留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应

陈文博 王旭东 石思博 季诗域 叶正钱 任泽涛 刘璋

陈文博, 王旭东, 石思博, 季诗域, 叶正钱, 任泽涛, 刘璋. 长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200139
引用本文: 陈文博, 王旭东, 石思博, 季诗域, 叶正钱, 任泽涛, 刘璋. 长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200139
CHEN Wenbo, WANG Xudong, SHI Sibo, JI Shiyu, YE Zhengqian, REN Zetao, LIU Zhang. Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200139
Citation: CHEN Wenbo, WANG Xudong, SHI Sibo, JI Shiyu, YE Zhengqian, REN Zetao, LIU Zhang. Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200139

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应

doi: 10.11833/j.issn.2095-0756.20200139
基金项目: 国家自然科学基金资助项目(31601271);浙江省自然科学基金资助项目(LY16D010010)
详细信息
    作者简介: 陈文博,从事土壤修复及农林废弃物资源化利用研究。E-mail: 310819937@qq.com
    通信作者: 王旭东,副教授,博士,从事土壤肥力与植物营养研究。E-mail: wangxd@zafu.edu.cn
  • 中图分类号: S154

Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field

  • 摘要:   目的   探讨长期尺度上不同比例菌渣化肥配施对水稻Oryza saliva生育时期土壤酶活性的影响。   方法   在水稻田间长期定位试验条件下,设置化肥水平为常规施肥量的0%(C0)、50%(C50)、100%(C100),菌渣相对用量0%(F0)、50%(F50)、100%(F100)各3个水平,共9个处理,分析了水稻主要生育时期各处理土壤中过氧化氢酶、蔗糖酶、脲酶活性变化,以及菌渣化肥配施对土壤酶活性的交互效应。   结果   土壤酶活性随水稻生育时期的变化呈现出明显规律性,过氧化氢酶、蔗糖酶、脲酶活性分别为3.01~10.20 mL·g−1、0.20~2.04 mg·g−1、0.54~4.80 mg·g−1;在水稻不同生育期,各处理间对土壤过氧化氢酶、蔗糖酶和脲酶活性具有显著差异(P<0.05)。菌渣化肥配施对水稻移栽前期的土壤脲酶活性提高有促进作用,且增强了水稻灌浆期和收获期的土壤过氧化氢酶和蔗糖酶活性,其中过氧化氢酶活性和脲酶活性在C100F50处理最高,而蔗糖酶活性在C50F100处理最高。通径分析表明:有效磷、碱解氮和全氮分别对过氧化氢酶、蔗糖酶和脲酶影响最大,通径系数分别为0.69、1.80和0.69。菌渣化肥配施主要通过提高碱解氮质量分数促进土壤酶活性。交互性分析表明:菌渣化肥配施效应高于化肥和菌渣单施,并且对土壤过氧化氢酶、蔗糖酶和脲酶活性均有极显著影响(P<0.05)。   结论   菌渣化肥配施能够显著提高土壤过氧化氢酶、蔗糖酶、脲酶活性,并且随施用量增加呈现先增高后降低的趋势;本试验条件下,C100F50处理是提高土壤酶活性和促进碳氮循环的最佳选择。图1表4参38
  • 图  1  不同土壤理化因子与土壤酶的通径分析

    Figure  1  Path analysis of different soil physical and chemical factors and soil enzyme

    表  1  试验处理

    Table  1.   Experimental treatments

    处理 菌渣用量(F)/% 化肥用量(C)/% 处理 菌渣用量(F)/% 化肥用量(C)/% 处理 菌渣用量(F)/% 化肥用量(C)/%
    C0F0 0 0 C50F0 0 50 C100F0 0 100
    C0F50 50 0 C50F50 50 50 C100F50 50 100
    C0F100 100 0 C50F100 100 50 C100F100 100 100
    下载: 导出CSV

    表  2  菌渣化肥配施对土壤过氧化氢酶活性的影响和互作效应

    Table  2.   Effect and interaction of the application of fungal residue and chemical fertilizer on catalase activity in soil

    处理 不同生育期过氧化氢酶活性/(mL·g−1)
    移栽前期 分蘖盛期 灌浆后期 收获期
    C0F0 3.57±0.46 abc 5.87±0.57 bc 5.63±1.26 bc 6.62±1.78 b
    C0F50 3.95±0.34 ab 6.47±0.67 bc 5.82±0.84 abc 8.33±2.39 ab
    C0F100 3.79±0.24 abc 6.42±0.33 bc 5.80±0.79 abc 8.90±2.67 ab
    C50F0 3.20±0.27 bc 5.73±0.35 c 5.00±0.80 c 8.81±1.69 ab
    C50F50 3.88±0.10 ab 6.52±0.71 b 6.30±0.40 abc 9.06±1.01 ab
    C50F100 4.19±0.26 a 6.88±0.28 b 6.79±0.19 ab 9.95±1.45 a
    C100F0 3.01±0.22 c 6.30±0.79 bc 5.03±0.19 c 8.40±1.11 ab
    C100F50 4.32±0.41 a 8.19±0.50 a 7.11±0.57 a 10.20±0.87 a
    C100F100 4.08±0.10 a 6.56±0.32 b 6.69±0.97 ab 9.18±0.76 ab
    C ns ns ns ns
    F ** ** * **
    C×F * ns ** **
      说明:*表示显著影响(P<0.05),**表示极显著影响(P<0.01),ns表示影响不显著。C. 化肥; F. 菌渣;C×F. 菌渣化肥配施;n=27。不同     小写字母表示不同处理在 P<0.05 水平差异显著
    下载: 导出CSV

    表  3  菌渣化肥配施对土壤蔗糖酶活性的影响和互作效应

    Table  3.   Effect and interaction of the application of fungal residue and chemical fertilizer on soil invertase activity

    处理 不同生育期蔗糖酶活性/(mg·g−1)
    移栽前期 分蘖盛期 灌浆后期 收获期
    C0F0 0.20±0.03 b 1.38±0.13 ab 1.40±0.09 b 0.94±0.03 b
    C0F50 0.24±0.05 ab 1.21±0.39 b 1.42±0.08 ab 0.95±0.06 b
    C0F100 0.23±0.07 ab 1.36±0.01 ab 1.46±0.28 ab 0.97±0.14 b
    C50F0 0.31±0.05 ab 1.39±0.06 ab 1.44±0.60 ab 0.96±0.16 b
    C50F50 0.27±0.07 ab 1.42±0.23 ab 1.66±0.09 ab 0.98±0.12 ab
    C50F100 0.33±0.08 a 1.92±0.68 ab 2.04±0.33 ab 1.38±0.27 a
    C100F0 0.22±0.04 ab 1.41±0.14 ab 1.66±0.29 ab 0.97±0.08 b
    C100F50 0.31±0.05 ab 1.73±0.18 a 1.75±0.36 a 1.18±0.27 ab
    C100F100 0.29±0.07 ab 1.58±0.07 ab 1.69±0.13 ab 1.04±0.11 ab
    C * * * *
    F ns ns ns ns
    C×F ** * ** **
      说明:*表示显著影响(P<0.05),**表示极显著影响(P<0.01),ns表示影响不显著。C. 化肥; F. 菌渣;C×F. 菌渣化肥配施;n=27。不同     小写字母表示不同处理在 P<0.05 水平差异显著
    下载: 导出CSV

    表  4  菌渣化肥配施对土壤脲酶活性的影响和互作效应

    Table  4.   Effect and interaction of the application of fungal residue and chemical fertilizer on soil urease activity

    处理 不同生育期脲酶活性/(mg·g−1)
    移栽前期 分蘖盛期 灌浆后期 收获期
    C0F0 0.58±0.07 g 1.10±0.03 ab 1.45±0.48 ab 0.96±0.12 b
    C0F50 2.67±1.16 d 0.72±0.38 c 1.10±0.38 ab 1.36±0.33 ab
    C0F100 1.15±0.66 ef 1.13±0.25 ab 1.31±0.40 ab 1.04±0.37 b
    C50F0 0.86±1.13 fg 0.74±0.25 c 0.91±0.26 b 1.06±0.49 b
    C50F50 1.34±0.82 e 1.09±0.15 ab 1.25±0.53 ab 1.39±0.14 ab
    C50F100 4.24±1.19 b 1.27±0.11 a 1.48±0.03 ab 1.71±0.12 a
    C100F0 3.56±1.98 c 0.89±0.36 b 1.17±0.36 ab 1.08±0.07 b
    C100F50 4.59±3.25 a 1.36±0.53 a 1.74±0.53 a 1.78±0.06 a
    C100F100 3.98±1.73 bc 1.15±0.60 ab 1.27±0.50 ab 1.72±0.10 a
    C ** * * **
    F ** ** ** **
    C×F ** ** * **
      说明:*表示显著影响(P<0.05),**表示极显著影响(P<0.01),ns表示影响不显著。C. 化肥; F. 菌渣;C×F. 菌渣化肥配施;n=27。不同     小写字母表示不同处理在 P<0.05 水平差异显著
    下载: 导出CSV
  • [1] 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9(1): 105 − 107.

    CAO Hui, SUN Hui, YANG Hao,et al. A review: soil enzyme activity and its indication for soil quality [J]. Chin J Appl Environ Biol, 2003, 9(1): 105 − 107.
    [2] 王文峰, 李春花, 黄绍文, 等. 不同施肥模式对设施菜田土壤酶活性的影响[J]. 应用生态学报, 2016, 27(3): 873 − 874.

    WANG Wenfeng, LI Chunhua, HUANG Shaowen,et al. Effects of different fertilization patterns on soil enzyme activities in greenhouse vegetable field [J]. Chin J Appl Ecol, 2016, 27(3): 873 − 874.
    [3] 李用芳. 食用菌菌渣的再利用[J]. 生物学通报, 2001, 36(3): 44 − 45.

    LI Yongfang. Reuse of edible fungi residue [J]. Biol Bull, 2001, 36(3): 44 − 45.
    [4] RAO M A, VIOLANTE A, GIANFREDA L. Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability [J]. Soil Biol Biochem, 2000, 32(7): 1007 − 1014. doi:  10.1016/S0038-0717(00)00010-9
    [5] 徐忠山, 刘景辉, 逯晓萍, 等. 秸秆颗粒还田对黑土土壤酶活性及细菌群落的影响[J]. 生态学报, 2019, 39(12): 4347 − 4355.

    XU Zhongshan, LIU Jinghui, LU Xiaoping,et al. Effects of returning granulated corn stover on soil enzyme activities and bacterial community in black soil [J]. Acta Ecol Sin, 2019, 39(12): 4347 − 4355.
    [6] 吴凤芝, 孟立君, 王学征. 设施蔬菜轮作和连作土壤酶活性的研究[J]. 植物营养与肥料学报, 2006, 12(4): 554 − 558.

    WU Fenzhi, MENG Lijun, WANG Xuezheng. Soil enzyme activities in vegetable rotation and continuous cropping system of under shed protection [J]. Plant Nut Fert Sci, 2006, 12(4): 554 − 558.
    [7] 陈丹梅, 段玉琪, 杨宇虹, 等. 轮作模式对植烟土壤酶活性及真菌群落的影响[J]. 生态学报, 2016, 36(8): 2373 − 2381.

    CHEN Danmei, DUAN Yuqi, YANG Yuhong,et al. Influence of crop rotation on enzyme activities and fungal communities in flue-cured tobacco soil [J]. Acta Ecol Sin, 2016, 36(8): 2373 − 2381.
    [8] 熊湖, 郑顺林, 龚静, 等. 液态有机肥对酚酸胁迫下马铃薯生长发育和土壤酶活性影响[J]. 水土保持学报, 2019, 33(3): 254 − 259, 267.

    XIONG Hu, ZHENG Shunlin, GONG Jing,et al. Effects of liquid organic fertilizer on potato growth and soil enzyme activities under phenolic acid stress [J]. J Soil Water Conserv, 2019, 33(3): 254 − 259, 267.
    [9] 邱莉萍, 刘军, 王益权, 等. 土壤酶活性与土壤肥力的关系研究[J]. 植物营养与肥料学报, 2004, 10(3): 277 − 280.

    QIU Liping, LIU Jun, WANG Yiquan,et al. Research on relationship between soil enzyme activities and soil fertility [J]. Plant Nut Fert Sci, 2004, 10(3): 277 − 280.
    [10] 范文丽, 王升厚, 赵英明. 施用杏鲍菇菌糠对土壤主要养分含量及番茄品质的影响[J]. 辽宁农业科学, 2013(3): 84 − 85.

    FAN Wenli, WANG Shenghou, ZHAO Yingming. Effects of mushroom chaff of Pleurotus eryngii on the content of main nutrients in soil and tomato quality [J]. Liaoning Agric Sci, 2013(3): 84 − 85.
    [11] 石思博, 王旭东, 叶正钱, 等. 菌渣化肥配施对稻田土壤微生物量碳氮和可溶性碳氮的影响[J]. 生态学报, 2018, 38(23): 8612 − 8615.

    SHI Sibo, WANG Xudong, YE Zhengqian,et al. Effects of the combination of fungal residue and chemical fertilizer on soil microbial biomass carbon and nitrogen and dissolved organic carbon and nitrogen in paddy soil [J]. Acta Ecol Sin, 2018, 38(23): 8612 − 8615.
    [12] 胡杨勇, 马嘉伟, 叶正钱, 等. 稻耳轮作制度下连续菌渣还田对土壤肥力性状的影响[J]. 水土保持学报, 2013, 27(6): 172 − 176.

    HU Yangyong, MA Jiawei, YE Zhengqian,et al. Effects of continuous application of edible fungus residue on soil fertility properties under rice-edible fungus rotation system [J]. J Soil Water Conserv, 2013, 27(6): 172 − 176.
    [13] 温广蝉, 叶正钱, 王旭东, 等. 菌渣还田对稻田土壤养分动态变化的影响[J]. 水土保持学报, 2012, 26(3): 82 − 86.

    WEN Guangchan, YE Zhengqian, WANG Xudong,et al. Effects of edible fungus residue on dynamic changes of soil nutrients in paddy field [J]. J Soil Water Conserv, 2012, 26(3): 82 − 86.
    [14] 马嘉伟, 叶正钱, 王旭东, 等. 菌渣化肥配施对红壤养分动态变化及水稻生长的影响[J]. 浙江农业学报, 2013, 25(1): 147 − 151.

    MA Jiawei, YE Zhengqian, WANG Xudong,et al. Effect of edible fungus residue on dynamic changes of red soil nutrients and rice yield [J]. Acta Agric Zhejiang, 2013, 25(1): 147 − 151.
    [15] 龚臣, 叶正钱, 王旭东, 等. 长期菌渣化肥配施对稻田土壤活性有机碳组分和有效养分的影响[J]. 浙江农林大学学报, 2018, 35(2): 252 − 260.

    GONG Chen, YE Zhengqian, WANG Xudong,et al. Effects of long-term application of edible fungus residue and chemical fertilizers on fractions of labile organic carbon and available nutrients in rice field soils [J].J Zhejiang A&F Univ, 2018, 35(2): 252 − 260.
    [16] SHI Sibo, WANG Xudong, YE Zhengqian,et al. Effect of the combined application of fungal residue and chemical fertilizers on the mineralization of soil organic carbon in paddy fields [J]. Environ Sci Poll Res, 2019, 26(23): 23292 − 23304. doi:  10.1007/s11356-019-05603-2
    [17] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 25−114.
    [18] 关松荫. 土壤酶及其研究方法[M]. 北京: 农业出版社, 1986: 274−313.
    [19] 魏猛, 诸葛玉平, 娄燕宏, 等. 施肥对文冠果生长及土壤酶活性的影响[J]. 水土保持学报, 2010, 24(2): 237 − 240.

    WEI Meng, ZHUGE Yuping, LOU Yanhong,et al. Effects of fertilization on Xanthoceras sorbifolia Bunge growth and soil enzyme activities [J]. J Soil Water Conserv, 2010, 24(2): 237 − 240.
    [20] 陈闯, 吴景贵, 杨子仪, 等. 不同有机肥及其混施对黑土酶活性动态变化的影响[J]. 水土保持学报, 2014, 28(6): 245 − 250.

    CHEN Chuang, WU Jinggui, YANG Ziyi,et al. Effects of different manures and their mixed application on the dynamic changes of soil enzymes activity for black soil [J]. J Soil Water Conserv, 2014, 28(6): 245 − 250.
    [21] 王冬梅, 王春枝, 韩晓日, 等. 长期施肥对棕壤主要酶活性的影响[J]. 土壤通报, 2006, 37(2): 263 − 267.

    WANG Dongmei, WANG Chunzhi, HAN Xiaori,et al. Effects of long-term application of fertilizers on some enzymatic activities in brunisolic soil [J]. Chin J Soil Sci, 2006, 37(2): 263 − 267.
    [22] 马宁宁, 李天来, 武春成, 等. 长期施肥对设施菜田土壤酶活性及土壤理化性状的影响[J]. 应用生态学报, 2010, 21(7): 1766 − 1771.

    MA Ningning, LI Tianlai, WU Chuncheng,et al. Effects of long-term fertilization on soil enzyme activities and soil physicochemical properties of facility vegetable field [J]. Chin J Appl Ecol, 2010, 21(7): 1766 − 1771.
    [23] 刘建国, 卞新民, 李彦斌, 等. 长期连作和秸秆还田对棉田土壤生物活性的影响[J]. 应用生态学报, 2008, 19(5): 1027 − 1032.

    LIU Jianguo, BIAN Xinmin, LI Yanbin,et al. Effects of long-term continuous cropping of cotton and returning cotton stalk into field on soil biological activities [J]. Chin J Appl Ecol, 2008, 19(5): 1027 − 1032.
    [24] 赵俊晔, 于振文, 李延奇, 等. 施氮量对土壤无机氮分布和微生物量氮含量及小麦产量的影响[J]. 植物营养与肥料学报, 2006, 12(4): 466 − 472.

    ZHAO Junye, YU Zhenwen, LI Yanqi,et al. Effects of nitrogen application rate on soil inorganic nitrogen distribution, microbial biomass nitrogen content and yield of wheat [J]. Plant Nutr Fert Sci, 2006, 12(4): 466 − 472.
    [25] MASTO R E, CHHONKAR P K, SINGH D,et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol [J]. Soil Biol Biochem, 2006, 38(7): 1577 − 1582. doi:  10.1016/j.soilbio.2005.11.012
    [26] 程曼, 解文艳, 杨振兴, 等. 黄土旱塬长期秸秆还田对土壤养分、酶活性及玉米产量的影响[J]. 中国生态农业学报, 2019, 27(10): 1528 − 1536.

    CHENG Man, XIE Wenyan, YANG Zhenxing,et al. Effects of long-term straw return on corn yield, soil nutrient contents and enzyme activities in dryland of the Loess Plateau, China [J]. Chin J Eco-Agric, 2019, 27(10): 1528 − 1536.
    [27] 高瑞, 吕家珑. 长期定位施肥土壤酶活性及其肥力变化研究[J]. 中国生态农业学报, 2005, 13(1): 143 − 145.

    GAO Rui, LU Jialong. Study on the enzyme activities and fertility change of soils by a long-term located utilization of different fertilizers [J]. ChinJ Eco-Agric, 2005, 13(1): 143 − 145.
    [28] 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4): 406 − 410.

    SUN Ruilian, ZHAO Bingqiang, ZHU Lusheng,et al. Effects of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility [J]. Plant Nutr Fert Sci, 2003, 9(4): 406 − 410.
    [29] 马晓霞, 王莲莲, 黎青慧, 等. 长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响[J]. 生态学报, 2012, 32(17): 5506 − 5509.

    MA Xiaoxia, WANG Lianlian, LI Qinghui,et al. Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season [J]. Acta Ecol Sin, 2012, 32(17): 5506 − 5509.
    [30] 王俊华, 尹睿, 张华勇, 等. 长期定位施肥对农田土壤酶活性及其相关因素的影响[J]. 生态环境, 2007, 16(1): 191 − 196.

    WANG Junhua, YIN Rui, ZHANG Huayong,et al. Changes in soil enzyme activities, microbial biomass, and soil nutrition status in response to fertilization regimes in a long-term field experiment [J]. Ecol Environ, 2007, 16(1): 191 − 196.
    [31] 孙锋, 赵灿灿, 李江涛, 等. 与碳氮循环相关的土壤酶活性对施用氮磷肥的响应[J]. 环境科学学报, 2014, 34(4): 1016 − 1023.

    SUN Feng, ZHAO Cancan, LI Jiangtao,et al. Response of soil enzyme activity related to carbon and nitrogen cycle to application of nitrogen and phosphorus fertilizer [J]. Acta Scientiae Circumstantiae, 2014, 34(4): 1016 − 1023.
    [32] 李东坡, 武志杰, 陈利军, 等. 长期培肥黑土脲酶活性动态变化及其影响因素[J]. 应用生态学报, 2003, 14(12): 2208 − 2212.

    LI Dongpo, WU Zhijie, CHEN Lijun,et al. Dynamics of urease activity in a long-term fertilized black soil and its affecting factors [J]. Chin J Appl Ecol, 2003, 14(12): 2208 − 2212.
    [33] 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥田土壤酶活性的动态变化特征[J]. 生态环境, 2008, 17(5): 2059 − 2063.

    SUN Ruilian, ZHAO Bingqiang, ZHU Lusheng,et al. Dynamic changes of soil enzyme activities in long-term fertilization soil [J].Ecol Environ, 2008, 17(5): 2059 − 2063.
    [34] ZHANG Huimin, XU Minggang, SHI Xiaojun,et al. Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China [J]. Nutr Cycling Agroecosyst, 2010, 88(3): 341 − 349. doi:  10.1007/s10705-010-9359-3
    [35] SAETRE P, STARK J M. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species [J]. Oecologia, 2005, 142(2): 247 − 260. doi:  10.1007/s00442-004-1718-9
    [36] 朱家彪, 杨伟平, 粟卫民. 基于多元逐步回归与通径分析的临澧县建设用地驱动力研究[J]. 经济地理, 2008, 28(3): 488 − 491.

    ZHU Jiabiao, YANG Weiping, SU Weimin. Analysis of the driving influence mechanism of Linli County base on the multiple regression analysis law and the latus rectum analysis [J]. Econ Geogr, 2008, 28(3): 488 − 491.
    [37] 刘晓玲, 宋照亮, 单胜道, 等. 畜禽粪肥施加对嘉兴水稻土总磷、有机磷和有效磷分布的影响[J]. 浙江农林大学学报, 2011, 28(1): 33 − 39.

    LIU Xiaoling, SONG Zhaoliang, SHAN Shengdao,et al. Total soil P, soil organic P, and soil available P with long-term application of pig manure in paddy soils [J]. J Zhejiang A&F Univ, 2011, 28(1): 33 − 39.
    [38] ZORNOZA R, GUERRER C, MATAIX-SOLERA J,et al. Assessing air- drying and rewetting pre- treatment effect on some soil enzyme activities under Mediterranean conditions [J]. Soil Biol Biochem, 2006, 38(8): 2125 − 2134. doi:  10.1016/j.soilbio.2006.01.010
  • [1] 徐传红, 卢明星, 范弟武, 程虎, 韩建刚.  湿地围垦对土壤碱性磷酸酶动力学特征的影响 . 浙江农林大学学报, 2020, 37(3): 522-530. doi: 10.11833/j.issn.2095-0756.20190388
    [2] 蔺芳.  不同栽培模式下豫北沙化土壤的微生物量和酶活性 . 浙江农林大学学报, 2019, 36(3): 590-597. doi: 10.11833/j.issn.2095-0756.2019.03.021
    [3] 姚兰, 张焕朝, 胡立煌, 王艮梅, 方炎明.  黄山不同海拔植被带土壤活性有机碳、氮及其与酶活性的关系 . 浙江农林大学学报, 2019, 36(6): 1069-1076. doi: 10.11833/j.issn.2095-0756.2019.06.003
    [4] 赵艺, 徐华潮, 马艳, 史黎央.  虫酰肼和灭幼脲对锈色粒肩天牛氧化酶和解毒酶活性的影响 . 浙江农林大学学报, 2018, 35(1): 174-177. doi: 10.11833/j.issn.2095-0756.2018.01.023
    [5] 龚臣, 王旭东, 倪幸, 乐天天, 曾诗媛, 叶正钱.  长期菌渣化肥配施对稻田土壤活性有机碳组分和有效养分的影响 . 浙江农林大学学报, 2018, 35(2): 252-260. doi: 10.11833/j.issn.2095-0756.2018.02.008
    [6] 张建云, 吴胜春, 王敏艳, 单胜道, 曹志洪, 张进.  烟秆炭修复重金属污染土壤的效应及对烟草生长的影响 . 浙江农林大学学报, 2018, 35(4): 674-683. doi: 10.11833/j.issn.2095-0756.2018.04.013
    [7] 张洪芹, 臧晓琳, 蔡宙霏, 程路芸, 马元丹, 宝音陶格涛, 张汝民, 高岩.  放牧对冷蒿根际微生物区系及土壤酶活性的影响 . 浙江农林大学学报, 2017, 34(4): 679-686. doi: 10.11833/j.issn.2095-0756.2017.04.014
    [8] 沈泉, 沈颖, 徐秋芳, 王炀波.  外源竹炭对土壤硝酸根离子的吸附效应 . 浙江农林大学学报, 2014, 31(4): 541-546. doi: 10.11833/j.issn.2095-0756.2014.04.008
    [9] 张涛, 李永夫, 姜培坤, 周国模, 刘娟.  土地利用变化影响土壤碳库特征与土壤呼吸研究综述 . 浙江农林大学学报, 2013, 30(3): 428-437. doi: 10.11833/j.issn.2095-0756.2013.03.021
    [10] 梁晶, 方海兰, 郝冠军, 孙倩.  上海城市绿地不同植物群落土壤呼吸及因子分析 . 浙江农林大学学报, 2013, 30(1): 22-31. doi: 10.11833/j.issn.2095-0756.2013.01.004
    [11] 唐洁, 李志辉, 汤玉喜, 吴敏, 李永进, 王胜.  洞庭湖区滩地不同土地利用类型土壤呼吸动态 . 浙江农林大学学报, 2011, 28(3): 439-443. doi: 10.11833/j.issn.2095-0756.2011.03.014
    [12] 徐秋芳, 吴家森, 姜培坤.  板栗林不同除草方式对土壤养分及生物学性质的影响 . 浙江农林大学学报, 2010, 27(5): 659-663. doi: 10.11833/j.issn.2095-0756.2010.05.004
    [13] 刘为华, 张桂莲, 徐飞, 王亚萍, 余雪琴, 王开运.  上海城市森林土壤理化性质 . 浙江农林大学学报, 2009, 26(2): 155-163.
    [14] 徐秋芳, 姜培坤, 陆贻通.  不同施肥对雷竹林土壤微生物功能多样性影响初报 . 浙江农林大学学报, 2008, 25(5): 548-552.
    [15] 姜培坤, 徐秋芳, 邬奇峰, 吴家森.  施肥对板栗林土壤养分和生物学性质的影响 . 浙江农林大学学报, 2007, 24(4): 445-449.
    [16] 周国模, 刘恩斌, 佘光辉.  森林土壤碳库研究方法进展 . 浙江农林大学学报, 2006, 23(2): 207-216.
    [17] 陶树兴.  复混肥料中化肥含量对3种肥料微生物存活率的影响 . 浙江农林大学学报, 2006, 23(5): 507-511.
    [18] 陶树兴, 房薇.  8 种肥料微生物对化肥和农药的敏感性 . 浙江农林大学学报, 2006, 23(1): 80-84.
    [19] 杨芳, 吴家森, 钱新标, 吴丽君.  不同施肥雷竹林土壤微生物量碳的动态变化 . 浙江农林大学学报, 2006, 23(1): 70-74.
    [20] 姜培坤, 徐秋芳, 杨芳.  雷竹土壤水溶性有机碳及其与重金属的关系 . 浙江农林大学学报, 2003, 20(1): 8-11.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200139

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021/1/1

计量
  • 文章访问数:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-09-15

长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应

doi: 10.11833/j.issn.2095-0756.20200139
    基金项目:  国家自然科学基金资助项目(31601271);浙江省自然科学基金资助项目(LY16D010010)
    作者简介:

    陈文博,从事土壤修复及农林废弃物资源化利用研究。E-mail: 310819937@qq.com

    通信作者: 王旭东,副教授,博士,从事土壤肥力与植物营养研究。E-mail: wangxd@zafu.edu.cn
  • 中图分类号: S154

摘要:    目的   探讨长期尺度上不同比例菌渣化肥配施对水稻Oryza saliva生育时期土壤酶活性的影响。   方法   在水稻田间长期定位试验条件下,设置化肥水平为常规施肥量的0%(C0)、50%(C50)、100%(C100),菌渣相对用量0%(F0)、50%(F50)、100%(F100)各3个水平,共9个处理,分析了水稻主要生育时期各处理土壤中过氧化氢酶、蔗糖酶、脲酶活性变化,以及菌渣化肥配施对土壤酶活性的交互效应。   结果   土壤酶活性随水稻生育时期的变化呈现出明显规律性,过氧化氢酶、蔗糖酶、脲酶活性分别为3.01~10.20 mL·g−1、0.20~2.04 mg·g−1、0.54~4.80 mg·g−1;在水稻不同生育期,各处理间对土壤过氧化氢酶、蔗糖酶和脲酶活性具有显著差异(P<0.05)。菌渣化肥配施对水稻移栽前期的土壤脲酶活性提高有促进作用,且增强了水稻灌浆期和收获期的土壤过氧化氢酶和蔗糖酶活性,其中过氧化氢酶活性和脲酶活性在C100F50处理最高,而蔗糖酶活性在C50F100处理最高。通径分析表明:有效磷、碱解氮和全氮分别对过氧化氢酶、蔗糖酶和脲酶影响最大,通径系数分别为0.69、1.80和0.69。菌渣化肥配施主要通过提高碱解氮质量分数促进土壤酶活性。交互性分析表明:菌渣化肥配施效应高于化肥和菌渣单施,并且对土壤过氧化氢酶、蔗糖酶和脲酶活性均有极显著影响(P<0.05)。   结论   菌渣化肥配施能够显著提高土壤过氧化氢酶、蔗糖酶、脲酶活性,并且随施用量增加呈现先增高后降低的趋势;本试验条件下,C100F50处理是提高土壤酶活性和促进碳氮循环的最佳选择。图1表4参38

English Abstract

陈文博, 王旭东, 石思博, 季诗域, 叶正钱, 任泽涛, 刘璋. 长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200139
引用本文: 陈文博, 王旭东, 石思博, 季诗域, 叶正钱, 任泽涛, 刘璋. 长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200139
CHEN Wenbo, WANG Xudong, SHI Sibo, JI Shiyu, YE Zhengqian, REN Zetao, LIU Zhang. Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200139
Citation: CHEN Wenbo, WANG Xudong, SHI Sibo, JI Shiyu, YE Zhengqian, REN Zetao, LIU Zhang. Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200139

返回顶部

目录

    /

    返回文章
    返回