留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶区林分生长与影响因子的关系

王磊 崔明 刘玉国 周梦玲 武建宏 周桃龙

王磊, 崔明, 刘玉国, 周梦玲, 武建宏, 周桃龙. 岩溶区林分生长与影响因子的关系[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190762
引用本文: 王磊, 崔明, 刘玉国, 周梦玲, 武建宏, 周桃龙. 岩溶区林分生长与影响因子的关系[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190762
WANG Lei, CUI Ming, LIU Yuguo, ZHOU Mengling, WU Jianhong, ZHOU Taolong. Relationship between stand growth and impact factors in karst area[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190762
Citation: WANG Lei, CUI Ming, LIU Yuguo, ZHOU Mengling, WU Jianhong, ZHOU Taolong. Relationship between stand growth and impact factors in karst area[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190762

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

岩溶区林分生长与影响因子的关系

doi: 10.11833/j.issn.2095-0756.20190762
基金项目: “十三五”国家重点研发计划项目(2016YFC0502504);国家自然科学基金资助项目(31500583);南水北调水源地丹江口库区石漠化治理效益监测项目(2017-07)
详细信息
    作者简介: 王磊,从事石漠化治理研究。E-mail: 1198694029@qq.com
    通信作者: 刘玉国,助理研究员,从事石漠化治理研究。E-mail: liuyuguo@caf.ac.cn
  • 中图分类号: S718.5

Relationship between stand growth and impact factors in karst area

  • 摘要:   目的  通过研究南水北调源头渠首岩溶区不同林分生长及其影响的主导因子,为科学指导岩溶区植被恢复、林地管理与林分改造提供依据。  方法  以南水北调水源地中线渠首所在地淅川县岩溶区为研究对象,基于结构方程模型构建乔木层生物量与基岩裸露度、土壤厚度、树种多样性以及林分密度的模型,进行关系耦合。  结果  基岩裸露度与林分密度为正相关关系(P<0.01),与树种多样性为极显著正相关关系(P<0.01),与建群种生物量为极显著负相关关系(P<0.01)。基岩裸露度对林分密度的直接影响系数为0.198,对树种多样性的直接影响系数为0.519,对建群种生物量的总影响系数、直接影响系数及间接影响系数分别为−0.659、−0.722和0.063,对林分生物量的间接影响系数为−0.604。土壤厚度与建群种生物量呈显著正相关关系(P<0.05),与树种多样性、林分密度与建群种生物量为正相关关系。土壤厚度对建群种生物量的直接影响系数为0.258,对林分总生物量的间接影响系数为0.262;树种多样性对建群种的直接影响系数为0.084,对林分总生物量的总影响系数、直接影响系数及间接影响系数分别为0.211、0.126和0.085;林分密度对建群种的直接影响系数为0.096,对林分总生物量的间接影响系数为0.098。建群种生物量与林分总生物量为显著正相关关系(P<0.01),建群种生物量对林分总生物量的总影响系数为1.014。  结论  基岩裸露度、土壤厚度、树种多样性及林分密度与建群种生物量、林分总生物量之间存在着复杂的关系,在岩溶区降低基岩裸露度、增加土壤厚度(即提升立地条件)能够改善林分结构增加建群种和全林分的生物量。生物量与立地条件、树种多样性和林分密度呈正相关,提升立地条件、抚育改变林分结构能够促进个体生长,增加生物量的积累,改善岩溶区的生态环境。图1表3参34
  • 图  1  初始与修正模型路径图

    x1为基岩裸露度,x2为土壤厚度,x3为树种多样性,x4为林分密度,δ1δ2δ3δ4为对应的误差, η1为建群种生物量,η2为林分总生物量,ε1ε2为对应误差

    Figure  1  Initial and correction model path map

    表  1  样地概况

    Table  1.   Sample information

    样地
    编号
    纬度(N)经度(E)坡度/
    (°)
    海拔/
    m
    土壤厚度/cm基岩裸露度/%含水率/%平均胸径/cm平均树高/m优势木生物量/
    (t·hm−2)
    林分总生物量/
    (t·hm−2)
    主要树种种群密度/
    (株·hm−2)
    P133°15′57.94″111°14′35.31″2133335.07013.711.89.897.71119.18栓皮栎、马尾松、山槐1 750
    P233°15′57.80″111°14′34.67″2125515.05513.68.08.661.5079.35栓皮栎、马尾松、蒙桑1 550
    P333°15′57.01″111°14′34.39″2924915.05020.19.910.7106.82124.15栓皮栎、山胡椒1 567
    P433°7′26.76″111°26′1.23″2431122.07518.913.013.0144.02158.23栓皮栎、黄连木、侧柏1 933
    P533°7′26.44″111°26′1.60″2432218.07017.011.913.0130.15147.98栓皮栎、黄连木、侧柏2 000
    P633°7′26.73″111°26′2.10″2734527.07519.211.012.5166.94191.28栓皮栎、黄连木、侧柏1 883
    P733°7′49.72″111°25′22.30″2421920.06516.912.915.4112.21143.61栓皮栎、黄连木、女贞1 767
    P833°7′50.85″111°25′22.60″2423928.05017.014.317.5224.42239.15栓皮栎、黄连木、蒙桑1 950
    P933°7′51.15″111°25′22.76″2125022.05215.714.014.6148.92169.33栓皮栎、黄连木、鸡仔木1 400
    P1033°7′26.65″111°25′57.23″2027928.08017.610.513.0120.29139.66栓皮栎、黄连木、侧柏1 833
    P1133°7′26.86″111°25′57.00″2129725.07816.412.010.4117.67139.44栓皮栎、黄连木1 667
    P1233°7′27.10″111°25′56.75″2030826.08018.313.316.1172.21182.27栓皮栎、黄连木2 700
    P1333°7′49.36″111°26′11.57″3547017.01010.111.711.7165.95176.74栓皮栎、化香、黄连木1 983
    P1433°7′50.35″111°26′13.63″3047218.0126.0 11.011.8138.31154.57栓皮栎、黄连木、侧柏1 650
    P1533°7′49.01″111°25′22.02″3045015.0204.3 11.212.0142.95147.96栓皮栎、黄连木、侧柏2 483
    P1633°16′37.23″111°3′6.28″3565112.42010.610.812.7296.72312.55栓皮栎、飞蛾槭2 867
    P1733°16′35.60″111°3′5.38″3562718.810.012.914.014.8280.25288.55栓皮栎、侧柏1 800
    P1833°16′34.65″111°3′18.91″3257422.04014.021.019.7190.55234.44栓皮栎、槲栎 767
      说明:栓皮栎Quercus variabilis、马尾松Pinus massoniana、山槐Maackia hupehensis、蒙桑Morus mongolica、山胡椒Lindera glauca、     侧柏Platycladus orientalis、女贞Ligustrum lucidum、鸡仔木Sinoadina racemosa、飞蛾槭Acer oblongum、槲栎Quercus aliena
    下载: 导出CSV

    表  2  林分生长结构方程模型的拟合参数

    Table  2.   Fitting parameters of structure equation model for the growth of forest

    统计量参数名称参数含义评价标准模型1模型2
    绝对适配统计量 c2/df卡方自由度比 <31.8900.842
    IGF适配度指数  >0.900.8290.914
    增值适配度统计量INF规准适配指数 介于0~1之间(可以>1),越接近1,表示模型适配度越好0.8820.955
    IRF相对适配指数 0.7470.887
    IIF增值适配指数 0.9411.009
    ITL非规准适配指数0.8621.024
    IGF比较适配指数 0.9361.000
    简约适配统计量 PNC非中心参数  越小越好6.2360
    下载: 导出CSV

    表  3  结构方程模型标准化影响系数

    Table  3.   Standard impact coefficient of SEM

    影响因素标准化直接影响标准化间接影响标准化总影响
    基岩
    裸露度
    土壤
    厚度
    树种
    多样性
    林分
    密度
    建群种
    生物量
    基岩
    裸露度
    土壤
    厚度
    树种
    多样性
    林分
    密度
    建群种
    生物量
    基岩
    裸露度
    土壤
    厚度
    树种
    多样性
    林分
    密度
    建群种
    生物量
    物种多样性 0.5190000000000.5190000
    林分密度  0.1980000000000.1980000
    建群种生物量−0.7220.2580.0840.0960 0.0630000−0.6590.2580.0840.0960
    林分总生物量000.12601.014 −0.6040.2620.0850.0980−0.6040.2620.2110.0981.014
    下载: 导出CSV
  • [1] 薛立, 杨鹏. 森林生物量研究综述[J]. 福建林学院学报, 2004, 24(3): 283 − 288.

    XU Li, YANG Peng. Summary of research on forest biomass [J]. J Fujian Coll For, 2004, 24(3): 283 − 288.
    [2] WEST P W. Tree and Forest Measurement[M]. 2nd ed. Berlin: Springer Verlag, 2009.
    [3] 程积民, 程杰, 高阳, 等. 渭北黄土区不同立地条件下刺槐人工林群落生物量结构特征[J]. 北京林业大学学报, 2014, 36(2): 15 − 21.

    CHENG Jimin, CHENG Jie, GAO Yang, et al. Structural characteristics of community biomass in Robinia pseudoacacia plantations under different site conditions at Webei loess region, northwestern China [J]. J Beijing For Univ, 2014, 36(2): 15 − 21.
    [4] 罗云建, 张小全, 王效科, 等. 森林生物量的估算方法及其研究进展[J]. 林业科学, 2009, 45(8): 129 − 134.

    LUO Yunjian, ZHANG Xiaoquan, WANG Xiaoke, et al. Forest biomass estimation methods and their prospects [J]. Sci Silv Sin, 2009, 45(8): 129 − 134.
    [5] CONVERSE T E, BETTERS D R. Biomass yield equations for short rotation black locust plantation in the Central Plains [J]. Biomass Bioenergy, 1995, 8(4): 251 − 254. doi:  10.1016/0961-9534(95)00034-5
    [6] 王树力, 周建平. 基于机构方程模型的林分生长与影响因子耦合关系分析[J]. 北京林业大学学报, 2014, 36(5): 7 − 12.

    WANG Shuli, ZHOU Jianping. Coupling relationship between stand growth and impacting factors based on structural equation model [J]. J Beijing For Univ, 2014, 36(5): 7 − 12.
    [7] 袁道先. 我国岩溶资源环境领域的创新问题[J]. 中国岩溶, 2015, 34(2): 98 − 100.

    YUAN Daoxian. Scientific innovation in karst resources and environment research field of China [J]. Carsologica Sin, 2015, 34(2): 98 − 100.
    [8] 杜虎, 宋同清, 曾馥平, 等. 喀斯特峰丛洼地不同植被类型碳格局变化及影响因子[J]. 生态学报, 2015, 35(14): 4658 − 4667.

    DU Hu, SONG Tongqing, ZENG Fuping, et al. Carbon storage and its controlling factors under different vegetation types in depressions between karst hills, southwest China [J]. Acta Ecol Sin, 2015, 35(14): 4658 − 4667.
    [9] 贺庆棠, 陆佩玲. 中国岩溶山地石漠化问题与对策研究[J]. 北京林业大学学报, 2006, 28(1): 117 − 120.

    HE Qingtang, LU Peiling. Rocky desertification and its preventive strategies in karst regions of China [J]. J Beijing For Univ, 2006, 28(1): 117 − 120.
    [10] NAGARAJA B C, SOMASHEKAR R K, RAJ M B. Tree species diversity and composition in logged and unlogged rainforest of Kudremukh National Park, South India [J]. J Environ Biol, 2005, 26(4): 627 − 634.
    [11] 温远光, 雷丽群, 朱宏光, 等. 广西马山岩溶植被年龄序列的群落特征[J]. 生态学报, 2013, 33(18): 5723 − 5730. doi:  10.5846/stxb201305070978

    WEN Yuanguang, LEI Liqun, ZHU Hongguang, et al. Community characteristics in a chronosequence of karst vegetation in Mashan County, Guangxi [J]. Acta Ecol Sin, 2013, 33(18): 5723 − 5730. doi:  10.5846/stxb201305070978
    [12] 朱宏光, 蓝嘉川, 刘虹, 等. 广西马山岩溶次生林群落生物量和碳储量[J]. 生态学报, 2015, 35(8): 2616 − 2621.

    ZHU Hongguang, LAN Jiachuan, LIU Hong, et al. Biomass and carbon storage of communities in secondary karst forests in Mashan county, Guangxi [J]. Acta Ecol Sin, 2015, 35(8): 2616 − 2621.
    [13] 雷丽群. 广西马山岩溶植被不同演替阶段的群落结构与环境因子的关系[D]. 南宁: 广西大学, 2014.

    LEI Liqun. Relationship between Community Structure and Environmental Factors at Different Succession Stages of Karst Vegetation in Mashan, Guangxi[D]. Nanning: Guangxi University, 2014.
    [14] CLARK J S. Models for Ecological Data: An Introduction[M]. Princeton: Princeton University Press, 2007.
    [15] MIAO S L, CARSTENN S, NUNGESSER M. Real World Ecology: Large-scale and Long-term Case Studies and Methods[M]. New York: Springer, 2009.
    [16] GRACE J B, ALLAIN L K, ALLEN C. Factors associated with plant species richness in a coastal tall-grass prairie [J]. J Veg Sci, 2000, 11: 443 − 452. doi:  10.2307/3236637
    [17] 王酉石, 储诚进. 结构方程模型及其在生态学中的应用[J]. 植物生态学报, 2011, 35(3): 334 − 337.

    WANG Youshi, CHU Chengjin. A brief introduction of structural equation model and its application in ecology [J]. Chin J Plant Ecol, 2011, 35(3): 334 − 337.
    [18] 周健平, 王树力. 基于结构方程模型的林分上下层间结构与树木多样性耦合关系研究[J]. 北京林业大学学报, 2015, 37(9): 9 − 16.

    ZHOU Jianping, WANG Shuli. Coupling relationship of structure and tree diversity between upper and lower canopy layer based on structural equation model [J]. J Beijing For Univ, 2015, 37(9): 9 − 16.
    [19] SHIPIEY B, LECHOWICZ M J, WRIGHT I, et al. Fundamental trade-offs generating the worldwide leaf economics spectrum [J]. Ecology, 2006, 87: 535 − 541. doi:  10.1890/05-1051
    [20] LAMB E G, KEMBEL S W, CAHILL J F. Shoot, but not root, competition reduces community diversity in experimental mesocosms [J]. J Ecol, 2009, 97: 155 − 163. doi:  10.1111/j.1365-2745.2008.01454.x
    [21] 吴卿, 刘哲, 陈子韶, 等. 淅川县石质荒漠化土地空间分布特征研究[J]. 中国水土保持, 2018(11): 33 − 36.

    WU Qing, LIU Zhe, CHEN Zishao, et al. Spatial distribution characteristics of rocky desertification in Xichuan County [J]. Soil Water Conserv China, 2018(11): 33 − 36.
    [22] 周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量—生物量方程[M]. 北京: 科学出版社, 2018.
    [23] WANG S L, CHEN H Y H. Diversity of northern plantations peaks at intermediate management intensity [J]. For Ecol Manage, 2010, 259: 360 − 366. doi:  10.1016/j.foreco.2009.10.030
    [24] 吴明隆. 结构方程模型[M]. 重庆: 重庆大学出版社, 2009.
    [25] 方升佐, 田野. 人工林生态系统生物多样性与生产力的关系[J]. 南京林业大学学报(自然科学版), 2010, 34(6): 81 − 86.

    FANG Shengzuo, TIAN Ye. The relationship between biodiversity and productivity in the artificial plantation ecosystem [J]. J Nanjing For Univ Nat Sci, 2010, 34(6): 81 − 86.
    [26] BUTTLE J M, DILLON P J, EERKES G R. Hydrologic coupling of slopes, riparian zones and streams: an example from the Canadian Shield [J]. J Hydrol, 2004, 287(1/4): 161 − 177.
    [27] SCHENK H J. Soil depth, plant rooting strategies and species’niches [J]. New Phytol, 2008, 178(2): 223 − 225. doi:  10.1111/j.1469-8137.2008.02427.x
    [28] 文丽, 宋同清, 杜虎, 等. 中国西南喀斯特植物群落演替特征及驱动机制[J]. 生态学报, 2015, 35(17): 5822 − 5833.

    WEN Li, SONG Tongqing, DU Hu, et al. The succession characteristics and its driving mechanism of plant community in karst region, Southwest China [J]. Acta Ecol Sin, 2015, 35(17): 5822 − 5833.
    [29] LEHMAN C L, TILMAN D. Biodiversity, stability, and productivity in competitive communities [J]. Am Nat, 2000, 156(5): 534 − 552. doi:  10.1086/303402
    [30] 盛茂银, 熊康宁, 崔高仰, 等. 贵州喀斯特石漠化地区植物多样性与土壤理化性质[J]. 生态学报, 2015, 35(2): 434 − 448.

    SHENG Maoyin, XIONG Kangning, CUI Gaoyang, et al. Plant diversity and soil physical-chemical properties in karst rocky desertification ecosystem of Guizhou, China [J]. Acta Ecol Sin, 2015, 35(2): 434 − 448.
    [31] 傅伯杰, 刘国华, 陈利顶, 等. 中国生态区划方案[J]. 生态学报, 2001, 21(1): 1 − 6.

    FU Bojie, LIU Guohua, CHEN Liding, et al. Scheme of ecological regionalization in China [J]. Acta Ecol Sin, 2001, 21(1): 1 − 6.
    [32] 姚长宏, 蒋忠诚, 袁道先. 西南岩溶区植被喀斯特效应[J]. 地球学报, 2001, 22(2): 159 − 164.

    YAO Changhong, JIANG Zhongcheng, YUAN Daoxian. Vegetation karst effect in southwest karst area [J]. Acta Geol Sin, 2001, 22(2): 159 − 164.
    [33] 金星姬, 贾炜玮, 李凤日. 基于BP人工神经网络的兴安落叶松天然林全林分生长模型的研究[J]. 植物研究, 2008, 28(3): 370 − 374, 384.

    JIN Xingji, JIA Weiwei, LI Fengri. Whole stand growth model for natural Dahurian larch forests based on BP ANN [J]. Bull Bot Res, 2008, 28(3): 370 − 374, 384.
    [34] 张江, 吕勇, 雷渊才, 等. 基于整体化理论的林木、林分生长模型模拟系统开发[J]. 中南林业科技大学学报, 2010, 30(7): 70 − 72, 90.

    ZHANG Jiang, LÜ Yong, LEI Yuancai, et al. Tree growth model simulation system based on the overall theory [J]. J Cent South Univ For Technol, 2010, 30(7): 70 − 72, 90.
  • [1] 玉宝.  兴安落叶松中幼龄天然林空间利用特征及影响因子 . 浙江农林大学学报, 2020, 37(3): 407-415. doi: 10.11833/j.issn.2095-0756.20190382
    [2] 张华锋, 陈思宇, 刘刚, 王懿祥.  松材线虫病疫木卫生伐对马尾松纯林林分结构的影响 . 浙江农林大学学报, 2020, 37(4): 745-751. doi: 10.11833/j.issn.2095-0756.20190487
    [3] 杨帆, 汤孟平.  毛竹林立地与结构的关系及其对生物量的影响 . 浙江农林大学学报, 2020, 37(5): 823-832. doi: 10.11833/j.issn.2095-0756.20190572
    [4] 何荣晓, 杨帆, 崔明.  海口市城市森林结构及植物多样性指标相关性分析 . 浙江农林大学学报, 2019, 36(6): 1142-1150. doi: 10.11833/j.issn.2095-0756.2019.06.011
    [5] 左政, 郑小贤.  不同干扰等级下常绿阔叶次生林林分结构及树种多样性 . 浙江农林大学学报, 2019, 36(1): 21-30. doi: 10.11833/j.issn.2095-0756.2019.01.004
    [6] 陈婷, 施拥军, 周国模, 郑泽睿, 李翀.  毛竹碳汇林营造初期林分非空间结构年际变化特征 . 浙江农林大学学报, 2015, 32(2): 181-187. doi: 10.11833/j.issn.2095-0756.2015.02.003
    [7] 王群, 张金池, 田月亮, 叶立新, 刘胜龙.  浙江凤阳山天然混交林林分空间结构分析 . 浙江农林大学学报, 2012, 29(6): 875-882. doi: 10.11833/j.issn.2095-0756.2012.06.011
    [8] 魏琦, 楼炉焕, 冷建红, 包其敏, 钟潮亮, 沈年华.  毛枝连蕊茶群落结构与物种多样性 . 浙江农林大学学报, 2011, 28(4): 634-639. doi: 10.11833/j.issn.2095-0756.2011.04.018
    [9] 玉宝, 张秋良, 王立明, 乌吉斯古楞.  不同结构落叶松天然林生物量及生产力特征 . 浙江农林大学学报, 2011, 28(1): 52-58. doi: 10.11833/j.issn.2095-0756.2011.01.009
    [10] 汪平, 贾黎明, 李效文, 李江婧.  北京西山地区侧柏游憩林群落结构及植物多样性 . 浙江农林大学学报, 2010, 27(4): 565-571. doi: 10.11833/j.issn.2095-0756.2010.04.015
    [11] 张佳音, 丁国栋, 余新晓, 史宇, 贾丽娜.  北京山区人工侧柏林的径级结构与空间分布格局 . 浙江农林大学学报, 2010, 27(1): 30-35. doi: 10.11833/j.issn.2095-0756.2010.01.005
    [12] 刘丽, 陈双林, 李艳红.  基于林分结构和竹笋产量的有机材料覆盖雷竹林退化程度评价 . 浙江农林大学学报, 2010, 27(1): 15-21. doi: 10.11833/j.issn.2095-0756.2010.01.003
    [13] 黄丽霞, 袁位高, 江波, 朱锦茹, 彭佳龙.  不同经营方式下杨梅林分空间结构比较 . 浙江农林大学学报, 2009, 26(2): 209-214.
    [14] 张会儒, 武纪成, 杨洪波, 陈新美.  长白落叶松-云杉-冷杉混交林林分空间结构分析 . 浙江农林大学学报, 2009, 26(3): 319-325.
    [15] 刘伟, 周善松, 张先祥, 冯建国, 吴雪梅.  不同立地条件下木荷容器苗与裸根苗造林对比试验 . 浙江农林大学学报, 2009, 26(6): 829-834.
    [16] 龚直文, 亢新刚, 顾丽, 赵俊卉, 郑焰锋, 杨华.  天然林林分结构研究方法综述 . 浙江农林大学学报, 2009, 26(3): 434-443.
    [17] 李贵祥, 施海静, 孟广涛, 方向京, 柴勇, 和丽萍, 张正海, 杨永祥.  云南松原始林群落结构特征及物种多样性分析 . 浙江农林大学学报, 2007, 24(4): 396-400.
    [18] 陈双林, 洪游游, 张德明, 吴柏林.  退化红壤区笋用小径竹幼林结构的变化规律 . 浙江农林大学学报, 2005, 22(3): 296-299.
    [19] 陈双林, 吴柏林, 吴明, 张德明, 曹永慧, 杨清平.  新造毛竹林林分结构年际演替规律及影响因子 . 浙江农林大学学报, 2004, 21(4): 393-397.
    [20] 周国模, 金爱武, 郑炳松, 方伟浩, 余伟朵.  雷竹保护地栽培林分立竹结构的初步研究 . 浙江农林大学学报, 1998, 15(2): 111-115.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190762

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2020//1

计量
  • 文章访问数:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 修回日期:  2020-02-09

岩溶区林分生长与影响因子的关系

doi: 10.11833/j.issn.2095-0756.20190762
    基金项目:  “十三五”国家重点研发计划项目(2016YFC0502504);国家自然科学基金资助项目(31500583);南水北调水源地丹江口库区石漠化治理效益监测项目(2017-07)
    作者简介:

    王磊,从事石漠化治理研究。E-mail: 1198694029@qq.com

    通信作者: 刘玉国,助理研究员,从事石漠化治理研究。E-mail: liuyuguo@caf.ac.cn
  • 中图分类号: S718.5

摘要:   目的  通过研究南水北调源头渠首岩溶区不同林分生长及其影响的主导因子,为科学指导岩溶区植被恢复、林地管理与林分改造提供依据。  方法  以南水北调水源地中线渠首所在地淅川县岩溶区为研究对象,基于结构方程模型构建乔木层生物量与基岩裸露度、土壤厚度、树种多样性以及林分密度的模型,进行关系耦合。  结果  基岩裸露度与林分密度为正相关关系(P<0.01),与树种多样性为极显著正相关关系(P<0.01),与建群种生物量为极显著负相关关系(P<0.01)。基岩裸露度对林分密度的直接影响系数为0.198,对树种多样性的直接影响系数为0.519,对建群种生物量的总影响系数、直接影响系数及间接影响系数分别为−0.659、−0.722和0.063,对林分生物量的间接影响系数为−0.604。土壤厚度与建群种生物量呈显著正相关关系(P<0.05),与树种多样性、林分密度与建群种生物量为正相关关系。土壤厚度对建群种生物量的直接影响系数为0.258,对林分总生物量的间接影响系数为0.262;树种多样性对建群种的直接影响系数为0.084,对林分总生物量的总影响系数、直接影响系数及间接影响系数分别为0.211、0.126和0.085;林分密度对建群种的直接影响系数为0.096,对林分总生物量的间接影响系数为0.098。建群种生物量与林分总生物量为显著正相关关系(P<0.01),建群种生物量对林分总生物量的总影响系数为1.014。  结论  基岩裸露度、土壤厚度、树种多样性及林分密度与建群种生物量、林分总生物量之间存在着复杂的关系,在岩溶区降低基岩裸露度、增加土壤厚度(即提升立地条件)能够改善林分结构增加建群种和全林分的生物量。生物量与立地条件、树种多样性和林分密度呈正相关,提升立地条件、抚育改变林分结构能够促进个体生长,增加生物量的积累,改善岩溶区的生态环境。图1表3参34

English Abstract

王磊, 崔明, 刘玉国, 周梦玲, 武建宏, 周桃龙. 岩溶区林分生长与影响因子的关系[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190762
引用本文: 王磊, 崔明, 刘玉国, 周梦玲, 武建宏, 周桃龙. 岩溶区林分生长与影响因子的关系[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190762
WANG Lei, CUI Ming, LIU Yuguo, ZHOU Mengling, WU Jianhong, ZHOU Taolong. Relationship between stand growth and impact factors in karst area[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190762
Citation: WANG Lei, CUI Ming, LIU Yuguo, ZHOU Mengling, WU Jianhong, ZHOU Taolong. Relationship between stand growth and impact factors in karst area[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190762

返回顶部

目录

    /

    返回文章
    返回