-
黄脊竹蝗Ceracris kiangsu隶属于直翅目Orthoptera丝竹蝗科Oedipodidae竹蝗属Ceracris[1],其若虫、成虫分散或群聚取食竹叶,是取食量很大的一种森林昆虫[2],分布于湖南、四川、江西、云南、广西、浙江、广东等10个省份[3]。黄脊竹蝗的发生具有周期性,并且严重影响竹材的材质和使用价值,给林业生产带来极大的损失[4]。一直以来,人们对黄脊竹蝗的研究主要以防治为主,对其人工饲养也是为了观察其生活习性以便进行更有效的防治。蝗虫体内蛋白质和脂肪含量很高,氨基酸和维生素的种类也很多[5],含有大量人体所必需的微量元素,也可以作为饲料喂养各种畜禽[6],因此,对黄脊竹蝗这一昆虫资源的食饲用价值进行探索与开发有很大的意义。目前,国内已经有许多学者探究了不同饲料对资源昆虫的取食和生长等方面的影响。陈申芝[7]测定了东亚飞蝗Locusta migratoria manilensis对莴苣Lactuca sativa、胡萝卜Daucus carota、麦麸Triticum aestivum、黑麦草Lolium perenne、玉米Zea mays等5种不同植物叶片的取食量以及东亚飞蝗取食这5种食料后的体质量变化。封洪强等[8]探究了金色狗尾巴草Setaria glauca、狗尾草Setaria viridis、鸭跖草Commelina communis、水稻Oryza sativa等对中华稻蝗Oxya chinensis生存及生长发育的影响。张守科等[9]通过黄脊竹蝗的取食偏好试验,测定了其对竹类7个属9个种的取食差异。而关于不同食料对黄脊竹蝗的取食和生长的影响探究较少。本研究从食料和饲用昆虫的角度对黄脊竹蝗进行人工饲养,对比研究了毛竹Phyllostachys edulis、玉米以及芒草Miscanthus sinensis 等3种不同寄主植物对黄脊竹蝗的取食偏好、体质量、体长、产卵情况以及存活率的影响,初步筛选出利于黄脊竹蝗生长发育以及繁殖的寄主植物,为深入探索规模化饲养的关键技术提供理论和实践依据。
-
黄脊竹蝗卵块采自湖南省益阳市桃江县。将卵块放置于50 cm×50 cm×50 cm养虫笼中孵化,选择阳光充足的室外作为孵化环境,同时做好防暴雨和暴晒措施,待若虫孵化后供试。
-
3种寄主植物分别为玉米、毛竹和芒草。玉米在浙江农林大学森林保护研究所试验林地种植,不施农药,定期施肥除草,待幼苗长至1 m高后采集叶片供试。芒草和毛竹叶采自浙江农林大学校外东湖村,选取长势良好的幼嫩叶片以供黄脊竹蝗取食。以上寄主植物在试验前均用清水浸泡洗净。黄脊竹蝗卵块孵化出若虫后将这3种寄主植物插入锥形瓶中,用水培法维持叶片新鲜,供黄脊竹蝗取食。
-
在长60 cm×宽30 cm×高180 cm的养虫笼内饲养200头黄脊竹蝗若虫,试验前期同时投喂3种植物叶片(玉米、芒草、毛竹),并让其自由选择取食的植物。每天8:30、11:30和17:30观察并记录其发育进度,适时补充3种植物叶片。根据其发育进度选取龄期一致的60头竹蝗若虫分别进行1~5龄期的取食试验,每次取食试验准备3个长50 cm×宽50 cm×高50 cm的养虫笼,每笼供试黄脊竹蝗20头,雌雄比例、龄期、体长一致,同时放入毛竹、玉米和芒草3种寄主植物叶片各25 g。供取食的叶片取至植物尖端幼嫩部位,用水培法保鲜。每次试验前进行14 h的饥饿处理,取食时长控制为24 h。每次取食结束后用网格纸测量被取食叶片的缺刻面积。
-
准备9个长50 cm×宽50 cm×高50 cm的养虫笼,各笼饲养20头2龄竹蝗,测量每笼黄脊竹蝗的起始体质量和单头蝗虫的体长,保持每笼黄脊竹蝗雌雄比例一致。笼中放入少量新鲜的水,每笼每次放置一种寄主植物叶片25 g。供取食的叶片取至植物尖端幼嫩部位,用水培法保鲜。隔2 d更换1次食物和水,每次试验结束后清理1次养虫笼。20 d后测量每笼黄脊竹蝗的最终体质量和单头的体长。试验结束,计算不同寄主植物饲养下黄脊竹蝗体质量和体长的增长量。每种寄主植物3个重复。
-
在上述方法中饲养的虫源羽化后,从3种不同寄主植物饲喂的养虫笼中各抓取同日龄、健康无损伤成虫5对(雌雄配对,标记好不同寄主植物饲养),分别放入9个50 cm×宽50 cm×高50 cm养虫笼中,并准备同等质地的砂土供其产卵。砂土土层厚度8 cm,含水量15%,粒度40目。每天更换新鲜的寄主植物叶片,观察并记录其产卵前期及产卵量,直至成虫死亡。
-
观察上述方法中饲养的黄脊竹蝗,记录养虫笼中黄脊竹蝗从2~5龄期的存活数量和死亡数量。
-
数据处理和分析均使用Excel 2007和SPSS 16.0处理,显著性采用Duncan新复极差法进行多重比较。文中数据均为平均值±标准差。
-
图1显示:1龄黄脊竹蝗若虫对3种不同寄主植物叶片的取食面积之间差异显著(P<0.05),对玉米叶的取食面积最大,平均为474.67 mm2;对毛竹取食面积次之,平均为179.33 mm2;对芒草取食面积最小,平均为76.00 mm2。黄脊竹蝗1龄若虫对玉米叶的取食量明显高于另外2种寄主植物,同时毛竹叶和芒草叶的取食量之间差异显著(P<0.05)。
图 1 1~5龄期黄脊竹蝗若虫取食不同寄主植物叶面积比较
Figure 1. Comparison of the feeding area of different host plants by the 1st to the 5th instar C. kiangsu
2龄黄脊竹蝗若虫对3种不同寄主植物叶片的取食面积之间差异显著(P<0.05),2龄若虫取食偏好从大到小依次为芒草、毛竹、玉米,与1龄若虫相比发生了显著变化,由1龄若虫最喜欢取食的玉米变为2龄若虫最喜欢的芒草。对芒草叶取食面积最大,平均为1 556 mm2;毛竹取食面积次之,平均为372 mm2;玉米叶取食面积最小,平均为157 mm2。
3龄若虫取食面积从大到小依次为芒草、玉米、毛竹,其中芒草叶取食面积最大,平均为2 343 mm2,而玉米叶和毛竹叶取食面积平均分别为1 659和1 649 mm2,两者差异不显著(P>0.05)(图1)。4龄和5龄若虫取食面积从大到小依次为芒草、玉米、毛竹,其中芒草叶取食面积仍然最大,但是玉米叶取食面积显著高于毛竹叶(P<0.05)。综上所述,2~5龄黄脊竹蝗若虫都是最喜欢取食芒草叶,另外,2~5龄期黄脊竹蝗若虫取食玉米叶的面积逐渐上升,在2龄若虫期玉米叶取食量显著低于毛竹叶(P<0.05),但是在4龄和5龄若虫期玉米叶取食量则显著高于毛竹叶(P<0.05)。
-
不同寄主植物饲养后,平均每头黄脊竹蝗体质量增长量从大到小依次为玉米(0.301 g±0.015 g)、芒草(0.295 g±0.022 g)、毛竹(0.229 g±0.027 g),其中玉米叶与芒草叶饲养对黄脊竹蝗体质量增长差异不显著(P>0.05),这2种寄主植物对黄脊竹蝗体质量增长量都显著高于毛竹叶(P<0.05)(图2A)。在3种单一植物饲养下,玉米和芒草对黄脊竹蝗的平均每头体长增长量差异不显著(P>0.05),而这2种寄主植物对黄脊竹蝗体长增长量显著高于毛竹叶(P<0.05)(图2B),从大到小依次为芒草(25.120 mm±0.682 mm)、玉米(24.860 mm±1.436 mm)、毛竹(22.910 mm±2.914 mm)。
-
玉米饲养的黄脊竹蝗羽化后第38天开始产卵,毛竹饲养的黄脊竹蝗第39天开始产卵,芒草饲养的黄脊竹蝗羽化后第44天开始产卵。玉米、毛竹和芒草饲养的黄脊竹蝗种群平均产卵前期分别为41.2 d±3.7 d、41.7 d±2.2 d、55.4 d±6.9 d,其中芒草饲养的种群产卵前期显著大于其他2种植物饲养的种群(P<0.05)(表1)。
表 1 黄脊竹蝗取食不同寄主植物的产卵前期
Table 1. Effect of feeding different host plants on the pre-oviposition periods of C. kiangsu
寄主植物 最短产卵
前期/d最长产卵
前期/d平均产卵
前期/dn 玉米 38 48 41.2±3.7 b 5 毛竹 39 45 41.7±2.2 b 5 芒草 44 61 55.4±6.9 a 5 说明:不同字母表示不同寄主植物间产卵前期差异显著 (P<0.05),n表示样本量(黄脊竹蝗雌雄对数) 由图3可以看出:黄脊竹蝗取食不同寄主植物后每雌虫产卵量差异显著(P<0.05),其中取食玉米和毛竹后,产卵数量相对较多,平均每笼收集到卵粒分别为131粒(玉米饲喂)和122粒(毛竹饲喂),而取食芒草收集到的卵粒最少,为21粒。玉米和毛竹饲养种群之间的产卵量差异不显著(P>0.05),前两者产卵量都显著高于芒草(P<0.05)。
-
图4表明:单一寄主植物饲养蝗虫的存活率由高到低依次为毛竹(88.33%)、芒草 (86.67%)、玉米 (88.33%),但是3种寄主植物之间存活率差异不显著(P>0.05)。
-
在种间竞争、食物资源丰度及植物防御等压力条件下,植食性昆虫往往会产生不同的寄主选择机制[10-11]。尹姣等[12]、李超等[13]研究也显示:当几种不同的寄主植物同时存在时,昆虫取食行为具有一定的选择性。本研究表明:黄脊竹蝗1龄若虫的平均取食面积从大到小依次为玉米、毛竹、芒草,而2~5龄若虫对芒草的取食面积都显著大于其他2种寄主植物(P<0.05)。黄脊竹蝗在不同龄期的取食偏好性不同,有可能是种间竞争及食物资源丰度等压力条件的影响,也可能是由于昆虫在生长过程中,取食器与消化系统发育状况不同,导致对食物的偏好随之发生改变[14]。
不同寄主植物由于所含次生物质以及营养成分不同,对多食性昆虫的选择行为和生长发育及繁殖均有不同程度的影响[15]。昆虫若虫期的食物营养对其生长发育及繁殖有很大影响,即使在相同的环境条件下,食物的营养不同,昆虫若虫期的生长发育及成虫期的繁殖也会表现出一定的差异性,致使昆虫种群的增长受到影响[16-17]。本研究也显示:供试寄主植物的不同对黄脊竹蝗的生长发育和繁殖力产生的影响存在差异。如芒草与玉米饲喂的黄脊竹蝗平均体质量和体长增长量差异不显著(P>0.05),但与毛竹饲喂的黄脊竹蝗体质量和体长增长量差异显著(P<0.05);在不同寄主植物饲养下,成虫产卵前期存在明显差异(P<0.05),芒草饲养的种群产卵前期显著大于其他2种植物饲养的种群(P<0.05);此外,黄脊竹蝗取食不同寄主植物后每雌虫产卵量同样差异显著(P<0.05)。说明芒草饲喂有利于黄脊竹蝗体质量和体长的增长,却使黄脊竹蝗产卵前期延长,并且产卵量极少,造成此现象的原因可能是芒草叶中含有某种抑制黄脊竹蝗生殖系统发育的物质或芒草叶的营养成分不能满足其发育及生殖的需求。而玉米叶和毛竹叶可能含有的营养物质对黄脊竹蝗生殖系统发育有促进作用,使其产卵数量多,产卵前期相对较短。
综上所述,在3种寄主植物资源丰富、外部环境条件也相同的情况下,黄脊竹蝗取食玉米后的体质量增长量略高于芒草饲养的种群,显著高于毛竹饲养种群,且其产卵量显著高于芒草饲养种群。可以初步推测:玉米是相对适宜黄脊竹蝗的取食和生长发育及产卵需求的寄主植物。另外,从寄主植物获取的难易程度来考虑,玉米可以大量种植,且种植成本低,生长周期较短,种植技术成熟,成活率高,而芒草为户外野生禾本科Gramineae植物,不易大批量获取。可见,相对于其他2种寄主植物,玉米是相对适合黄脊竹蝗人工饲养的食物来源。
Effects of three different host plants on the feeding preference and developmental status of Ceracris kiangsu
-
摘要:
目的 研究黄脊竹蝗Ceracris kiangsu在3种不同寄主植物上的取食偏好和发育状况,有助于了解它们与寄主植物的关系。 方法 采用网格坐标纸计算面积法,测定不同龄期黄脊竹蝗对玉米Zea mays、芒草Miscanthus sinensis和毛竹Phyllostachys edulis 等3种寄主植物的取食选择性,并观察3种不同寄主植物对黄脊竹蝗体质量、体长、产卵前期、产卵量和存活率的影响。 结果 不同龄期黄脊竹蝗对寄主植物取食偏好性发生了改变,其中1龄若虫的平均取食面积从大到小依次为玉米(474.67 mm2±66.03 mm2)、毛竹(179.33 mm2±41.38 mm2)、芒草(76.00 mm2±42.11 mm2),而2~5龄若虫对芒草的取食面积都显著大于其他2种寄主植物(P<0.05)。不同寄主植物饲喂后,黄脊竹蝗平均体质量增长量从大到小依次为玉米(0.301 g±0.015 g)、芒草(0.295 g±0.022 g)、毛竹(0.229 g±0.027 g);黄脊竹蝗平均体长增长量从大到小依次为芒草(25.120 mm±0.682 mm)、玉米(24.860 mm±1.436 mm)、毛竹(22.910 mm±2.914 mm)。在不同寄主植物饲养下,成虫产卵前期存在显著差异(P<0.05),平均产卵前期从大到小依次为芒草(55.4 d±6.9 d)、毛竹(41.7 d±2.2 d)、玉米(41.2 d±3.7 d),其中芒草饲养的种群产卵前期显著大于其他2种植物饲养的种群;黄脊竹蝗取食不同寄主植物后雌虫产卵量差异显著(P<0.05),从大到小依次为毛竹(122.00粒±6.08粒)、玉米(121.00粒±12.70粒)、芒草(21.00粒±2.89粒);单一寄主植物饲养黄脊竹蝗的存活率影响差异不显著(P>0.05),存活率由高到低依次为毛竹(88.33%±1.70%)、芒草(86.67%±1.66%)、玉米(83.33%±1.60%)。 结论 从寄主植物获取的难易程度以及对黄脊竹蝗体质量、体长增长量和繁殖能力来考虑,玉米叶可以大量种植,芒草为户外野生禾本科Gramineae植物,不易大批量获取。相对来说,玉米叶是最适合黄脊竹蝗人工饲养的食物来源。图4表1参17 Abstract:Objective To further the relationship of Ceracris kiangsu with their host plants, an investigation was conducted of its feeding preferences and developmental status when living on three different host plants. Method The grid area calculation method was employed to determine the feeding selectivity of bamboo locust of different ages and observation was made of the effects of three different host plants on the body weight, body length, pre-laying period, spawning volume and survival rate of C. kiangsu. Result The feeding preference of host plants of C. kiangsu changes as its age accumulates; the average feeding area of first-instar nymphs was Zea mays (474.67 mm2±66.03 mm2)>Phyllostachys edulis (179.33 mm2±41.38 mm2)>Miscanthus sinensis (76.00 mm2±42.11 mm2) while the feeding area of the nymphs from the second to the fifth instar on M. sinensis was significantly larger than that on the other two host plants(P<0.05). The weight growth of different host plants was Z. mays (0.301 g±0.015 g)>M. sinensis (0.295 g±0.022 g)>Ph. edulis(0.229 g±0.027 g) whereas the length growth of different host plants was M. sinensis (25.120 mm±0.682 mm)>Z. mays (24.860 mm±1.436 mm)>Ph. edulis (22.910 mm±2.914 mm). When breeding on different host plants, C. kiangsu demonstrates significant differences in the pre-spawing period of the adults(P<0.05) and the average pre-spawning period of the three populations was M. sinensis (55.4 d± 6.9 d)>Ph. edulis (41.7 d±2.2 d)>Z. mays (41.2 d±3.7 d), and the pre-spawning period of the population feeding on M. sinensis was significantly longer than that of those feeding on the other two plants(P<0.05). The population of spawn per female was significantly different after feeding on different host plants, and the result was Ph. edulis (122.00 seeds±6.08 seeds)>Z. mays (121.00 seeds±12.70 seeds)>M. sinensis (21.00 seeds±2.89 seeds), yet there was no significant difference in the survival rate of C. kiangsu feeding on different host plants(P>0.05) with the survival rates as follows: Ph. edulis(88.33%±1.70%)>M. sinensis (86.67%±1.66%)>Z. mays (83.33%±1.60%). Conclusion With the difficulty of obtaining the host plants and the weight growth, body length calculation and reproductive capacity of C. kiangsu taken into consideration, corn leaves, compared with other two host plants which are not easy to obtain in large quantities, can be planted in large quantities, thus making the most suitable food source for artificial breeding of C. kiangsu. [Ch, 4 fig. 1 tab. 17 ref.] -
梅Prunus mume隶属于蔷薇科Rosaceae李属Prunus,原产中国南方,距今已有 3 000 多年的栽培历史[1]。目前,食用花卉的风潮日益兴起,花茶越来越受到欢迎,百合Lilium、菊花Chrysanthemum×morifolium、桂花Osmanthus fragrans等食用花卉已被应用于较多产业[2] ,梅花茶等相关制品具有巨大的开发前景和市场。梅花营养丰富,主要包括黄酮类、苯丙烷类、有机酸类、挥发性物质等化学成分,其中绿原酸、异槲皮苷、金丝桃苷质量分数较高[3]。以异槲皮苷、金丝桃苷为代表的黄酮类化合物具有抗炎、抗抑郁等药理作用,以绿原酸为代表的苯丙烷类化合物具有抗氧化、抑制黑色素形成等作用[4−5]。采摘后的梅花鲜花容易发生虫蛀、霉变,干燥加工能有效避免鲜花变质[6]。在干燥过程中,花茶的色、香、味和活性成分易受影响,干燥方式是梅花花茶品质最关键的影响因素。目前国内对梅花干燥制茶方面的研究相对缺乏,不同干燥方法对梅花花茶各方面品质的影响的研究报道甚少。
自然干燥、热风干燥、微波干燥等传统干燥方式[7]操作简单、成本低、耗时短,但存在品质差等缺陷。真空冷冻干燥是将物料降温冻结,在真空条件下使物料中的水分由冰直接升华为水蒸气被排除的技术[8]。它可使干制品最大限度地保持原有的色、香、味品质及营养成分,但设备投资大、能耗高、干燥时间长[9]。吴一超等[10]采用5种干燥方式对丹参Salvia miltiorrhiza茎叶干燥,得出真空冷冻干燥有利于保存丹参茎叶的酚酸及抗氧化活性成分,但成本高,仅适用于生产高品质的产品,40 ℃烘干法简便、高效、成本低,适合丹参茎叶的规模化加工。复合干燥是将多种干燥方式结合起来,优化干燥工艺,实现优势互补[11]。商涛等[12]采用微波热风联合干燥与热风干燥、微波干燥对比,结果表明:干燥时间、总色差值最小,黄芩苷质量分数和综合质量评分最高。WANG 等[13]采用不同温度热风干燥和微波结合热风干燥处理菊花,结果表明微波 30 s 与热风 75 ℃联合干燥后的菊花含有较高活性成分,整体构象变化小。由上述研究结果可知:真空冷冻干燥与复合干燥相较于其他干燥方式具有明显优势,但这2种方法的优劣以及对梅花进行干燥处理的效果未见报道。
本研究采用热风干燥法、微波干燥法、复合干燥法、真空冷冻干燥法对不同品种的梅花鲜花进行处理,测定了不同干燥处理后梅花的收缩率、花色表型等外在特征,以及花色成分、挥发性成分、抗氧化能力、绿原酸等指标。进一步使用熵权与变异系数组合赋权法计算耦合权重系数进行综合评分,并利用加权逼近理想解排序法(weighted approximation ideal solution ranking method,TOPSIS)验证评价模型[14],获得最优的干燥方式,为梅花花茶的制作提供理论依据。
1. 材料与方法
1.1 材料
在浙江农林大学梅花种质资源库选择‘东方朱砂’‘Dongfang Zhusha’、‘骨红朱砂’‘Guhong Zhusha’、‘晓红宫粉’‘Xiaohong Gongfen’、‘粉皮宫粉’‘Fenpi Gongfen’、‘粉台玉蝶’‘Fentai Yudie’、‘月光玉蝶’‘Yueguang Yudie’、‘久观绿萼’‘Jiuguang Lve’、‘素玉绿萼’‘Suyu Lve’等8个品种盛开期花朵作为试验材料。所有梅花花朵性状正常,花色鲜艳均匀,采摘时环境温度为0~15 ℃。
1.2 干燥处理
梅花干燥处理采用包括热风干燥法、微波干燥法、复合干燥法及真空冷冻干燥法。热风干燥法:将新鲜的花朵置于60 ℃热风烘箱中,烘干3 h。微波干燥法:将样品置于微波炉中,设置功率为300 W,干燥20 min。复合干燥法:首先将样品置于功率为300 W的微波炉中,干燥10 min,然后取出样品置于60 ℃热风烘箱中,时间1 h。真空冷冻干燥法:将真空冷冻干燥机设置温度为−66 ℃、气压为4 Pa,取鲜样置于其中干燥22 h。对照组(ck)为鲜样梅花样品。
1.3 色表型测定
使用英国皇家园艺协会比色卡(RHSCC)进行比对测定。用色差仪(COLOR READER CR-10 PLUS)测定梅花花瓣的色差参数,包括亮度(L*)、红度(a*)、黄度(b*)、彩度(C*)值和色调角(h)。根据滕彩玲等[15]的方法计算色差值,公式如下:$ \Delta E = \sqrt {{{\left( {L - {L_0}} \right)}^2} + {{\left( {a - {a_0}} \right)}^2} + {{\left( {b - {b_0}} \right)}^2}} $。其中:∆E表示总色差,L、a、b分别表示样品的亮度值、红绿值、黄蓝值,L0、a0、b0分别表示对照样品的亮度值、红绿值、黄蓝值。
1.4 失水率与收缩率
根据刘盼盼等[16]的方法计算失水率。用游标卡尺测量梅花干燥前后最大直径,取平均值,6次生物学重复。收缩率计算公式为S=(dg−dt)/dg。其中:S为收缩率;dg和 dt分别为新鲜样品和干制样品的最大直径(cm)。
1.5 抗氧化性测定
1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除能力根据TURKOGLU等[17]的方法测定。2,2′-联氨-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)自由基清除能力根据THANA等[18]的方法测定并做调整。根据不同浓度与相应的清除率分别计算半数抑制质量浓度(IC50),比较抗氧化能力强弱。
1.6 挥发性成分分析
每次取3 朵梅花花朵放入22 mL的采样瓶,密封瓶盖平衡10 min。将固相微萃取SPME纤维头插入采样瓶中,置于花朵上方2 cm,吸附30 min,重复3 次。色谱条件与质谱条件根据ZHANG等[19]和HAO等[20]的方法并做调整。
1.7 花色成分分析
称取0.3 g花瓣并研磨成粉末,加入提取液(三氟乙酸∶甲醇∶甲酸∶水=1∶70∶2∶27,体积比)中,置于 4 ℃ 冰箱内提取24 h,使用超声波设备超声处理20 min,使用转速为4 000 r·min−1的离心机离心10 min,将上清液用0.22 μm 孔径的尼龙微孔滤器过滤后,用于花青素苷与类黄酮的定性及定量分析。采用UPLC-Triple-TOF/MS液质联用仪进行测定,色谱柱为waters HISS-SB C18 (100.0 mm×2.1 mm,1.7 μm),进样量为2 μL,柱温为25 ℃,流速为 0.4 mL·min−1。流动相组成为A:体积分数为0.1%甲酸水,B:体积分数为0.1%甲酸乙腈。洗脱梯度为0~11.0 min,0~95%B;11.0~12.0 min,95%B;12.0~12.1 min,95%~5%B;12.1~15.0 min,5%B。在 520、350 nm波长下获得色谱图。
1.8 营养成分分析
可溶性蛋白质量分数采用考马斯亮蓝G-250法测定[21];新绿原酸、绿原酸、芦丁、异槲皮苷与金丝桃苷质量分数根据1.7成分分析方法测定。
1.9 熵权-变异系数法计算及 TOPSIS 法验证
使用熵权与变异系数组合赋权法计算耦合权重系数,进行综合评分,比主观权重更加可靠客观[22],可避免单一客观权重分配不合理的问题。选择失水率、收缩率、色差值、DPPH和ABTS自由基清除能力、总黄酮质量分数等作为评价指标,根据LIU等[23]的方法计算熵权法权重(wj1)。根据李叶贝等[24]的方法计算评价指标的变异系数法权重(wj2)。根据拉格朗日乘子法,得到优化后的耦合权重(wj)。为了避免评价的主观性[25],以原始数据和耦合权重的乘积作为评价数据,计算得到不同干燥方法与最优方案和最劣方案的距离C+和C−,以及待评价方案与正理想解的相对接近程度C,根据C的大小评价不同干燥方式的优劣。
2. 结果与分析
2.1 干燥后梅花表型变化
不同品种的梅花经不同方法干燥处理后,其外观特征如图1所示。比色卡测定结果(表1)表明:8个不同品种的梅花花色范围为 61B~155C,分为白色、粉红色、紫红色等3个色系。经干燥处理后,白色系品种梅花,转变为黄绿色系,花色范围为2D~N199D;粉红色和紫红色系品种梅花转变为紫红色系,花色范围为64A~84C。白色系‘粉台玉蝶’‘月光玉蝶’‘久观绿萼’‘素玉绿萼’,紫红色系‘骨红朱砂’的色差值测定结果(图2)表明:微波干燥后花色色差值最大,最大值为真空冷冻后的 3.49 倍;粉红色系‘晓红宫粉’‘粉皮宫粉’在热风干燥后花色色差值最大,色泽变化最大。对比其他3种干燥方法,真空冷冻干燥在‘东方朱砂’‘晓红宫粉’‘粉台玉蝶’‘月光玉蝶’‘久观绿萼’品种上保持色泽和形态上表现最佳,色差值显著低于其他3种干燥方法。
表 1 不同干燥方法处理后梅花花色变化Table 1 Changes of flower color after different drying methods品种 花色 对照 热风
干燥微波
干燥复合
干燥真空冷
冻干燥‘东方朱砂’ 61B N79B N79A 79N N79B ‘骨红朱砂’ N66C 64A N79D 70B 64 ‘晓红宫粉’ 65A N75A 84C N80D N75B ‘粉皮宫粉’ 65C N74C 84C 77D 75A ‘粉台玉蝶’ NN155B 155A N199D 150D 155A ‘月光玉蝶’ NN155C N155C 157B N155D NN155B ‘久观绿萼’ 155C 4D 2D 155C 155A ‘素玉绿萼’ NN155B 155A 8D 4D 155A 由图3A可知:真空冷冻干燥后梅花的失水率为70.1%~79.7%,表明失水率较低且干燥效率低,其余3种干燥方法失水率均在79.3%以上,其中复合干燥后梅花的失水率显著高于其他3种干燥方法(P<0.05),最大失水率为84.7%。图3B 结果表明:真空冷冻干燥后梅花的收缩率显著小于其他3种干燥方式(P<0.05),为7.2%~28.7%,微波干燥后梅花的收缩率最大,为39.7%~47.4%。低温干燥特性能够更好地保持梅花的原有形态。
2.2 干燥后花色主要成分变化
2.2.1 总黄酮质量分数变化
不同干燥方法处理后,梅花总黄酮质量分数出现了不同程度的损失(图4)。相较于其他干燥方法,真空冷冻干燥对黄酮的保留效果最好,其总黄酮质量分数为 6.46~9.10 mg·g−1,显著高于热风干燥与微波干燥(P<0.05),微波干燥后梅花总黄酮损失量达到74.5%。复合干燥的保留效果也较好。说明真空冷冻干燥对于保留梅花中的黄酮成分效果较好,并且相对于微波干燥,保留了更多的黄酮化合物,可能是高温对黄酮类化合物造成影响。
2.2.2 花青苷质量分数变化
仅在‘东方朱砂’‘骨红朱砂’‘晓红宫粉’和‘粉皮宫粉’中共检测出了6种花青苷,包括矢车菊素-3-O-葡萄糖苷(Cy3G)、矢车菊素-3-O-芸香糖苷(Cy3Ru)、芍药花素-3-O-葡萄糖苷(Pn3G)、芍药花素-3-O-芸香糖苷(Pn3Ru)、飞燕草素-3-O-芸香糖鼠李糖苷(Dp3Ruh)、矮牵牛素-3-O-芸香糖-5-O-鼠李糖苷(Pt3Ru5h)。4个白色系品种中未检测到花青苷。由图5可知:梅花鲜样颜色越深花青苷总质量分数越高。梅花在不同干燥方法处理后花青苷总质量分数有显著差异(P<0.05)。‘东方朱砂’真空冷冻干燥后的花青苷质量分数最高,达到2.63 mg·g−1,这可能是由于低温干燥技术有效减少了花青苷的热降解。与之相比,热风干燥和微波干燥的花青苷损失较大。花青苷质量分数与总黄酮质量分数变化趋势一致,温度越高、干燥时间越长对类黄酮和花青苷质量分数的影响越明显。推测温度和干燥时间可能对梅花中类黄酮和花青苷质量分数变化具有较大的影响。
表2表明:‘东方朱砂’检测到 6 种花青苷,其余3个品种中,检测出除Pt3Ru5h外的 5种花青苷。紫红色系‘东方朱砂’所含的6种花青苷中,Cy3G、Cy3Ru、Pn3G占总花青苷比例较大,是主要的花青苷组成成分,其中,Cy3Ru质量分数最高,且在复合干燥后的梅花中质量分数显著高于其他干燥方法(P<0.05)。Cy3G和Pn3G质量分数分别在‘晓红宫粉’‘骨红朱砂’‘粉皮宫粉’中最高,均在真空冷冻干燥保留率最高。Pt3Ru5h只在‘东方朱砂’中被检测出,且在真空冷冻干燥后梅花中保留率最高。
表 2 不同干燥方法处理前后梅花花青苷组成及质量分数Table 2 Composition and content of anthocyanin in P. mume flowers before and after different drying methods品种 干燥方法 花青苷/(μg·g−1 ) Cy3G Cy3Ru Pn3G Pn3Ru Pn3Ru Pt3Ru5h ‘东方朱砂’ 对照 841.71±34.39 a 1 027.57±23.45 a 961.74±18.22 a 227.72±29.11 a 130.19±1.09 a 192.58±1.46 a 热风干燥 400.75±5.87 d 723.73±15.10 c 509.53±5.24 d 158.79±5.02 b 113.67±12.52 ab 127.39±5.79 c 微波干燥 464.20±15.80 c 617.52±7.30 d 508.77±15.26 d 100.32±10.42 c 92.19±20.83 b 126.93±6.97 c 复合干燥 571.18±14.74 b 840.66±16.28 b 692.89±44.69 c 145.47±5.46 b 126.78±0.93 a 160.19±17.22 b 真空冷冻干燥 575.79±5.60 b 827.60±9.85 b 775.04±13.32 b 157.75±21.72 b 117.91±15.1 a 174.76±1.24 b ‘骨红朱砂’ 对照 564.92±13.66 a 496.45±3.02 a 774.52±19.56 a 63.51±1.61 a 63.32±0.70 a - 热风干燥 424.35±15.82 c 357.86±29.59 c 493.59±15.76 c 47.37±2.21 c 51.91±1.49 c - 微波干燥 352.38±26.86 d 275.21±37.52 d 462.78±19.02 d 46.43±0.20 c 50.58±2.90 c - 复合干燥 452.85±6.76 b 428.39±12.83 b 555.72±14.56 b 51.09±2.53 b 56.97±2.22 b - 真空冷冻干燥 478.79±12.68 b 401.86±5.03 b 585.24±19.34 b 52.87±0.62 b 59.45±2.44 b - ‘晓红宫粉’ 对照 94.87±12.12 a 56.21±8.51 a 89.89±13.31 a 57.87±1.65 a 60.02±1.89 a - 热风干燥 57.85±2.58 c 35.28±2.90 b 68.27±1.29 b 33.03±1.68 c 42.12±0.85 d - 微波干燥 29.93±1.58 d 21.17±0.30 c 42.66±4.48 c 22.80±1.63 d 27.43±2.01 e - 复合干燥 69.90±2.39 b 37.63±4.39 b 64.46±3.00 b 37.62±1.74 b 47.27±1.58 c - 真空冷冻干燥 71.37±2.64 b 39.72±2.76 b 75.04±1.53 b 40.09±2.65 b 50.79±1.18 b - ‘粉皮宫粉’ 对照 77.44±6.27 a 38.79±1.36 a 88.49±3.42 a 39.86±0.70 a 51.80±1.71 a - 热风干燥 52.84±3.36 c 23.81±1.81 b 52.65±1.74 d 23.92±1.11 c 24.04±1.25 c - 微波干燥 47.59±1.50 c 19.84±1.56 c 48.16±1.92 e 21.87±1.27 d 22.96±0.32 c - 复合干燥 72.49±3.47 b 26.32±1.66 b 57.47±3.32 c 25.47±0.98 c 32.95±1.96 b - 真空冷冻干燥 68.73±3.34 b 25.92±1.69 b 64.74±0.33 b 28.90±0.57 b 35.09±2.47 b - 说明:同列不同字母表示同一品种不同干燥方法间差异显著(P<0.05)。Cy3G. 矢车菊素-3-O-葡萄糖苷; Cy3Ru. 矢车菊素-3-O-芸香糖苷; Pn3G. 芍药花素-3-O-葡萄糖苷;Pn3Ru. 芍药花素-3-O-芸香糖苷;Pn3Ru. 飞燕草素-3-O-芸香糖鼠李糖苷;Pt3Ru5h. 矮牵牛素-3-O-芸香糖-5-O-鼠李糖苷。-表示未检测到该成分。 2.3 干燥后挥发性成分变化
从8个梅花品种中鉴定出27种挥发物,这些挥发性成分主要包括醛类、酯类、有机酸、醇类和脂肪类化合物。酯类化合物在梅花花香成分中质量分数最高,苯甲醛、苯甲醇和乙酸苯甲酯等是梅花挥发物的主要成分[26]。由挥发性成分测定结果可知(图6):复合干燥和真空冷冻干燥在保留挥发性成分上具有明显优势,特别是在保留醛类和酯类这2类主要香气成分方面,这2种干燥方法表现出更佳的效果,复合干燥组的总保留率最高,达到50%以上。热风干燥组梅花的香气成分保留结果不稳定,部分梅花品种在热风干燥后挥发性成分保留少。8个梅花品种鲜样挥发性成分中除了‘粉皮宫粉’中检测到壬醛,其余品种只在干燥后检测到壬醛,说明在干燥处理后产生壬醛,梅花香气特征可能发生了改变。
2.4 干燥后梅花抗氧化活性变化
表3和表4结果对比表明:干燥后梅花提取液对2种自由基清除能力一致。不同干燥方法处理后的梅花提取液清除DPPH和ABTS自由基的IC50均有所增加,并且存在显著差异(P<0.05),说明梅花提取液在干燥后对自由基的清除能力降低,并且不同干燥方法对自由基清除能力影响不同。
表 3 不同干燥方法处理前后梅花清除DPPH自由基的IC50Table 3 IC50 values of DPPH free radical scavenging of P. mume flowers before and after different drying methods品种 清除DPPH自由基的IC50/(mg·L−1) 对照 热风干燥 微波干燥 复合干燥 真空冷冻干燥 ‘东方朱砂’ 180.40±1.79 d 238.26±2.42 b 269.67±6.88 a 230.03±3.19 b 191.17±7.67 c ‘骨红朱砂’ 176.99±4.79 c 233.66±5.16 b 269.69±7.17 a 223.33±9.63 b 221.11±4.24 b ‘晓红宫粉’ 193.60±6.25 d 236.42±7.01 b 271.22±4.34 a 214.05±2.44 c 204.24±3.71 c ‘粉皮宫粉’ 186.91±7.98 d 242.91±7.63 b 292.69±3.39 a 222.02±1.34 c 197.54±6.29 d ‘月光玉蝶’ 171.70±2.90 d 241.20±7.81 b 273.73±9.35 a 229.67±1.03 b 208.39±6.02 c ‘粉台玉蝶’ 183.50±2.91 e 232.37±3.88 b 257.62±8.40 a 209.38±2.37 c 197.30±3.15 d ‘素玉绿萼’ 168.43±3.62 e 221.55±0.82 b 234.17±7.48 a 208.39±6.12 c 193.95±4.62 d ‘久观绿萼’ 155.31±5.20 d 229.09±6.76 b 249.32±12.28 a 190.41±4.72 c 189.24±1.65 c 说明:同行不同字母表示同一品种不同干燥方法间差异显著(P<0.05)。 表 4 不同干燥方法处理前后梅花清除ABST自由基的IC50Table 4 IC50 value of ABST free radical scavenging of P. mume flowers before and after different drying methods品种 清除ABST自由基的IC50/(mg·L−1) 对照 热风干燥 微波干燥 复合干燥 真空冷冻干燥 ‘东方朱砂’ 431.89±1.85 c 528.86±2.95 a 520.90±6.88 a 464.79±5.46 b 454.21±11.33 b ‘骨红朱砂’ 430.89±9.98 c 464.71±6.51 b 494.48±17.93 a 463.13±2.78 b 457.54±5.77 b ‘晓红宫粉’ 436.85±4.07 d 521.48±7.59 b 536.05±9.34 a 470.58±7.23 c 473.88±3.00 c ‘粉皮宫粉’ 423.26±3.85 d 470.38±7.51 b 519.48±5.67 a 463.42±4.80 bc 458.63±6.59 c ‘月光玉蝶’ 435.44±0.87 d 523.76±3.58 b 537.67±7.33 a 467.46±4.29 c 468.04±5.26 c ‘粉台玉蝶’ 434.56±1.98 d 471.71±1.28 c 520.86±5.47 a 469.50±4.63 c 478.67±3.32 b ‘素玉绿萼’ 428.30±5.57 d 490.43±7.95 b 510.52±18.91 a 454.54±5.22 c 452.54±7.60 c ‘久观绿萼’ 410.93±4.46 d 470.38±7.51 b 519.48±5.67 a 459.79±10.02 b 447.29±4.69 c 说明:同行不同字母表示同一品种不同干燥方式间差异显著(P<0.05)。 除‘骨红朱砂’外,与其他干燥方法相比,真空冷冻干燥后的梅花提取液清除DPPH、ABST自由基的IC50值显著低于热风干燥与微波干燥(P<0.05),与复合干燥差异小。真空冷冻干燥后的梅花提取液对DPPH自由基的清除能力是微波干燥后的1.2~1.5倍。复合干燥与真空冷冻干燥后梅花提取液清除ABTS自由基的IC50约为447.29~478.67 mg·L−1。真空冷冻干燥与复合干燥后的梅花提取液对DPPH、ABST自由基清除能力较强。可能由于真空冷冻干燥低温和缺氧的特点,有效减少了抗氧化物的降解,从而保持了更高的抗氧化活性。
2.5 有效成分分析
2.5.1 可溶性蛋白质量分数分析
由图7可知:不同干燥方法处理对梅花可溶性蛋白的保留有显著影响。‘月光玉蝶’‘粉台玉蝶’中复合干燥组可溶性蛋白损失显著小于其他干燥方法(P<0.05),损失量分别为26.08、7.92 mg·g−1,‘东方朱砂’‘骨红朱砂’‘晓红宫粉’‘粉皮宫粉’‘久观绿萼’‘素玉绿萼’中,真空冷冻干燥组可溶性蛋白质量分数损失小于其他3种干燥方法,损失量分别为4.91、31.86、3.34、5.38、5.26、3.70 mg·g−1。
2.5.2 新绿原酸、绿原酸、金丝桃苷、芦丁与异槲皮苷的质量分数变化
新绿原酸、绿原酸是梅花鲜花的主要酚类物质,其质量分数高于黄酮类化合物芦丁、异槲皮苷与金丝桃苷。由图8可知:真空冷冻干燥在所有干燥方法中保留效果最佳,尤其是大部分品种的绿原酸和异槲皮苷质量分数均显著高于除对照外的其他干燥方法(P<0.05)。复合干燥虽然保留效果略低于真空冷冻干燥,但显著高于热风干燥和微波干燥。
2.6 综合评价
由上述分析可知:不同干燥方法处理对梅花品质指标的影响不同。熵权-变异系数综合评分和TOPSIS法计算结果如表5和表6所示:4种干燥方法的熵权-变异系数综合评分由高到低依次为真空冷冻干燥法、复合干燥法、热风干燥法和微波干燥法。通过TOPSIS排序法进行验证,结果与熵权-变异系数法分析结果基本一致,TOPSIS排序法中C越大排名越高,真空冷冻干燥法与复合干燥法品质优于热风干燥法和微波干燥法。综合来说真空冷冻干燥法干燥后梅花品质最优,复合干燥法干燥后次之。
表 5 不同干燥方法处理后熵权-变异系数法各梅花指标权重Table 5 Weights of indexes of the P. mume flowers entropy weight-coefficient of variation method after different drying methods品种 指标名称 wj1 wj2 wj 品种 指标名称 wj1 wj2 wj ‘东方朱砂’ 失水率 0.074 6 0.054 0 0.079 8 ‘骨红朱砂’ 失水率 0.072 3 0.054 0 0.079 5 收缩率 0.081 6 0.033 4 0.065 7 收缩率 0.100 3 0.022 4 0.060 3 色差值 0.094 2 0.026 8 0.063 2 色差值 0.072 5 0.050 3 0.076 8 DPPH 0.078 3 0.037 4 0.068 0 DPPH 0.072 7 0.051 2 0.077 6 ABST 0.086 1 0.038 5 0.072 4 ABST 0.072 5 0.050 4 0.076 9 总黄酮 0.078 5 0.040 0 0.070 5 总黄酮 0.076 2 0.043 2 0.073 0 总花青素 0.087 0 0.032 2 0.066 5 总花青素 0.080 9 0.036 9 0.069 5 挥发性分成保留率 0.080 5 0.039 2 0.070 6 挥发性分成保留率 0.094 7 0.028 5 0.066 1 新绿原酸 0.077 0 0.044 9 0.073 9 新绿原酸 0.073 1 0.045 9 0.073 7 绿原酸 0.079 8 0.041 8 0.072 6 绿原酸 0.072 9 0.046 8 0.074 3 芦丁 0.080 2 0.042 9 0.073 7 芦丁 0.075 8 0.042 0 0.071 8 金丝桃苷 0.082 2 0.033 0 0.065 5 金丝桃苷 0.082 9 0.035 8 0.069 3 异槲皮苷 0.075 9 0.050 0 0.077 4 异槲皮苷 0.078 2 0.039 5 0.070 7 可溶性蛋白 0.074 4 0.055 0 0.080 4 可溶性蛋白 0.101 8 0.022 2 0.060 5 ‘晓红宫粉’ 失水率 0.076 6 0.063 7 0.081 2 ‘粉皮宫粉’ 失水率 0.076 1 0.041 3 0.072 4 收缩率 0.083 6 0.037 0 0.064 6 收缩率 0.075 4 0.037 6 0.068 8 色差值 0.079 4 0.043 2 0.068 1 色差值 0.081 3 0.032 7 0.066 6 DPPH 0.078 4 0.050 6 0.073 2 DPPH 0.074 0 0.042 9 0.072 7 ABST 0.084 2 0.046 3 0.072 6 ABST 0.072 5 0.051 6 0.079 0 总黄酮 0.082 3 0.042 3 0.068 5 总黄酮 0.073 6 0.048 8 0.077 4 总花青素 0.077 2 0.054 3 0.075 2 总花青素 0.078 1 0.040 3 0.072 4 挥发性分成保留率 0.080 2 0.045 3 0.070 1 挥发性分成保留率 0.072 5 0.050 4 0.078 1 新绿原酸 0.080 4 0.043 7 0.068 9 新绿原酸 0.092 8 0.027 4 0.065 1 绿原酸 0.079 1 0.048 8 0.072 2 绿原酸 0.089 6 0.027 1 0.063 6 芦丁 0.093 8 0.030 4 0.062 0 芦丁 0.072 4 0.052 3 0.079 5 金丝桃苷 0.084 5 0.045 8 0.072 3 金丝桃苷 0.079 9 0.039 6 0.072 6 异槲皮苷 0.076 7 0.061 3 0.079 6 异槲皮苷 0.098 4 0.023 6 0.062 2 可溶性蛋白 0.077 9 0.048 6 0.071 5 可溶性蛋白 0.090 3 0.032 3 0.069 7 ‘月光玉蝶’ 失水率 0.081 1 0.046 8 0.081 0 ‘粉台玉蝶’ 失水率 0.080 1 0.047 6 0.079 2 收缩率 0.100 3 0.026 2 0.067 4 收缩率 0.106 4 0.025 4 0.066 7 色差值 0.082 8 0.038 1 0.073 9 色差值 0.082 2 0.045 0 0.078 0 DPPH 0.080 6 0.043 4 0.077 8 DPPH 0.082 1 0.045 5 0.078 5 ABST 0.087 6 0.043 7 0.081 4 ABST 0.079 1 0.057 0 0.086 2 总黄酮 0.088 7 0.038 3 0.076 6 总黄酮 0.102 1 0.036 9 0.078 8 含量花青素 0.063 8 0.000 1 0.002 7 总花青素 0.063 8 0.000 1 0.002 7 挥发性分成保留率 0.083 2 0.040 0 0.075 8 挥发性分成保留率 0.082 2 0.041 1 0.074 6 新绿原酸 0.080 6 0.046 1 0.080 1 新绿原酸 0.094 8 0.036 2 0.075 2 绿原酸 0.080 8 0.049 1 0.082 8 绿原酸 0.085 5 0.044 6 0.079 3 芦丁 0.092 0 0.040 4 0.080 1 芦丁 0.083 0 0.045 2 0.078 6 金丝桃苷 0.093 0 0.037 5 0.077 6 金丝桃苷 0.085 1 0.045 1 0.079 5 异槲皮苷 0.092 5 0.031 1 0.070 5 异槲皮苷 0.094 7 0.032 3 0.071 0 可溶性蛋白 0.097 6 0.033 2 0.074 9 可溶性蛋白 0.084 5 0.039 8 0.074 5 ‘素玉绿萼’ 失水率 0.083 7 0.061 3 0.082 2 ‘久观绿萼’ 失水率 0.083 6 0.055 6 0.080 1 收缩率 0.087 1 0.046 4 0.073 0 收缩率 0.089 1 0.042 4 0.072 2 色差值 0.084 2 0.058 4 0.080 5 色差值 0.086 5 0.045 9 0.074 0 DPPH 0.089 1 0.045 1 0.072 8 DPPH 0.088 0 0.052 5 0.079 8 ABST 0.088 6 0.053 3 0.078 9 ABST 0.083 3 0.056 8 0.080 8 总黄酮 0.090 3 0.050 6 0.077 6 总黄酮 0.086 7 0.046 0 0.074 2 总花青素 0.063 8 0.000 1 0.002 7 总花青素 0.063 8 0.000 1 0.002 7 挥发性分成保留率 0.088 6 0.046 2 0.073 4 挥发性分成保留率 0.106 5 0.045 3 0.081 6 新绿原酸 0.093 3 0.045 8 0.075 0 新绿原酸 0.084 4 0.054 7 0.079 8 绿原酸 0.086 9 0.050 0 0.075 7 绿原酸 0.087 3 0.052 8 0.079 8 芦丁 0.090 0 0.051 5 0.078 2 芦丁 0.089 6 0.039 7 0.070 0 金丝桃苷 0.088 0 0.050 1 0.076 3 金丝桃苷 0.089 8 0.050 4 0.079 0 异槲皮苷 0.095 7 0.047 4 0.077 3 异槲皮苷 0.086 6 0.048 9 0.076 4 可溶性蛋白 0.084 3 0.055 9 0.078 8 可溶性蛋白 0.087 0 0.043 8 0.072 5 表 6 不同干燥方法处理后梅花熵权-变异系数综合评分和TOPSIS排序结果Table 6 Comprehensive score and TOPSIS ranking results of entropy-coefficient of variation of P. mume after different drying motheds品种 干燥方法 熵权-变异系数
综合排名TOPSIS排名 品种 干燥方法 熵权-变异系数
综合排名TOPSIS排名 综合评分 排名 C 排名 综合评分 排名 C 排名 ‘东方朱砂’ 热风干燥法 783.50 3 0.501 0 3 ‘骨红朱砂’ 热风干燥法 952.51 3 0.367 5 4 微波干燥法 619.09 4 0.392 3 4 微波干燥法 735.31 4 0.416 1 3 复合干燥法 975.78 2 0.649 3 1 复合干燥法 1276.55 2 0.581 2 1 真空冷冻干燥法 1049.36 1 0.595 0 2 真空冷冻干燥法 1340.41 1 0.552 8 2 ‘晓红宫粉’ 热风干燥法 723.16 3 0.508 3 3 ‘粉皮宫粉’ 热风干燥法 783.50 3 0.378 6 3 微波干燥法 564.06 4 0.413 6 4 微波干燥法 619.09 4 0.417 8 4 复合干燥法 912.86 2 0.598 5 1 复合干燥法 975.78 2 0.565 1 2 真空冷冻干燥法 1045.04 1 0.582 4 2 真空冷冻干燥法 1049.36 1 0.626 6 1 ‘月光玉蝶’ 热风干燥法 590.06 3 0.393 3 4 ‘粉台玉蝶’ 热风干燥法 722.06 3 0.283 0 4 微波干燥法 501.93 4 0.450 8 3 微波干燥法 707.76 4 0.422 5 3 复合干燥法 852.84 2 0.620 7 1 复合干燥法 975.07 2 0.555 4 2 真空冷冻干燥法 953.14 1 0.550 9 2 真空冷冻干燥法 1016.84 1 0.586 4 1 ‘素玉绿萼’ 热风干燥法 812.27 3 0.432 2 3 ‘久观绿萼’ 热风干燥法 877.24 3 0.423 7 3 微波干燥法 713.61 4 0.435 2 4 微波干燥法 706.09 4 0.505 1 4 复合干燥法 1016.70 2 0.580 5 1 复合干燥法 1041.97 2 0.464 3 2 真空冷冻干燥法 1048.38 1 0.564 1 2 真空冷冻干燥法 1150.98 1 0.576 4 1 3. 讨论
梅花具有多种香气成分和气味品质、独特的花色花形以及药用价值,这些特点赋予梅花极大的开发潜力[27]。本研究应用热风干燥、微波干燥、复合干燥和真空冷冻干燥4种不同干燥方法处理梅花,综合考虑了表型、花色、花香成分等因素,对比分析了不同干燥方法对梅花品质的影响。结果显示:干燥方法对梅花的理化属性产生较大的影响。与 ZHANG等[28]的研究一致。真空冷冻干燥的梅花在保持色泽和细胞结构上表现最佳,具较强的清除DHHP和ABST自由基能力,显示出强大的抗氧化能力。复合干燥法能保留梅花活性成分,提升抗氧化能力。这与SHI等[29]的研究结果相符。本研究中,复合干燥法在保留挥发性物质方面表现最佳,不仅提高了梅花的香气质量,还缩短了干燥时间,减少了有效成分的降解。此外,真空冷冻干燥法和复合干燥法处理后的梅花在保留总黄酮、总花青素、绿原酸等有效成分方面均表现出优势。在评估不同梅花品种的质量时,‘绿萼’品种表现出最强的抗氧化能力且各营养成分较高,而‘朱砂’品种在保留花色方面最为突出,并且其花青素质量分数较高。综合评分结果显示:‘骨红朱砂’‘久观绿萼’评分最高,因此,这2个梅花品种适用于梅花花茶的开发。
4. 结论
本研究选取8个梅花品种,采用4种不同干燥方法对梅花鲜花进行研究发现:真空冷冻干燥后的梅花品质最优,复合干燥次之。真空冷冻干燥在品质保持方面表现最佳,但较高的设备成本和长时间的干燥过程限制了其大规模应用。相比之下,复合干燥结合了不同干燥方法的优点,不仅保持了梅花的品质,还缩短了加工时间,为大批量生产提供了可能。可以进一步拓展梅花品种的选择范围,优化复合干燥条件,以提升梅花茶的整体品质。此外,本研究选用了色差值、抗氧化能力和总黄酮质量分数等指标进行综合评价,可以考虑引入更多与梅花品质相关的生化和生理指标,构建更为全面的梅花品质评价体系。
-
表 1 黄脊竹蝗取食不同寄主植物的产卵前期
Table 1. Effect of feeding different host plants on the pre-oviposition periods of C. kiangsu
寄主植物 最短产卵
前期/d最长产卵
前期/d平均产卵
前期/dn 玉米 38 48 41.2±3.7 b 5 毛竹 39 45 41.7±2.2 b 5 芒草 44 61 55.4±6.9 a 5 说明:不同字母表示不同寄主植物间产卵前期差异显著 (P<0.05),n表示样本量(黄脊竹蝗雌雄对数) -
[1] 张威, 张守科, 舒金平, 等. 环境温湿度对黄脊竹蝗趋尿行为的影响[J]. 浙江农林大学学报, 2017, 34(4): 704 − 710. ZHANG Wei, ZHANG Shouke, SHU Jinping, et al. Ambient temperature and humidity along with urine-pudding for Ceracris kiangsu, the yellow-spined bamboo locust [J]. J Zhejiang A&F Univ, 2017, 34(4): 704 − 710. [2] 徐天森, 王浩杰. 中国竹子主要害虫[M]. 北京: 中国林业出版社, 2004: 45 − 51. [3] 陈良昌, 黄向东, 廖运先, 等. 黄脊竹蝗生活习性观察和防治试验[J]. 湖南林业科技, 2013, 40(6): 37 − 40. CHEN Liangchang, HUANG Xiangdong, LIAO Yunxian, et al. Life habit and control of Ceracris kiangsu Tsai [J]. J Hunan For Sci Technol, 2013, 40(6): 37 − 40. [4] 程佳, 潘涌智, 舒金平. 黄脊竹蝗研究现状及进展[J]. 山东林业科技, 2010, 40(2): 116 − 119. CHENG Jia, PAN Yongzhi, SHU Jinping. The research and development of the Ceracris kiangsu Tsai [J]. J Shandong For Sci Technol, 2010, 40(2): 116 − 119. [5] 孙涛, 刘志云, 秦丽萍. 祁连山区几种草地蝗虫蛋白质营养评价[J]. 应用昆虫学报, 2011, 48(4): 902 − 908. SUN Tao, LIU Zhiyun, QIN Liping. Protein nutrition evaluation of rangeland grasshoppers in the Qilian Mountain [J]. Chin J Appl Entomol, 2011, 48(4): 902 − 908. [6] 徐燕. 亚洲飞蝗食药用价值的初步研究[D]. 长春: 东北师范大学, 2013. XU Yan. Preliminary Studies on the Dietary and Medicinal Values of Locusta migratoria[D]. Changchun: Northeast Normal University, 2013. [7] 陈申芝. 不同饲料对东亚飞蝗生长发育的影响及东亚飞蝗肠道细菌的初步鉴定[D]. 泰安: 山东农业大学, 2008. CHEN Shenzhi. Effect to Growth and Development of Locusta migratoria manilensis (Meyen) Reared on Different Kinds of Diets and Preliminary Identification of Intestinal Bacterium of Locusta migratoria manilensis (Meyen)[D]. Tai’an: Shandong Agricultural University, 2008. [8] 封洪强, 丁秀云, 王小奇, 等. 中华稻蝗人工饲养技术初探[J]. 沈阳农业大学学报, 2001, 32(5): 349 − 352. FENG Hongqiang, DING Xiuyun, WANG Xiaoqi, et al. Preliminary studies on artificial rearing technique of Chinese rice Grasshopper Oxya chinensis (Thunberg) [J]. J Shenyang Agric Univ, 2001, 32(5): 349 − 352. [9] 张守科, 张威, 舒金平, 等. 黄脊竹蝗取食偏好与竹叶品质的关系[J]. 生态学杂志, 2017, 36(8): 2266 − 2273. ZHANG Shouke, ZHANG Wei, SHU Jinping, et al. Relationship between the feeding preference of yellow-spined bamboo locust, Ceracris kiangsu and bamboo leaf quality [J]. Chin J Ecol, 2017, 36(8): 2266 − 2273. [10] 钦俊德, 王琛柱. 论昆虫与植物的相互作用和进化的关系[J]. 昆虫学报, 2001, 44(3): 360 − 365. QIN Junde, WANG Chenzhu. The relation of interaction between insects and plants to evolution [J]. Acta Entomol Sin, 2001, 44(3): 360 − 365. [11] RAZMJOU J, NASERI B, HEMATI S A. Comparative performance of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on various host plants [J]. J Pest Sci, 2014, 87(1): 29 − 37. [12] 尹姣. 草地螟的寄主植物选择对其种群增长的影响[D]. 北京: 中国农业科学院, 2001. YIN Jiao. The Population Growth of Meadow Moth, Loxostege sticticalis, as Affected by Host Plant Preference[D]. Beijing: Chinese Academy of Agricultural Sciences, 2001. [13] 李超, 程登发, 郭文超, 等. 不同寄主植物对马铃薯甲虫的引诱作用[J]. 生态学报, 2013, 33(8): 2410 − 2415. LI Chao, CHENG Dengfa, GUO Wenchao, et al. Attraction effect of different host-plant to Colorado potato beetle Leptinotarsa decemlineata [J]. Acta Ecol Sin, 2013, 33(8): 2410 − 2415. [14] 陈申芝, 卿玉弢, 朱晓英, 等. 普通齿蛉幼虫的消化系统结构和取食分析[J]. 应用昆虫学报, 2011, 48(4): 1033 − 1037. CHEN Shenzhi, QING Yutao, ZHU Xiaoying, et al. The structure of alimentary system and feeding analysis of the larva of Neoneuromus ignobilis [J]. Chin J Appl Entomol, 2011, 48(4): 1033 − 1037. [15] BERNYS E A. Relationship between deterrence and toxicity of plant secondary compounds for the alfalfa weevil Hypera brunneipennis [J]. J Chem Ecol, 1991, 17(12): 2519 − 2526. [16] 阮永明, 吴坤君. 不同食料植物对棉铃虫生长发育和繁殖的影响[J]. 昆虫学报, 2001, 44(2): 205 − 212. RUAN Yongming, WU Kunjun. Performances of the cotton bolloworm, Helicoverpa armigera on different food plants [J]. Acta Ecol Sin, 2001, 44(2): 205 − 212. [17] 武海卫, 康智, 信善林, 等. 不同食料植物对美国白蛾生长发育和繁殖的影响[J]. 应用昆虫学报, 2012, 49(4): 963 − 968. WU Haiwei, KANG Zhi, XIN Shanlin, et al. Effects of different food plants on the growth, development and reproduction of fall webworm, Hyphantria cunea, larvae [J]. Chin J Appl Entomol, 2012, 49(4): 963 − 968. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190723