-
土壤酶在土壤生态系统中起着关键作用,是源自于微生物、动植物活体或残体的一类生物活性物质,能够催化土壤中的生物化学反应[1]。土壤酶活性作为反映土壤中各种生物化学过程的方向和强度的指标[2],参与了有机质分解、养分循环等重要机制。其中土壤过氧化氢酶、蔗糖酶、脲酶活性对评价土壤肥力水平有着重要的意义。蔗糖酶又名转化酶,参与土壤中碳水化合物的转化,是土壤碳循环重要的酶类之一;脲酶是唯一对尿素的水解转化具有催化作用的酶,是参与土壤氮循环的重要酶类之一;过氧化氢酶作为一种重要的氧化还原酶,参与土壤中物质循环和能量转换的过程,也对土壤碳循环有一定的促进作用。土壤酶活性受施肥、土壤类型[3]、栽培制度[4-5]和管理措施[6-8]等因素的密切影响,外源有机物料的添加及化肥的施用对土壤酶活性的影响较大。菌渣是一种特殊的有机物料,是在农业生产中最丰富但也容易被忽视的生物质资源。菌渣还田,不仅能保持土壤肥力,同时能达到土地改良的效果。菌渣施入土壤,能提供大量的菌丝残体、纤维素、半纤维素、木质素和矿物质等,同时也是丰富的氨基酸、多糖等营养物质的来源[9]。但因人们对其营养价值认识不足,还田技术仍比较滞后而导致其常被随地丢弃或燃烧,造成了资源的极大浪费。中国目前菌渣利用率仅为33%[10],菌渣不恰当处置导致散发出温室气体和霉菌孢子蔓延等问题,造成生态环境污染[11]。因而研究菌渣化肥配施对稻田土壤酶活性的影响,促进农业废弃物的高效利用,加快农业可持续发展,具有重要的理论和现实意义。已有研究表明:菌渣化肥配施能有效提高土壤pH,增加土壤养分含量[12],达到改土增肥的目的。温广婵等[13]研究表明:配施菌渣有利于土壤有机质和其他速效养分的积累。马嘉伟等[14]研究发现:菌渣化肥配施能有效提高土壤养分,促进生育时期内水稻Oryza sativa生长。龚臣等[15]研究发现:菌渣化肥配施不仅对稻田土壤有机碳组分有显著影响,而且还影响了土壤肥力。石思博等[11]研究发现:菌渣化肥配施对土壤微生物量碳氮、可溶性碳氮和矿化碳含量均有显著影响。综上所述,以往研究多数注重菌渣还田对土壤理化性质和水稻生长的影响,而关于菌渣如何对酶活性产生影响,特别是酶活性如何随着水稻生育时期发生变化,从而影响水稻生长或养分吸收的机制目前还不清楚。在此之前,对菌渣化肥配施对稻田土壤微生物量碳氮、可溶性碳氮和矿化碳含量[16]的影响已有研究,发现菌渣还田对土壤微生物量碳氮、可溶性碳氮和矿化碳含量都有显著的影响,但是要准确揭示土壤有机碳氮的周转和养分循环,还需要对长期菌渣化肥配施后土壤酶活性的变化进行系统研究。
-
试验地点位于浙江省嘉兴市秀洲区王店镇五浪园水稻田(30°37′~30°40′N,120°39′~120°44′E,平均海拔4 m)。该地四季分明,年平均日照2 017.0 h,气候温和,属于东亚季风区,冬夏季风交替显著,常年平均气温为15.9 ℃,年平均降水量1 168.6 mm。长期定位试验始于2010年,供试土壤在定位试验前(2010年)的基本理化性质为:pH 6.80,有机质25.16 g·kg−1,碱解氮94.29 mg·kg−1,有效磷37.01 mg·kg−1,速效钾127.22 mg·kg−1。土壤耕作方式是休耕轮作,土壤质地为粉砂质黏土,其中砂粒、粉粒、黏粒的相对含量分别为29.38%、47.37%和23.25%。供试菌渣选用种植黑木耳Auricularia auricula后的桑Morus alba枝屑物料经发酵后的产物。主要成分为:有机碳451.8 g·kg−1,全氮11.4 g·kg−1,全磷1.0 g·kg−1,全钾6.0 g·kg−1,碳氮比为39.6。菌渣的原料由5个典型成分组成:纤维素、半纤维素、木质素、灰分和蛋白质,质量分数分别为28.21%、20.16%、15.11%、14.83%和14.3%。供试水稻品种为‘甬优1540’‘Yongyou 1540’。
本试验采用双因素随机区组设计,分别设3个化肥施用水平和菌渣还田水平,共9个处理,每个处理重复3次,共27个独立试验小区,单个小区面积为20 m2。施用菌渣量为0、10、20 t·hm−2,分别记为0%(F0对照)、50%(F50)、100%(F100);化肥用量分别为当地常规施肥量的0%(C0)、50%(C50)、100%(C100)。各处理具体见表1。结合当地单季稻-休闲的水稻轮作制度,移栽水稻前将土壤进行翻耕,同时施入不同比例混合的菌渣和化肥(基肥)。常规化肥100%施用量具体如下:基肥施碳酸氢铵(含氮质量分数17%)300 kg·hm−2;分蘖初期(7月23日)追施尿素(含氮质量分数46%)150 kg·hm−2;分蘖盛期(9月4日)追施控释复合肥{[m(氮)∶m(磷)∶m(钾)]=22∶11∶13}225 kg·hm−2。50%化肥处理则减半进行。
表 1 试验处理
Table 1. Experimental treatments
处理 菌渣用量(F)/% 化肥用量(C)/% 处理 菌渣用量(F)/% 化肥用量(C)/% 处理 菌渣用量(F)/% 化肥用量(C)/% C0F0 0 0 C50F0 0 50 C100F0 0 100 C0F50 50 0 C50F50 50 50 C100F50 50 100 C0F100 100 0 C50F100 100 50 C100F100 100 100 -
分别于水稻移栽前2周(2017年6月)、分蘖盛期(2017年9月)、灌浆后期(2017年11月)、收获期(2017年12月)在各个小区0~20 cm土层多点采集土壤。土样在阴凉处风干、磨碎、装袋,以备用于常规土壤理化性质分析;同时取新鲜原状土分析土壤容重,进行土壤酶活性的分析。
土壤pH按土水质量比为1.0∶2.5酸度计测定;有机质采用重铬酸钾外加热法测定;全氮采用半微量开氏法测定;碱解氮采取碱解扩散法测定;有效磷采用氟化铵-盐酸浸提-钼锑抗比色法测定;速效钾采用醋酸铵浸提-火焰光度法测定[17];土壤蔗糖酶、过氧化氢酶、脲酶活性分别采用3,5二硝基水杨酸比色法、高锰酸钾滴定法、靛酚蓝比色法测定。过氧化氢酶活性以每克土消耗0.1 mol·L高锰酸钾毫升数表示,蔗糖酶活性以24 h后每克土葡萄糖的毫克数表示,脲酶活性以24 h后每克土氨氮的毫克数表示[18]。
-
数据处理采用Origin 8.5、SPSS 18.0和R 3.3.3进行统计分析和图像绘制,采用双因素方差分析(two-way ANOVA)和Duncan新复极差法进行差异显著性检验,通径分析采用Excel 2016。
-
由表2可知:水稻不同生育时期各处理中土壤过氧化氢酶活性为3.01~10.20 mL·g−1 ,从高到低依次表现为收获期、分蘖盛期、灌浆后期、移栽前期。不同时期同一处理土壤过氧化氢酶活性呈现出在移栽前上升,至分蘖盛期达到高峰,灌浆后开始下降,收获期则再次升高的变化趋势。在水稻移栽后,大部分处理的土壤过氧化氢酶活性均高于对照(C0F0),其中C100F50处理极显著高于对照(P<0.01)。在分蘖盛期,各处理土壤的过氧化氢酶活性均呈上升趋势,其中C50F100、C100F0、C100F50处理涨幅最明显。到灌浆后期,除C100F100处理的土壤过氧化氢酶活性提高之外,其余处理均呈下降趋势,其中C100F0、C100F50处理降幅比较明显。在化肥施用 C0水平下,菌渣施入量越多,水稻发育前期土壤过氧化氢酶活性也随之越高,但后期差异不显著;在化肥施用 C50水平下,菌渣施入量越多,土壤过氧化氢酶活性随之增加。在菌渣施用F0和 F50水平下,随着化肥施用量的增加,过氧化氢酶活性表现为先升高后降低的趋势。在化肥施用C100和菌渣施用F100的水平下,过氧化氢酶活性随着菌渣化肥施用量的增加,同样表现为先增后减的趋势。单施菌渣和单施化肥以及其两者的交互作用对土壤过氧化氢酶活性在水稻的4个生育时期均有显著(P<0.05)或极显著影响(P<0.01)。在水稻发育的4个时期,单施化肥对土壤过氧化氢酶活性的影响不显著,但是单施菌渣对土壤过氧化氢酶活性均具有显著(P<0.05)或极显著影响(P<0.01)。菌渣与化肥互作效应对土壤过氧化氢酶活性在水稻灌浆后期和收获期有极显著影响(P<0.01)。
表 2 菌渣化肥配施对土壤过氧化氢酶活性的影响和互作效应
Table 2. Effect and interaction of the application of fungal residue and chemical fertilizer on catalase activity in soil
处理 不同生育期过氧化氢酶活性/(mL·g−1) 移栽前期 分蘖盛期 灌浆后期 收获期 C0F0 3.57±0.46 abc 5.87±0.57 bc 5.63±1.26 bc 6.62±1.78 b C0F50 3.95±0.34 ab 6.47±0.67 bc 5.82±0.84 abc 8.33±2.39 ab C0F100 3.79±0.24 abc 6.42±0.33 bc 5.80±0.79 abc 8.90±2.67 ab C50F0 3.20±0.27 bc 5.73±0.35 c 5.00±0.80 c 8.81±1.69 ab C50F50 3.88±0.10 ab 6.52±0.71 b 6.30±0.40 abc 9.06±1.01 ab C50F100 4.19±0.26 a 6.88±0.28 b 6.79±0.19 ab 9.95±1.45 a C100F0 3.01±0.22 c 6.30±0.79 bc 5.03±0.19 c 8.40±1.11 ab C100F50 4.32±0.41 a 8.19±0.50 a 7.11±0.57 a 10.20±0.87 a C100F100 4.08±0.10 a 6.56±0.32 b 6.69±0.97 ab 9.18±0.76 ab C ns ns ns ns F ** ** * ** C×F * ns ** ** 说明:*表示显著影响(P<0.05),**表示极显著影响(P<0.01),ns表示影响不显著。C. 化肥;F. 菌渣;C×F. 菌渣化肥配施;n=27。不同 小写字母表示不同处理差异显著(P<0.05) -
从表3可以看出:水稻不同生育时期各处理中土壤蔗糖酶活性为0.20~2.04 mg·g−1,从高到低依次表现为灌浆后期、分蘖盛期、收获期、移栽前期。在水稻整个生育期,各处理的土壤蔗糖酶活性呈现出先升高后降低的趋势。在水稻移栽后,大部分处理的土壤蔗糖酶活性均高于对照处理(C0F0),其中C50F100处理显著高于对照处理(P<0.05)。在灌浆后期,各处理土壤的蔗糖酶活性均呈上升趋势,其中C50F100、C100F50、C100F100处理涨幅最明显。到收获期,各处理的土壤蔗糖酶活性显著降低,其中处理C50F50、C50F100降幅最大,并且C50F100处理的土壤蔗糖酶活性最大。在化肥施用 C0水平下,随菌渣施入量增加,土壤蔗糖酶活性前期随之降低,但到后期又逐渐升高,但差异并不显著;在化肥施用 C50水平下,除移栽前期之外,其他3个时期土壤蔗糖酶活性都随菌渣施入量的增加而增加。在化肥施用C100和菌渣施用F100的水平下,水稻生育前期,随着菌渣化肥施用量的增加,土壤中蔗糖酶活性随之增加,但水稻发育后期却逐渐下降。单施菌渣和单施化肥以及其两者的交互作用对土壤蔗糖酶活性在水稻的4个生育时期均有显著(P<0.05)或极显著(P<0.01)影响。在水稻发育的4个时期,单施化肥对土壤蔗糖酶活性均具有显著影响(P<0.05),但单施菌渣对土壤蔗糖酶活性影响不显著。菌渣与化肥互作效应对土壤蔗糖酶活性在水稻移栽前期和收获期有极显著影响(P<0.01)。
表 3 菌渣化肥配施对土壤蔗糖酶活性的影响和互作效应
Table 3. Effect and interaction of the application of fungal residue and chemical fertilizer on soil invertase activity
处理 不同生育期蔗糖酶活性/(mg·g−1) 移栽前期 分蘖盛期 灌浆后期 收获期 C0F0 0.20±0.03 b 1.38±0.13 ab 1.40±0.09 b 0.94±0.03 b C0F50 0.24±0.05 ab 1.21±0.39 b 1.42±0.08 ab 0.95±0.06 b C0F100 0.23±0.07 ab 1.36±0.01 ab 1.46±0.28 ab 0.97±0.14 b C50F0 0.31±0.05 ab 1.39±0.06 ab 1.44±0.60 ab 0.96±0.16 b C50F50 0.27±0.07 ab 1.42±0.23 ab 1.66±0.09 ab 0.98±0.12 ab C50F100 0.33±0.08 a 1.92±0.68 ab 2.04±0.33 ab 1.38±0.27 a C100F0 0.22±0.04 ab 1.41±0.14 ab 1.66±0.29 ab 0.97±0.08 b C100F50 0.31±0.05 ab 1.73±0.18 a 1.75±0.36 a 1.18±0.27 ab C100F100 0.29±0.07 ab 1.58±0.07 ab 1.69±0.13 ab 1.04±0.11 ab C * * * * F ns ns ns ns C×F ** * ** ** 说明:*表示显著影响(P<0.05),**表示极显著影响(P<0.01),ns表示影响不显著。C. 化肥;F. 菌渣;C×F. 菌渣化肥配施;n=27。不同 小写字母表示不同处理在 P<0.05 水平差异显著 -
由表4可知:水稻不同生育时期各处理中土壤脲酶活性为 0.54~4.80 mg·g−1。与移栽前期相比,水稻土在分蘖盛期、灌浆后期、收获期各处理的脲酶活性规律比较相似,差异不显著。除C0F0、C50F50、C0F100处理外,其他处理的土壤脲酶活性从移栽前至分蘖盛期呈持续下降趋势,到了灌浆后期开始上升,上升趋势持续至收获期。在水稻移栽后,大部分处理的土壤脲酶活性均高于对照(C0F0),并在移栽前期,各处理的土壤脲酶活性极显著高于对照(P<0.01),其中以C100F50处理最大。各处理的土壤脲酶活性在移栽前期之后均有所下降,在分蘖盛期最小,其中C50F100、C100F50、C100F100处理降幅最明显。在化肥施用C0水平下,菌渣施入量多,土壤中脲酶活性差异不显著。在化肥施用C50水平下,随着菌渣施入量增多,土壤脲酶活性从移栽前开始下降,到收获期又开始回升。在化肥施用C100和菌渣施用F100的水平下,土壤中脲酶活性随着菌渣和化肥施用量的增加,在不同时期均表现出先增加后减少的趋势。单施菌渣和单施化肥以及两者的交互作用对土壤脲酶活性在水稻的4个生育时期均有显著(P<0.05)或极显著(P<0.01)影响。在水稻的4个生育时期,单施化肥对土壤脲酶活性均具有显著(P<0.05)或极显著(P<0.01)影响,并且单施菌渣对土壤脲酶活性也均具有极显著(P<0.01)影响。除了灌浆后期之外,菌渣化肥配施对土壤脲酶活性在其他3个时期都有显著(P<0.05)或极显著(P<0.01)影响。在水稻发育前中期,菌渣化肥配施对土壤脲酶活性的互作效应高于蔗糖酶和过氧化氢酶。
表 4 菌渣化肥配施对土壤脲酶活性的影响和互作效应
Table 4. Effect and interaction of the application of fungal residue and chemical fertilizer on soil urease activity
处理 不同生育期脲酶活性/(mg·g−1) 移栽前期 分蘖盛期 灌浆后期 收获期 C0F0 0.58±0.07 g 1.10±0.03 ab 1.45±0.48 ab 0.96±0.12 b C0F50 2.67±1.16 d 0.72±0.38 c 1.10±0.38 ab 1.36±0.33 ab C0F100 1.15±0.66 ef 1.13±0.25 ab 1.31±0.40 ab 1.04±0.37 b C50F0 0.86±1.13 fg 0.74±0.25 c 0.91±0.26 b 1.06±0.49 b C50F50 1.34±0.82 e 1.09±0.15 ab 1.25±0.53 ab 1.39±0.14 ab C50F100 4.24±1.19 b 1.27±0.11 a 1.48±0.03 ab 1.71±0.12 a C100F0 3.56±1.98 c 0.89±0.36 b 1.17±0.36 ab 1.08±0.07 b C100F50 4.59±3.25 a 1.36±0.53 a 1.74±0.53 a 1.78±0.06 a C100F100 3.98±1.73 bc 1.15±0.60 ab 1.27±0.50 ab 1.72±0.10 a C ** * * ** F ** ** ** ** C×F ** ** * ** 说明:*表示显著影响(P<0.05),**表示极显著影响(P<0.01),ns表示影响不显著。C. 化肥;F. 菌渣;C×F. 菌渣化肥配施;n=27。不同 小写字母表示不同处理在 P<0.05 水平差异显著 -
从图1A可以看出:菌渣化肥配施对各理化因子的间接通径系数,除土壤有机碳、全氮、有效磷为负值外,其他均为正值。碱解氮对配施效应最大(1.00),其次是pH(0.17)。速效钾较低(0.07)。各因素对配施效应的间接效益(绝对值)大小顺序依次为碱解氮、全氮、有机碳、pH、有效磷、速效钾。蔗糖酶对各理化因子的直接通径系数,除有机碳、全氮、有效磷为负值,其他均为正值,碱解氮对蔗糖酶活性效应最大(1.80),其次是速效钾(0.52),pH较低(0.49)。各因素对蔗糖酶活性的直接效益(绝对值)大小顺序依次为碱解氮、全氮、有机碳、速效钾、pH、有效磷。
图 1 不同土壤理化因子与土壤酶的通径分析
Figure 1. Path analysis of different soil physical and chemical factors and soil enzyme
图1B表明:菌渣化肥配施对各理化因子的间接通径系数,除速效钾为负值外,其余均为正值。有效磷对配施效应最大(0.30),其次是全氮(0.24),有机碳最低(0.03)。各因素对配施效应的间接效益(绝对值)大小顺序依次为有效磷、全氮、碱解氮、pH、有机碳、速效钾。过氧化氢酶对各理化因子的直接通径系数,除pH为负值外,其余均为正值,有效磷对过氧化氢酶活性效应最大(0.69),其次是全氮(0.17)和碱解氮(0.17),速效钾较低(0.05)。各因素对过氧化氢酶活性的直接效益(绝对值)大小顺序依次为有效磷、pH、全氮和碱解氮、有机碳、速效钾。
由图1C可知:菌渣化肥配施对各理化因子的间接通径系数,除pH为负值外,其余均为正值,有效磷对配施效应最大(0.38),其次是全氮(0.09),速效钾较低(0.01)。各因素对配施效应的间接效益(绝对值)大小顺序依次为有效磷、pH、碱解氮、全氮、有机碳、速效钾。脲酶对各理化因子的直接通径系数,除速效钾为负值外,其他均为正值,全氮对脲酶活性效应最大(0.56),其次是有效磷(0.54),有机碳较低。各因素对脲酶活性的直接效益(绝对值)大小顺序依次为全氮、有效磷、速效钾、pH和碱解氮、有机碳。
Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field
-
摘要:
目的 探讨长期尺度上不同比例菌渣化肥配施对水稻Oryza sativa生育时期土壤酶活性的影响。 方法 在水稻田间长期定位试验条件下,设置化肥水平为常规施肥量的0%(C0)、50%(C50)、100%(C100),菌渣相对用量0%(F0)、50%(F50)、100%(F100)各3个水平,共9个处理,分析了水稻主要生育时期各处理土壤中过氧化氢酶、蔗糖酶、脲酶活性变化,以及菌渣化肥配施对土壤酶活性的交互效应。 结果 土壤酶活性随水稻生育时期的变化呈现出明显规律性,过氧化氢酶、蔗糖酶、脲酶活性分别为3.01~10.20 mL·g−1、0.20~2.04 mg·g−1、0.54~4.80 mg·g−1;在水稻不同生育期,各处理间土壤过氧化氢酶、蔗糖酶和脲酶活性具有显著差异(P<0.05)。菌渣化肥配施对水稻移栽前期的土壤脲酶活性提高有促进作用,且增强了水稻灌浆期和收获期的土壤过氧化氢酶和蔗糖酶活性,其中过氧化氢酶活性和脲酶活性在C100F50处理最高,而蔗糖酶活性在C50F100处理最高。通径分析表明:有效磷、碱解氮和全氮分别对过氧化氢酶、蔗糖酶和脲酶影响最大,通径系数分别为0.69、1.80和0.69。菌渣化肥配施主要通过提高碱解氮质量分数促进土壤酶活性。交互性分析表明:菌渣化肥配施效应高于化肥和菌渣单施,并且对土壤过氧化氢酶、蔗糖酶和脲酶活性均有显著影响(P<0.05)。 结论 菌渣化肥配施能够显著提高土壤过氧化氢酶、蔗糖酶、脲酶活性,并且随施用量增加呈现先增高后降低的趋势;本试验条件下,C100F50处理是提高土壤酶活性和促进碳氮循环的最佳选择。图1表4参38 Abstract:Objective The purpose of this study is to explore the effects of different proportions of fungus residue and chemical fertilizer on soil enzyme activities during the rice growth period over a long-term scale. Method A long-term location experiment in paddy field was carried out in which the fertilizer levels were set as 0% (C0), 50% (C50) and 100% (C100) of conventional fertilization amount, and the relative amount of edible fungus residue was set as 0% (F0), 50% (F50) and 100% (F100), respectively. There were 9 treatments in total. The changes of catalase, sucrase and urease activities in different treatments at the main growth stages of rice and the interaction effect of fungus residue and chemical fertilizer on soil enzyme activities were analyzed. Result The soil enzyme activities showed obvious regularity with the change of rice growth period. The catalase, sucrase, and urease activities were 3.01−10.20 mL·g−1, 0.20−2.04 mg·g−1, and 0.54−4.80 mg·g−1 respectively. There were significant differences (P<0.05) in soil catalase, sucrase and urease among the treatments in different growth stages of rice. The results showed that the combined application of fungus residue and chemical fertilizer promoted the soil urease activity in the early stage of rice transplanting, and enhanced the activities of catalase and sucrase in the filling stage and harvest stage. The activities of catalase and urease were the highest in C100F50 treatment, while the sucrase activity was the highest in C50F100 treatment. Path analysis showed that available phosphorus, alkali hydrolyzed nitrogen and total nitrogen had the greatest impact on catalase, sucrase and urease respectively, with path coefficients of 0.69, 1.80, 0.69 respectively. The combined application of fungus residue and chemical fertilizer promoted soil enzyme activity mainly by increasing the mass fraction of alkali hydrolyzed nitrogen. Interaction analysis showed that the effect of combined application of fungus residue and chemical fertilizer was higher than that of chemical fertilizer and fungal residue alone, and the activities of catalase, sucrase and urease in soil were significantly affected (P<0.05). Conclusion The combined application of fungus residue and chemical fertilizer can significantly increase the activities of soil catalase, sucrase and urease, but with the increase of application amount, the activity of soil catalase, sucrase and urease increases first and then decreases. C100F50 treatment is the optimal choice to improve soil enzyme activity and promote carbon and nitrogen cycle under the experimental condition. [Ch, 1 fig. 4 tab. 38 ref.] -
Key words:
- fungus residue /
- chemical fertilizer /
- enzyme activity /
- interaction effect /
- paddy soil
-
表 1 试验处理
Table 1. Experimental treatments
处理 菌渣用量(F)/% 化肥用量(C)/% 处理 菌渣用量(F)/% 化肥用量(C)/% 处理 菌渣用量(F)/% 化肥用量(C)/% C0F0 0 0 C50F0 0 50 C100F0 0 100 C0F50 50 0 C50F50 50 50 C100F50 50 100 C0F100 100 0 C50F100 100 50 C100F100 100 100 表 2 菌渣化肥配施对土壤过氧化氢酶活性的影响和互作效应
Table 2. Effect and interaction of the application of fungal residue and chemical fertilizer on catalase activity in soil
处理 不同生育期过氧化氢酶活性/(mL·g−1) 移栽前期 分蘖盛期 灌浆后期 收获期 C0F0 3.57±0.46 abc 5.87±0.57 bc 5.63±1.26 bc 6.62±1.78 b C0F50 3.95±0.34 ab 6.47±0.67 bc 5.82±0.84 abc 8.33±2.39 ab C0F100 3.79±0.24 abc 6.42±0.33 bc 5.80±0.79 abc 8.90±2.67 ab C50F0 3.20±0.27 bc 5.73±0.35 c 5.00±0.80 c 8.81±1.69 ab C50F50 3.88±0.10 ab 6.52±0.71 b 6.30±0.40 abc 9.06±1.01 ab C50F100 4.19±0.26 a 6.88±0.28 b 6.79±0.19 ab 9.95±1.45 a C100F0 3.01±0.22 c 6.30±0.79 bc 5.03±0.19 c 8.40±1.11 ab C100F50 4.32±0.41 a 8.19±0.50 a 7.11±0.57 a 10.20±0.87 a C100F100 4.08±0.10 a 6.56±0.32 b 6.69±0.97 ab 9.18±0.76 ab C ns ns ns ns F ** ** * ** C×F * ns ** ** 说明:*表示显著影响(P<0.05),**表示极显著影响(P<0.01),ns表示影响不显著。C. 化肥;F. 菌渣;C×F. 菌渣化肥配施;n=27。不同 小写字母表示不同处理差异显著(P<0.05) 表 3 菌渣化肥配施对土壤蔗糖酶活性的影响和互作效应
Table 3. Effect and interaction of the application of fungal residue and chemical fertilizer on soil invertase activity
处理 不同生育期蔗糖酶活性/(mg·g−1) 移栽前期 分蘖盛期 灌浆后期 收获期 C0F0 0.20±0.03 b 1.38±0.13 ab 1.40±0.09 b 0.94±0.03 b C0F50 0.24±0.05 ab 1.21±0.39 b 1.42±0.08 ab 0.95±0.06 b C0F100 0.23±0.07 ab 1.36±0.01 ab 1.46±0.28 ab 0.97±0.14 b C50F0 0.31±0.05 ab 1.39±0.06 ab 1.44±0.60 ab 0.96±0.16 b C50F50 0.27±0.07 ab 1.42±0.23 ab 1.66±0.09 ab 0.98±0.12 ab C50F100 0.33±0.08 a 1.92±0.68 ab 2.04±0.33 ab 1.38±0.27 a C100F0 0.22±0.04 ab 1.41±0.14 ab 1.66±0.29 ab 0.97±0.08 b C100F50 0.31±0.05 ab 1.73±0.18 a 1.75±0.36 a 1.18±0.27 ab C100F100 0.29±0.07 ab 1.58±0.07 ab 1.69±0.13 ab 1.04±0.11 ab C * * * * F ns ns ns ns C×F ** * ** ** 说明:*表示显著影响(P<0.05),**表示极显著影响(P<0.01),ns表示影响不显著。C. 化肥;F. 菌渣;C×F. 菌渣化肥配施;n=27。不同 小写字母表示不同处理在 P<0.05 水平差异显著 表 4 菌渣化肥配施对土壤脲酶活性的影响和互作效应
Table 4. Effect and interaction of the application of fungal residue and chemical fertilizer on soil urease activity
处理 不同生育期脲酶活性/(mg·g−1) 移栽前期 分蘖盛期 灌浆后期 收获期 C0F0 0.58±0.07 g 1.10±0.03 ab 1.45±0.48 ab 0.96±0.12 b C0F50 2.67±1.16 d 0.72±0.38 c 1.10±0.38 ab 1.36±0.33 ab C0F100 1.15±0.66 ef 1.13±0.25 ab 1.31±0.40 ab 1.04±0.37 b C50F0 0.86±1.13 fg 0.74±0.25 c 0.91±0.26 b 1.06±0.49 b C50F50 1.34±0.82 e 1.09±0.15 ab 1.25±0.53 ab 1.39±0.14 ab C50F100 4.24±1.19 b 1.27±0.11 a 1.48±0.03 ab 1.71±0.12 a C100F0 3.56±1.98 c 0.89±0.36 b 1.17±0.36 ab 1.08±0.07 b C100F50 4.59±3.25 a 1.36±0.53 a 1.74±0.53 a 1.78±0.06 a C100F100 3.98±1.73 bc 1.15±0.60 ab 1.27±0.50 ab 1.72±0.10 a C ** * * ** F ** ** ** ** C×F ** ** * ** 说明:*表示显著影响(P<0.05),**表示极显著影响(P<0.01),ns表示影响不显著。C. 化肥;F. 菌渣;C×F. 菌渣化肥配施;n=27。不同 小写字母表示不同处理在 P<0.05 水平差异显著 -
[1] 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9(1): 105 − 107. CAO Hui, SUN Hui, YANG Hao, et al. A review: soil enzyme activity and its indication for soil quality [J]. Chin J Appl Environ Biol, 2003, 9(1): 105 − 107. [2] 王文峰, 李春花, 黄绍文, 等. 不同施肥模式对设施菜田土壤酶活性的影响[J]. 应用生态学报, 2016, 27(3): 873 − 874. WANG Wenfeng, LI Chunhua, HUANG Shaowen, et al. Effects of different fertilization patterns on soil enzyme activities in greenhouse vegetable field [J]. Chin J Appl Ecol, 2016, 27(3): 873 − 874. [3] 李用芳. 食用菌菌渣的再利用[J]. 生物学通报, 2001, 36(3): 44 − 45. LI Yongfang. Reuse of edible fungi residue [J]. Biol Bull, 2001, 36(3): 44 − 45. [4] RAO M A, VIOLANTE A, GIANFREDA L. Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability [J]. Soil Biol Biochem, 2000, 32(7): 1007 − 1014. [5] 徐忠山, 刘景辉, 逯晓萍, 等. 秸秆颗粒还田对黑土土壤酶活性及细菌群落的影响[J]. 生态学报, 2019, 39(12): 4347 − 4355. XU Zhongshan, LIU Jinghui, LU Xiaoping, et al. Effects of returning granulated corn stover on soil enzyme activities and bacterial community in black soil [J]. Acta Ecol Sin, 2019, 39(12): 4347 − 4355. [6] 吴凤芝, 孟立君, 王学征. 设施蔬菜轮作和连作土壤酶活性的研究[J]. 植物营养与肥料学报, 2006, 12(4): 554 − 558. WU Fengzhi, MENG Lijun, WANG Xuezheng. Soil enzyme activities in vegetable rotation and continuous cropping system of under shed protection [J]. Plant Nutr Fert Sci, 2006, 12(4): 554 − 558. [7] 陈丹梅, 段玉琪, 杨宇虹, 等. 轮作模式对植烟土壤酶活性及真菌群落的影响[J]. 生态学报, 2016, 36(8): 2373 − 2381. CHEN Danmei, DUAN Yuqi, YANG Yuhong, et al. Influence of crop rotation on enzyme activities and fungal communities in flue-cured tobacco soil [J]. Acta Ecol Sin, 2016, 36(8): 2373 − 2381. [8] 熊湖, 郑顺林, 龚静, 等. 液态有机肥对酚酸胁迫下马铃薯生长发育和土壤酶活性影响[J]. 水土保持学报, 2019, 33(3): 254 − 259, 267. XIONG Hu, ZHENG Shunlin, GONG Jing, et al. Effects of liquid organic fertilizer on potato growth and soil enzyme activities under phenolic acid stress [J]. J Soil Water Conserv, 2019, 33(3): 254 − 259, 267. [9] 邱莉萍, 刘军, 王益权, 等. 土壤酶活性与土壤肥力的关系研究[J]. 植物营养与肥料学报, 2004, 10(3): 277 − 280. QIU Liping, LIU Jun, WANG Yiquan, et al. Research on relationship between soil enzyme activities and soil fertility [J]. Plant Nutr Fert Sci, 2004, 10(3): 277 − 280. [10] 范文丽, 王升厚, 赵英明. 施用杏鲍菇菌糠对土壤主要养分含量及番茄品质的影响[J]. 辽宁农业科学, 2013(3): 84 − 85. FAN Wenli, WANG Shenghou, ZHAO Yingming. Effects of mushroom chaff of Pleurotus eryngii on the content of main nutrients in soil and tomato quality [J]. Liaoning Agric Sci, 2013(3): 84 − 85. [11] 石思博, 王旭东, 叶正钱, 等. 菌渣化肥配施对稻田土壤微生物量碳氮和可溶性碳氮的影响[J]. 生态学报, 2018, 38(23): 8612 − 8615. SHI Sibo, WANG Xudong, YE Zhengqian, et al. Effects of the combination of fungal residue and chemical fertilizer on soil microbial biomass carbon and nitrogen and dissolved organic carbon and nitrogen in paddy soil [J]. Acta Ecol Sin, 2018, 38(23): 8612 − 8615. [12] 胡杨勇, 马嘉伟, 叶正钱, 等. 稻耳轮作制度下连续菌渣还田对土壤肥力性状的影响[J]. 水土保持学报, 2013, 27(6): 172 − 176. HU Yangyong, MA Jiawei, YE Zhengqian, et al. Effects of continuous application of edible fungus residue on soil fertility properties under rice-edible fungus rotation system [J]. J Soil Water Conserv, 2013, 27(6): 172 − 176. [13] 温广蝉, 叶正钱, 王旭东, 等. 菌渣还田对稻田土壤养分动态变化的影响[J]. 水土保持学报, 2012, 26(3): 82 − 86. WEN Guangchan, YE Zhengqian, WANG Xudong, et al. Effects of edible fungus residue on dynamic changes of soil nutrients in paddy field [J]. J Soil Water Conserv, 2012, 26(3): 82 − 86. [14] 马嘉伟, 叶正钱, 王旭东, 等. 菌渣化肥配施对红壤养分动态变化及水稻生长的影响[J]. 浙江农业学报, 2013, 25(1): 147 − 151. MA Jiawei, YE Zhengqian, WANG Xudong, et al. Effect of edible fungus residue on dynamic changes of red soil nutrients and rice yield [J]. Acta Agric Zhejiang, 2013, 25(1): 147 − 151. [15] 龚臣, 叶正钱, 王旭东, 等. 长期菌渣化肥配施对稻田土壤活性有机碳组分和有效养分的影响[J]. 浙江农林大学学报, 2018, 35(2): 252 − 260. GONG Chen, YE Zhengqian, WANG Xudong, et al. Effects of long-term application of edible fungus residue and chemical fertilizers on fractions of labile organic carbon and available nutrients in rice field soils [J]. J Zhejiang A&F Univ, 2018, 35(2): 252 − 260. [16] SHI Sibo, WANG Xudong, YE Zhengqian, et al. Effect of the combined application of fungal residue and chemical fertilizers on the mineralization of soil organic carbon in paddy fields [J]. Environ Sci Pollut Res, 2019, 26(23): 23292 − 23304. [17] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 25−114. [18] 关松荫. 土壤酶及其研究方法[M]. 北京: 农业出版社, 1986: 274−313. [19] 魏猛, 诸葛玉平, 娄燕宏, 等. 施肥对文冠果生长及土壤酶活性的影响[J]. 水土保持学报, 2010, 24(2): 237 − 240. WEI Meng, ZHUGE Yuping, LOU Yanhong, et al. Effects of fertilization on Xanthoceras sorbifolia Bunge growth and soil enzyme activities [J]. J Soil Water Conserv, 2010, 24(2): 237 − 240. [20] 陈闯, 吴景贵, 杨子仪, 等. 不同有机肥及其混施对黑土酶活性动态变化的影响[J]. 水土保持学报, 2014, 28(6): 245 − 250. CHEN Chuang, WU Jinggui, YANG Ziyi, et al. Effects of different manures and their mixed application on the dynamic changes of soil enzymes activity for black soil [J]. J Soil Water Conserv, 2014, 28(6): 245 − 250. [21] 王冬梅, 王春枝, 韩晓日, 等. 长期施肥对棕壤主要酶活性的影响[J]. 土壤通报, 2006, 37(2): 263 − 267. WANG Dongmei, WANG Chunzhi, HAN Xiaori, et al. Effects of long-term application of fertilizers on some enzymatic activities in brunisolic soil [J]. Chin J Soil Sci, 2006, 37(2): 263 − 267. [22] 马宁宁, 李天来, 武春成, 等. 长期施肥对设施菜田土壤酶活性及土壤理化性状的影响[J]. 应用生态学报, 2010, 21(7): 1766 − 1771. MA Ningning, LI Tianlai, WU Chuncheng, et al. Effects of long-term fertilization on soil enzyme activities and soil physicochemical properties of facility vegetable field [J]. Chin J Appl Ecol, 2010, 21(7): 1766 − 1771. [23] 刘建国, 卞新民, 李彦斌, 等. 长期连作和秸秆还田对棉田土壤生物活性的影响[J]. 应用生态学报, 2008, 19(5): 1027 − 1032. LIU Jianguo, BIAN Xinmin, LI Yanbin, et al. Effects of long-term continuous cropping of cotton and returning cotton stalk into field on soil biological activities [J]. Chin J Appl Ecol, 2008, 19(5): 1027 − 1032. [24] 赵俊晔, 于振文, 李延奇, 等. 施氮量对土壤无机氮分布和微生物量氮含量及小麦产量的影响[J]. 植物营养与肥料学报, 2006, 12(4): 466 − 472. ZHAO Junye, YU Zhenwen, LI Yanqi, et al. Effects of nitrogen application rate on soil inorganic nitrogen distribution, microbial biomass nitrogen content and yield of wheat [J]. Plant Nutr Fert Sci, 2006, 12(4): 466 − 472. [25] MASTO R E, CHHONKAR P K, SINGH D, et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol [J]. Soil Biol Biochem, 2006, 38(7): 1577 − 1582. [26] 程曼, 解文艳, 杨振兴, 等. 黄土旱塬长期秸秆还田对土壤养分、酶活性及玉米产量的影响[J]. 中国生态农业学报, 2019, 27(10): 1528 − 1536. CHENG Man, XIE Wenyan, YANG Zhenxing, et al. Effects of long-term straw return on corn yield, soil nutrient contents and enzyme activities in dryland of the Loess Plateau, China [J]. Chin J Eco-Agric, 2019, 27(10): 1528 − 1536. [27] 高瑞, 吕家珑. 长期定位施肥土壤酶活性及其肥力变化研究[J]. 中国生态农业学报, 2005, 13(1): 143 − 145. GAO Rui, LÜ Jialong. Study on the enzyme activities and fertility change of soils by a long-term located utilization of different fertilizers [J]. Chin J Eco-Agric, 2005, 13(1): 143 − 145. [28] 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4): 406 − 410. SUN Ruilian, ZHAO Bingqiang, ZHU Lusheng, et al. Effects of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility [J]. Plant Nutr Fert Sci, 2003, 9(4): 406 − 410. [29] 马晓霞, 王莲莲, 黎青慧, 等. 长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响[J]. 生态学报, 2012, 32(17): 5506 − 5509. MA Xiaoxia, WANG Lianlian, LI Qinghui, et al. Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season [J]. Acta Ecol Sin, 2012, 32(17): 5506 − 5509. [30] 王俊华, 尹睿, 张华勇, 等. 长期定位施肥对农田土壤酶活性及其相关因素的影响[J]. 生态环境, 2007, 16(1): 191 − 196. WANG Junhua, YIN Rui, ZHANG Huayong, et al. Changes in soil enzyme activities, microbial biomass, and soil nutrition status in response to fertilization regimes in a long-term field experiment [J]. Ecol Environ, 2007, 16(1): 191 − 196. [31] 孙锋, 赵灿灿, 李江涛, 等. 与碳氮循环相关的土壤酶活性对施用氮磷肥的响应[J]. 环境科学学报, 2014, 34(4): 1016 − 1023. SUN Feng, ZHAO Cancan, LI Jiangtao, et al. Response of soil enzyme activity related to carbon and nitrogen cycle to application of nitrogen and phosphorus fertilizer [J]. Acta Sci Circumstantiae, 2014, 34(4): 1016 − 1023. [32] 李东坡, 武志杰, 陈利军, 等. 长期培肥黑土脲酶活性动态变化及其影响因素[J]. 应用生态学报, 2003, 14(12): 2208 − 2212. LI Dongpo, WU Zhijie, CHEN Lijun, et al. Dynamics of urease activity in a long-term fertilized black soil and its affecting factors [J]. Chin J Appl Ecol, 2003, 14(12): 2208 − 2212. [33] 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥田土壤酶活性的动态变化特征[J]. 生态环境, 2008, 17(5): 2059 − 2063. SUN Ruilian, ZHAO Bingqiang, ZHU Lusheng, et al. Dynamic changes of soil enzyme activities in long-term fertilization soil [J]. Ecol Environ, 2008, 17(5): 2059 − 2063. [34] ZHANG Huimin, XU Minggang, SHI Xiaojun, et al. Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China [J]. Nutr Cycling Agroecosyst, 2010, 88(3): 341 − 349. [35] SAETRE P, STARK J M. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species [J]. Oecologia, 2005, 142(2): 247 − 260. [36] 朱家彪, 杨伟平, 粟卫民. 基于多元逐步回归与通径分析的临澧县建设用地驱动力研究[J]. 经济地理, 2008, 28(3): 488 − 491. ZHU Jiabiao, YANG Weiping, SU Weimin. Analysis of the driving influence mechanism of Linli County base on the multiple regression analysis law and the latus rectum analysis [J]. Econ Geogr, 2008, 28(3): 488 − 491. [37] 刘晓玲, 宋照亮, 单胜道, 等. 畜禽粪肥施加对嘉兴水稻土总磷、有机磷和有效磷分布的影响[J]. 浙江农林大学学报, 2011, 28(1): 33 − 39. LIU Xiaoling, SONG Zhaoliang, SHAN Shengdao, et al. Total soil P, soil organic P, and soil available P with long-term application of pig manure in paddy soils [J]. J Zhejiang A&F Univ, 2011, 28(1): 33 − 39. [38] ZORNOZA R, GUERRER C, MATAIX-SOLERA J, et al. Assessing air- drying and rewetting pre- treatment effect on some soil enzyme activities under Mediterranean conditions [J]. Soil Biol Biochem, 2006, 38(8): 2125 − 2134. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200139