
    下载: 导出CSV

    表  2  疫木卫生伐后马尾松林分的树种组成

    Table  2.   Tree species composition of P. massoniana stands after sanitation thinning infected trees

    处理树种重要值/%
    对照 马尾松 100.00
    卫生伐马尾松  38.41
    短柄枹  35.59
    檵木   10.91
    白栎   10.54
    无患子  2.24
    枫香   1.25
    薄叶山矾 0.55
    合欢   0.52
    下载: 导出CSV

    表  3  卫生伐后马尾松林的林木个体大小差异

    Table  3.   Individual size inequality of P. massoniana stands after thinning diseased trees

    处理KCGCLAC
    对照 0.35±0.08 a0.26±0.05 a0.97±0.15 a
    卫生伐0.74±0.13 b0.66±0.09 b1.04±0.23 a
      说明:同列不同字母表示同一指标不同处理间差异显著     (P<0.05)
    下载: 导出CSV

    表  4  卫生伐后马尾松林的聚集指数和竞争指数

    Table  4.   Aggregation index and competition index of P. massoniana stands after sanitation thinning infected trees

    处理聚集指数(R)竞争指数(Ci)
    对照 1.27±0.21 a8.16±3.52 a
    卫生伐0.95±0.14 b10.12±5.60 b
      说明:同列不同字母表示同一指标不同处理间差异显著     (P<0.05)
    下载: 导出CSV
  • [1] 吴敏娟, 尤誉杰, 张晓红, 等. 不同干扰模式对受害马尾松人工纯林林分结构的影响[J]. 应用生态学报, 2019, 30(1): 58 − 66.

    WU Minjuan, YOU Yujie, ZHANG Xiaohong, et al. Effects of different interference modes on the stand structure of artificial pure forest of Pinus massoniana [J]. Chin J Appl Ecol, 2019, 30(1): 58 − 66.
    [2] 吕文艳, 王柏泉, 曾德山, 等. 松材线虫病疫木不同伐除方式对森林植物群落演替的影响[J]. 湖北林业科技, 2008, 37(3): 4 − 8.

    LÜ Wenyan, WANG Baiquan, ZENG Deshan, et al. Effects of different cutting methods of pine wood nematode disease on forest plant community succession [J]. Hubei For Sci Technol, 2008, 37(3): 4 − 8.
    [3] 王国明, 赵颖, 陈斌, 等. 松材线虫病除治迹地自然恢复过程中物种多样性的动态变化[J]. 浙江林学院学报, 2010, 27(2): 170 − 177.

    WANG Guoming, ZHAO Ying, CHEN Bin, et al. Dynamic changes of species diversity during the natural restoration process of pine wood nematode disease [J]. J Zhejiang For Coll, 2010, 27(2): 170 − 177.
    [4] 石娟, 骆有庆, 宋冀莹, 等. 松材线虫入侵后不同伐倒干扰强度对马尾松林植物多样性的影响[J]. 应用生态学报, 2006, 17(7): 1157 − 1163.

    SHI Juan, LUO Youqing, SONG Jiying, et al. Effects of different cutting intensity on the plant diversity of Pinus massoniana forest after invasion of pine wood nematode [J]. Chin J Appl Ecol, 2006, 17(7): 1157 − 1163.
    [5] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006.
    [6] 吴建强, 王懿祥, 杨一, 等. 干扰树间伐对杉木人工林林分生长和林分结构的影响[J]. 应用生态学报, 2015, 26(2): 340 − 348.

    WU Jianqiang, WANG Yixiang, YANG Yi, et al. Effects of interfering tree thinning on the growth and stand structure of Chinese fir plantation [J]. Chin J Appl Ecol, 2015, 26(2): 340 − 348.
    [7] 朱婷婷, 王懿祥, 朱旭丹, 等. 遮光对木荷和枫香光合特性的影响[J]. 浙江农林大学学报, 2017, 34(1): 28 − 35.

    ZHU Tingting, WANG Yixiang, ZHU Xudan, et al. Effect of shading on photosynthetic characteristics of Schima superba and Liquidambar formosana [J]. J Zhejiang A&F Univ, 2017, 34(1): 28 − 35.
    [8] 王懿祥, 张守攻, 陆元昌, 等. 林木个体大小不一致性指标对人工林间伐方式的即时性响应[J]. 应用生态学报, 2014, 25(6): 1645 − 1651.

    WANG Yixiang, ZHANG Shougong, LU Yuanchang, et al. The immediate response of individual size inconsistency indexes to the mode of artificial forest thinning [J]. Chin J Appl Ecol, 2014, 25(6): 1645 − 1651.
    [9] 王懿祥, 张守攻, 陆元昌, 等. 干扰树间伐对马尾松人工林目标树生长的初期效应[J]. 林业科学, 2014, 50(10): 67 − 73.

    WANG Yixiang, ZHANG Shougong, LU Yuanchang, et al. The initial effect of interfering tree thinning on the growth of target trees in Pinus massoniana plantation [J]. Sci Silv Sin, 2014, 50(10): 67 − 73.
    [10] 周红敏, 惠刚盈, 赵中华, 等. 林分空间结构分析中样地边界木的处理方法[J]. 林业科学, 2009, 45(2): 1 − 5.

    ZHOU Hongmin, HUI Gangying, ZHAO Zhonghua, et al. The treatment method of boundary wood in the spatial structure analysis of stands [J]. Sci Silv Sin, 2009, 45(2): 1 − 5.
    [11] 仇建习, 汤孟平, 沈利芬, 等. 近自然毛竹林空间结构动态变化[J]. 生态学报, 2014, 34(6): 1444 − 1450.

    QIU Jianxi, TANG Mengping, SHEN Lifen, et al. Dynamic changes of spatial structure of near-natural bamboo forests [J]. Acta Ecol Sin, 2014, 34(6): 1444 − 1450.
    [12] CLARK P J, EVANS F C. Distance to nearest neighbor as a measure of spatial relationships in populations [J]. Ecology, 1954, 35(4): 445 − 453.
    [13] 安慧君, 张韬. 聚集指数边界效应的校正方法与应用[J]. 南京林业大学学报(自然科学版), 2005, 29(3): 57 − 60.

    AN Huijun, ZHANG Tao. Correction method and application of boundary effect of clustering index [J]. J Nanjing For Univ Nat Sci Ed, 2005, 29(3): 57 − 60.
    [14] HEGYI F. A simulation model for managing jack-pine stands [J]. Growth Models Tree Stand Simu, 1974, 30: 74 − 90.
    [15] 王懿祥. 人工马尾松和杉木林目标树经营理论与实践[D]. 北京: 中国林业科学研究院, 2012.

    WANG Yixiang. Theory and Practice of Target Tree Management in Pinus massoniana and Cunninghamia lanceolata Plantation[D]. Beijing: Chinese Academy of Forestry, 2012.
    [16] 姜俊, 谢阳生, 陆元昌, 等. 不同林龄阶段马尾松人工林群落结构特征及经营策略[J]. 西北林学院学报, 2015, 30(6): 1 − 7.

    JIANG Jun, XIE Yangsheng, LU Yuanchang, et al. Community structure and management strategy of Pinus massoniana plantation in different ages [J]. J Northwest For Univ, 2015, 30(6): 1 − 7.
    [17] 柴希民, 蒋平. 松材线虫的发生和防治[M]. 北京: 中国农业出版社, 2003.
    [18] 张慧, 周国模, 白尚斌, 等. 目标树抚育对亚热带天然次生灌丛群落结构和多样性的影响[J]. 应用生态学报, 2017, 28(5): 1414 − 1420.

    ZHANG Hui, ZHOU Guomo, BAI Shangbin, et al. Effects of target tree rearing on the structure and diversity of subtropical natural secondary shrub communities [J]. Chin J Appl Ecol, 2017, 28(5): 1414 − 1420.
  • [1] 李睿, 邹星晨, 程唱, 石正阳, 彭小静, 刘婧雯, 刘仟仟, 贺康宁.  青海东部天然次生白桦林林分结构和土壤养分对草本植物多样性的影响 . 浙江农林大学学报, 2025, 42(1): 153-162. doi: 10.11833/j.issn.2095-0756.20240383
    [2] 胡澳, 赵毅辉, 吴继来, 吴艳萍, 李同欣, 严一博, 叶建丰, 王懿祥.  采伐后植被自然恢复对马尾松次生林土壤有机碳及其活性组分的影响 . 浙江农林大学学报, 2024, 41(6): 1189-1200. doi: 10.11833/j.issn.2095-0756.20240264
    [3] 玉宝.  兴安落叶松天然林自然整枝特征及其影响因子 . 浙江农林大学学报, 2023, 40(1): 209-216. doi: 10.11833/j.issn.2095-0756.20220220
    [4] 刘婷婷, 杨晋帆, 周汝良, 刘琳.  基于地理栅格变量与机器学习的松材线虫病扩散风险分析 . 浙江农林大学学报, 2023, 40(3): 617-626. doi: 10.11833/j.issn.2095-0756.20220470
    [5] 简永旗, 吴家森, 盛卫星, 聂国辉, 郑城, 姜培坤.  间伐和林分类型对森林凋落物储量和土壤持水性能的影响 . 浙江农林大学学报, 2021, 38(2): 320-328. doi: 10.11833/j.issn.2095-0756.20200355
    [6] 玉宝.  兴安落叶松中幼龄天然林空间利用特征及影响因子 . 浙江农林大学学报, 2020, 37(3): 407-415. doi: 10.11833/j.issn.2095-0756.20190382
    [7] 周子贵, 夏淑芳, 梅丽, 吴家胜.  浙西北马尾松公益林分类研究与评价 . 浙江农林大学学报, 2014, 31(4): 611-618. doi: 10.11833/j.issn.2095-0756.2014.04.018
    [8] 项移娟, 管剑锋, 李健, 黄继玉, 马良进.  浙江省松材线虫病发生程度预测预报模型 . 浙江农林大学学报, 2011, 28(5): 775-778. doi: 10.11833/j.issn.2095-0756.2011.05.015
    [9] 玉宝, 张秋良, 王立明, 乌吉斯古楞.  不同结构落叶松天然林生物量及生产力特征 . 浙江农林大学学报, 2011, 28(1): 52-58. doi: 10.11833/j.issn.2095-0756.2011.01.009
    [10] 刘丽, 陈双林, 李艳红.  基于林分结构和竹笋产量的有机材料覆盖雷竹林退化程度评价 . 浙江农林大学学报, 2010, 27(1): 15-21. doi: 10.11833/j.issn.2095-0756.2010.01.003
    [11] 张佳音, 丁国栋, 余新晓, 史宇, 贾丽娜.  北京山区人工侧柏林的径级结构与空间分布格局 . 浙江农林大学学报, 2010, 27(1): 30-35. doi: 10.11833/j.issn.2095-0756.2010.01.005
    [12] 王国明, 赵颖, 陈斌, 鲁专, 陈叶平, 邱海嵊.  松材线虫病除治迹地自然恢复过程中物种多样性的动态变化 . 浙江农林大学学报, 2010, 27(2): 170-177. doi: 10.11833/j.issn.2095-0756.2010.02.002
    [13] 龚直文, 亢新刚, 顾丽, 赵俊卉, 郑焰锋, 杨华.  天然林林分结构研究方法综述 . 浙江农林大学学报, 2009, 26(3): 434-443.
    [14] 来燕学, 马灵飞, 池树友, 张毅峰, 王亚红, 金永明.  松材线虫病病死木木材物理力学性质测定 . 浙江农林大学学报, 2008, 25(1): 7-10.
    [15] 陈双林, 吴柏林, 吴明, 张德明, 曹永慧, 杨清平.  新造毛竹林林分结构年际演替规律及影响因子 . 浙江农林大学学报, 2004, 21(4): 393-397.
    [16] 来燕学, 周永平, 张义丰, 俞林祥, 张德胜.  飞机超低量喷洒保松灵防治松材线虫病 . 浙江农林大学学报, 2002, 19(3): 282-287.
    [17] 来燕学.  松材线虫病自然扩散特性及防治策略 . 浙江农林大学学报, 2000, 17(2): 170-175.
    [18] 来燕学, 俞林祥, 周永平, 王良衍, 沈幼莲.  松材线虫病濒死树急救技术与救活机理 . 浙江农林大学学报, 2000, 17(4): 404-409.
    [19] 来燕学, 周永平, 俞祥林, 沈炳顺, 蔡道尧.  松材线虫病新疫点成因机制初探 . 浙江农林大学学报, 1999, 16(4): 425-429.
    [20] 来燕学.  松墨天牛的飞行特性与防治松材线虫病的指导思想 . 浙江农林大学学报, 1998, 15(3): 320-323.
  • 期刊类型引用(7)

    1. 王雪晴,齐锋. 浙江农宅与孤植树平面空间关系研究. 浙江林业科技. 2024(02): 74-81 . 百度学术
    2. 谢兰曼,卢冠廷,祝燕. 浅析苏州田园乡村农户庭院植物景观营造. 安徽农业科学. 2024(20): 183-185 . 百度学术
    3. 安德利,原琛淞,褚兴彪. 基于湘桂黔界邻区调查的侗族传统村落生态智慧系统构建. 湖南包装. 2023(03): 116-120+124 . 百度学术
    4. 陈思淇,余翩翩,洪静萱,张玉钧. 景观干扰对乡村半自然生境植物多样性的影响分析. 中国园林. 2023(07): 21-27 . 百度学术
    5. 周韵奇,侯晨冉,王美仙. 基于Citespace分析的国内外乡村植物景观研究进展. 陕西林业科技. 2023(06): 115-125 . 百度学术
    6. 卢周奇,邱冰. 基于CiteSpace的国内乡村植物景观研究. 园林. 2021(02): 80-87 . 百度学术
    7. 陈思淇,张玉钧. 乡村景观生物多样性研究进展. 生物多样性. 2021(10): 1411-1424 . 百度学术

    其他类型引用(4)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190487

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2020/4/745

图(2) / 表(4)
计量
  • 文章访问数:  1374
  • HTML全文浏览量:  421
  • PDF下载量:  53
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-08-21
  • 修回日期:  2020-03-03
  • 网络出版日期:  2020-07-21
  • 刊出日期:  2020-07-21

松材线虫病疫木卫生伐对马尾松纯林林分结构的影响

doi: 10.11833/j.issn.2095-0756.20190487
    基金项目:  国家自然科学基金资助项目(31770681);浙江省自然科学基金资助项目(LY17C160006)
    作者简介:

    张华锋,从事森林生态学和森林培育学等研究。E-mail: zhf2402@qq.com

    通信作者: 王懿祥,教授,博士生导师,从事森林生态学和森林经理学等研究。E-mail: wangyixiang@zafu.edu.cn
  • 中图分类号: S718.5

摘要:   目的  探讨松材线虫Bursaphelenchus xylophlius病疫木采伐对马尾松人工纯林林分结构的影响,对松材线虫病入侵后的马尾松林分的经营管理有理论和实践价值。  方法  在浙江省杭州市临安区,分别选择松材线虫病危害及周边未受害的马尾松Pinus massoniana人工纯林设置样地并进行调查。  结果  疫木卫生伐12 a后的结果表明:与马尾松纯林相比较,卫生伐之后马尾松重要值显著下降,从100.00%降至38.41%;胸径结构由正态分布变为反J型曲线;树高结构由单层林变为复层林;林木大小个体差异显著增加,两级分化显著加剧;林木分布从均匀分布变为随机分布;林木竞争压力增加,6 cm径阶林木竞争压力最大。  结论  卫生伐促使受害马尾松纯林向混交林演替的速度加快,多个林分结构指标发生了重大变化,单层马尾松同龄纯林演替为复层马尾松落叶阔叶树混交异龄林。图2表4参18

English Abstract

王子研, 王成, 唐赛男, 等. 广州河涌区乡村聚落植物多样性特征及其影响因素[J]. 浙江农林大学学报, 2020, 37(3): 456-464. DOI: 10.11833/j.issn.2095-0756.20190391
引用本文: 张华锋, 陈思宇, 刘刚, 等. 松材线虫病疫木卫生伐对马尾松纯林林分结构的影响[J]. 浙江农林大学学报, 2020, 37(4): 745-751. DOI: 10.11833/j.issn.2095-0756.20190487
WANG Ziyan, WANG Cheng, TANG Sainan, et al. Characteristics and influencing factors of plant diversity in riverside rural settlement in Guangzhou[J]. Journal of Zhejiang A&F University, 2020, 37(3): 456-464. DOI: 10.11833/j.issn.2095-0756.20190391
Citation: ZHANG Huafeng, CHEN Siyu, LIU Gang, et al. Effects of sanitation cutting pine wilt diseased trees on the stand structure of pure Pinus massoniana plantation[J]. Journal of Zhejiang A&F University, 2020, 37(4): 745-751. DOI: 10.11833/j.issn.2095-0756.20190487
  • 马尾松Pinus massoniana曾经是南方集体林区的主要造林树种,在荒山绿化、生态服务和发展经济中起过不可替代的重要作用。但长期大面积纯林营造,林地出现地力衰退、生产力降低、生态服务功能下降等不良现象,特别是马尾松林经营长期遭受松材线虫Bursaphelenchus xylophlius病的困扰。据国家林业和草原局统计,近30 a来,全国因松材线虫病损失的松树累计达数十亿株,造成的直接经济损失和生态服务价值损失高达上千亿元,松材线虫病已成为全球森林生态系统中最具危险性、毁灭性的病害之一[1]。对于松材线虫病发生的疫区疫点,相关办法都要求“加强疫情科学除治,全面实施以清理病死、枯死、濒死松树为核心措施”。各地据此采取了皆伐、择伐等干扰方式清除疫木,以防止松材线虫的进一步扩散。大多相关研究集中在松材线虫病入侵后皆伐形成的除治迹地上马尾松林群落演替、林分结构、植物多样性和种群生态位的评价上[1-4]。但采伐疫木对受害马尾松林综合林分结构长期影响的相关研究较少。林分结构不但包括树种、胸径、树高、年龄、林木个体大小差异等非空间结构,也包括林木分布格局、单木竞争指数等空间结构,是林分未来生长变化的决定性因素之一[5-6]。在生产实践中,采伐疫木后的马尾松群落结构将会发生哪些变化,有必要对受害马尾松林的健康经营开展研究。本研究在浙江省杭州市临安区选择松材线虫病入侵过的马尾松人工纯林,以未受松材线虫病危害的林分为对照,探讨疫木卫生伐后的天然更新对马尾松人工纯林林分结构的影响,比较2种类型的林分在树种组成、胸径结构、树高结构、林木个体大小差异、聚集指数和竞争指数等方面的差异,以期为松材线虫病入侵后的马尾松林分的经营管理提供参考。

    • 研究样地位于浙江省杭州市临安区(29°56′~30°23′N,118°51′~119°52′E)。该地属中亚热带季风气候,温暖湿润,四季分明,具有春多雨,夏湿热,秋气爽,冬干燥的气候特征,全年平均气温16.4 ℃,年均降水量1 628.6 mm,无霜期年平均为237 d[7]。该地先锋群落为马尾松林,地带性植被为亚热带常绿阔叶林,优势种主要有青冈Cyclobalanopsis glauca、苦槠Castanopsis sclerophylla等。研究区气候条件适宜马尾松的生长,但长期遭受松材线虫病危害。

    • 在杭州市临安区河桥镇选择1994年同一批造林的马尾松纯林作为研究对象。21世纪初该马尾松人工纯林有部分遭受松材线虫病,为防止病害蔓延,2005年开始每年进行卫生伐,其他马尾松林木均予以保留,保护天然更新的非松科Pinaceae植株,持续7 a,共采伐约1 500株·hm−2。疫木伐除后,任其自然恢复更新。2017年8月,按照立地环境基本因子一致的原则,从中分别选择未入侵过的小块马尾松林(对照)和卫生伐过的马尾松林作为调查对象,2种类型的林分分别设置了5块30 m×30 m的标准样地。样地土壤为黄壤,土层厚度为0.8 m,坡向为西北坡,坡度35°~40°,立地条件差,pH 6.2。样地边界和林木坐标用全站仪测定,对样地进行了每木检尺,起测胸径为5 cm,调查因子包括树种、胸径、坐标、树高等。样地基本情况见表1

      表 1  卫生伐后的马尾松林分基本特征

      Table 1.  Characteristics of P. massoniana stands after sanitation thinning diseased trees

      处理密度/(株·hm−2)胸径/cm树高/m郁闭度
      马尾松阔叶树马尾松阔叶树马尾松阔叶树
      对照 1 80013.0±2.412.5±1.70.9
      卫生伐 3001 00017.6±2.87.1±1.812.5±2.25.6±1.10.6
    • 物种丰富度是指样地内出现的物种数目。树种重要值是研究某个种在群落中的地位和作用的综合数量指标,物种丰富度和树种重要值反映了植物多样性。重要值计算采用的公式为:重要值$= $ (相对多度+相对频度+相对显著度)/3。其中:相对多度$= $ (某个种的多度/所有物种的多度之和)×100%;相对频度$= $ (某个种的频度/所有物种的频度之和)×100%;相对显著度$= $ (某个种的胸高断面积之和/所有物种的胸高断面积之和)×100%。

    • 林木个体大小差异在植物种群中普遍存在,相邻林木个体的大小会影响目标个体的胸径、高度的生长,在群落发展和维持群落物种多样性方面也具有深远意义,反映植物个体大小差异的指数采用库兹涅茨系数(KC)、基尼系数(GC)和洛伦茨不对称系数(LAC)[8]

      用二元材积公式[9]计算马尾松和阔叶树的单株林木材积,计算公式为[4]

      $$ {V_{{\text{马尾松}}}} = 0.000\;062\;341\;803{D^{1.855\;149\;7}}{H^{0.956\;824\;92}}\text{;} $$ (1)
      $$ {V_{{\text{阔叶树}}}} = 0.000\;068\;563\;4{D^{1.933\;221}}{H^{0.867\;885}}\text{。} $$ (2)

      式(1)~(2)中:V为单株材积(m3);D为胸径(cm);H为树高(m)。

      库兹涅茨系数(KC)是指单株材积为林分前20%的林木个体的材积之和在林分蓄积量中所占的比例,这个指数的数值越大,表示林木分化越严重,个体差异越大。基尼系数( GC)可用于研究林分内各林木之间差异性的大小[4, 8],计算公式为:

      $$ {G_{\rm{C}}} = \frac{{\mathop \sum \limits_{i = 1}^n \left( {2i - n - 1} \right){x_i}}}{{{n^2}u}}\text{。} $$ (3)

      式(3)中:n为林分内林木的株数;xi为林木个体按材积大小升序排列时对应的第i株林木的材积;u为林分平均材积。洛伦茨不对称系数(LAC)用于反映林木个体大小等级对不一致性程度的贡献,当LAC>1时,表示不一致性的产生主要在少数较大的林木个体中;当LAC<1时,表示不一致性的产生主要在大多数较小的林木个体中[4, 8]。将林分n株林木按单株材积从小到大排序(x1x2,…,xn),LAC的计算公式为:

      $$ {L_{\rm{AC}}} = \frac{{m + \theta }}{n} + \frac{{{L_m} + \theta {X_{m + 1}}}}{{{L_n}}}\text{;} $$ (4)
      $$ \theta = \frac{{u - {X_m}}}{{{X_{m + 1}} - {X_m}}}\text{。} $$ (5)

      式(4)~(5)中:m为恰好小于林木平均材积μ的林木序号;Lm为前m株林木个体材积之和;Lnn株林木个体材积之和;θ为参数;Xm为排序第m株林木的材积;Xm+1为排序第m+1株林木的材积。

    • 为避免边缘效应,采用矩形缓冲区方法进行边缘校正[10-11]

    • 聚集指数是由CLARK等[12]提出的,用于检验种群空间分布格局的常用指数,是最早采用的与距离有关的空间格局指数[13]。采用最近邻单株距离的平均值与随机分布下的期望平均距离之比来表示:

      $$ R = \dfrac{{\dfrac{1}{N}\mathop \sum \limits_{i = 1}^N {r_i}}}{{\dfrac{1}{2}\sqrt {\dfrac{S}{N}} }}\text{。} $$ (6)

      式(6)中:R为聚集指数;ri为第i株树木到其最近邻木的距离;N为样地内林木株数;S为样地面积。若R>1,林木呈均匀分布;若R<1,则林木趋于聚集分布;若R$= $1,林木则表现为随机分布。

    • 竞争指数采用HEGYI[14]的计算公式:

      $$ {C_i} = \mathop \sum \limits_{j = 1}^n \frac{{{d_j}}}{{{d_i} {L_{ij}}}}\text{。} $$ (7)

      式(7)中:Ci为对象木i的竞争指数;Lij为对象木i与竞争木j之间的距离;di为对象木i的胸径;dj为竞争木j的胸径;n为对象木i的竞争木株数,本研究采用4邻近树法,n$= $4。

    • 采用Excel 2003进行数据处理与图表制作,SPSS 20.0进行单因素方差分析(one-way ANOVA),LSD方法进行显著性检验(α$= $0.05)。利用ArcGIS和ForStat软件对2种林分进行空间分析。数据为平均值±标准差。

    • 表2可知:马尾松人工纯林的重要值仍然为100.00%。在受害马尾松纯林疫木卫生伐后的林分中,马尾松的重要值下降至38.41%,仍然为群落的第1优势种;出现了大量天然更新的阔叶树种,短柄枹Quercus glandulifera的重要值为35.59%,是群落的第2优势种;檵木Loropetalum chinense的重要值为10.91%,是群落下层林分中主要的伴生树种;白栎Quercus fabri的重要值为10.54%,是继短柄枹之后的又一主要乔木树种;另外还有少量的无患子Sapindus mukorossi、枫香Liquidambar formosana、薄叶山矾Symplocos anomala和合欢Albizia julibrissin等乔木树种分布。可见,松材线虫入侵后的马尾松人工纯林在疫木卫生伐后经过长期恢复已演替为马尾松落叶阔叶混交林。而且该混交林分没有发现马尾松的小树和幼树,预示着未来该林分的阔叶树重要值将超过马尾松,形成阔叶树马尾松混交林。

      表 2  疫木卫生伐后马尾松林分的树种组成

      Table 2.  Tree species composition of P. massoniana stands after sanitation thinning infected trees

      处理树种重要值/%
      对照 马尾松 100.00
      卫生伐马尾松  38.41
      短柄枹  35.59
      檵木   10.91
      白栎   10.54
      无患子  2.24
      枫香   1.25
      薄叶山矾 0.55
      合欢   0.52
    • 图1可知:马尾松人工纯林的林分平均胸径为13.0 cm,其中,10、12和14 cm径阶的林木株数最多,分别为22.8%、29.6%和21.8%,呈单峰状左偏正态分布,小径阶和大径阶林木各占一小部分。疫木卫生伐后形成的马尾松阔叶混交林林分平均胸径为9.1 cm,林木大多数分布在6和8 cm径阶,株数分别占49.2%和23.4%,而且随着胸径的增大呈下降趋势,呈现反J型曲线,较大径阶22和24 cm的株树比例比马尾松人工纯林高。未遭受松材线虫入侵的马尾松林依然保持单层林;疫木卫生伐后经过长期恢复由单层纯林演变为由马尾松占据的主林层与阔叶树组成的次林层的复层混交林分(表1)。

      图  1  疫木卫生伐后马尾松林分的胸径结构

      Figure 1.  DBH structure of P. massoniana stands after sanitation thinning infected trees

    • 表3可知:马尾松人工纯林疫木卫生伐后,库兹涅茨系数(KC)增加,说明较大个体林木和较小个体林木分化更严重;基尼系数(GC)增加,说明林木个体大小不一致性增大;洛伦茨不对称系数(LAC)由略小于1增加为略大于1,说明林木个体差异的产生主要在于大多数较小的林木个体变为少数较大的林木个体。

      表 3  卫生伐后马尾松林的林木个体大小差异

      Table 3.  Individual size inequality of P. massoniana stands after thinning diseased trees

      处理KCGCLAC
      对照 0.35±0.08 a0.26±0.05 a0.97±0.15 a
      卫生伐0.74±0.13 b0.66±0.09 b1.04±0.23 a
        说明:同列不同字母表示同一指标不同处理间差异显著     (P<0.05)
    • 表4可知:马尾松人工纯林聚集指数(R)>1,表现为均匀分布,疫木卫生伐后形成的马尾松阔叶林的R$= $0.95<1,呈现聚集分布。马尾松人工纯林的平均竞争指数(Ci)为8.16,疫木卫生伐后形成的马尾松阔叶林的平均竞争指数增加至10.12。

      表 4  卫生伐后马尾松林的聚集指数和竞争指数

      Table 4.  Aggregation index and competition index of P. massoniana stands after sanitation thinning infected trees

      处理聚集指数(R)竞争指数(Ci)
      对照 1.27±0.21 a8.16±3.52 a
      卫生伐0.95±0.14 b10.12±5.60 b
        说明:同列不同字母表示同一指标不同处理间差异显著     (P<0.05)

      图2可知:马尾松人工纯林各径阶处受到的竞争压力基本一致,未发生很大的变化。疫木卫生伐后形成的马尾松阔叶林于6 cm径阶处林木受到的竞争压力最大,其次是8 cm径阶林木,各径阶处受到的竞争压力差异较大。

      图  2  卫生伐后马尾松林的径阶-竞争指数分布

      Figure 2.  Distribution of DBH-competition index of P. massoniana stands after sanitation thinning infected trees

    • 本研究对入侵过的马尾松林连续几年开展疫木卫生伐,腾出林分生长空间,促进阔叶树种的天然更新。疫木采伐十几年后,受害马尾松林未再发现疫木,但是松木损失严重,只剩300株·hm−2马尾松。说明林业部门规定的及时卫生伐的处理措施在实践中有一定效果,能在一定程度上抵御林分尺度的松材线虫病的自然扩散。

      中国营造的人工林大多为纯林,马尾松林也不例外。马尾松人工纯林的林分结构极其简单,树种单一,乔冠草各层次的植物多样性低[15-16],这为松材线虫病的入侵扩散提供了便利条件。松材线虫入侵马尾松林后,如果不加以人为干预,松林必然全部死亡[17]。本研究采取的疫木卫生伐对原马尾松纯林的林分结构产生了重要影响,经过十几年的恢复,使得马尾松人工纯林显著具有天然林的特点,具体表现在:树种组成由马尾松单一树种变为马尾松和落叶阔叶树种短柄枹为主的马尾松落叶阔叶混交林,进入了马尾松纯林的下一个演替阶段;胸径结构由正态分布变为反J型曲线,异龄林特征明显;垂直结构由单层林变为复层林;林木分布从均匀分布变为随机分布;林木大小个体差异变大,两级分化加剧。上述变化是松材线虫入侵松林后人为间伐干扰的结果;也与马尾松林是亚热带的先锋群落,群落本身并不稳定紧密相关[1]

      疫木卫生伐后形成的林窗会加快群落天然更新速度,短柄枹、白栎等演替早期的落叶乔木阔叶树种迅速占领了松木采伐移除后的生态位(表2),促使受害马尾松纯林向混交林演替的速度加快。这与王懿祥等[8]的研究结果相同,疫木卫生伐提高了林分林木个体大小的不一致性(表3)。这是由于疫木卫生伐后出现了大量天然更新的阔叶树,这部分林木个体较小;另外一方面,疫木卫生伐促进了保留木(马尾松)的生长,特别是加快了原优势木的生长,使其成长为较大的林木个体。因而也使得林木个体大小不一致性变为由少数较大的林木个体产生(LAC<1);林分的胸径结构变为反J型曲线(图1)。疫木卫生伐后形成的混交林竞争指数显著增加,林木之间的竞争压力变动加大(表4),这是由于大量天然更新的幼树其竞争指数较大的缘故,径阶-竞争指数关系图(图2)也反映了林木所受的竞争压力随着径阶的增大而减小,林木个体大小不一致性的增加也使得林木之间的竞争指数变动增加。在经营中应选出阔叶目标树,间伐邻近竞争木,减小竞争压力,促使阔叶目标树生长[18]

      马尾松人工纯林树种单一,结构简单,生态系统极其不稳定,对松材线虫的抵抗能力极差,应避免营造马尾松纯林[4]。松材线虫作为一个外来的选择因子,虽然会毁掉松林,但也能促使整个生态系统朝向更为稳定的方向发展。对于疫木卫生伐后形成的马尾松与以短柄枹和白栎为主的混交林而言,也正处于演替早期阶段,本身并不稳定。在森林经营条件许可的情况下,可以在林分内选择目标阔叶树,间伐邻近林木以减少竞争压力促使目标树生长;同时参考当地地带性植被常绿阔叶林的树种组成,及早补植地带性植被的建群种和优势种以及伴生种,如青冈、苦槠、木荷Schima superba等,加快群落演替速度,提高抗病害能力。

参考文献 (18)

目录

/

返回文章
返回