留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生态位因子模型的湖北省松材线虫病风险评估

沈鹏 李功权

沈鹏, 李功权. 基于生态位因子模型的湖北省松材线虫病风险评估[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200365
引用本文: 沈鹏, 李功权. 基于生态位因子模型的湖北省松材线虫病风险评估[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200365
SHEN Peng, LI Gongquan. Risk assessment of Bursaphelenchus xylophilus in Hubei Province based on ecological niche factor analysis model[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200365
Citation: SHEN Peng, LI Gongquan. Risk assessment of Bursaphelenchus xylophilus in Hubei Province based on ecological niche factor analysis model[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200365

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

基于生态位因子模型的湖北省松材线虫病风险评估

doi: 10.11833/j.issn.2095-0756.20200365
详细信息
    作者简介: 沈鹏(ORCID: 0000-0003-2250-7155),从事地理信息系统应用与开发研究。E-mail: 614650173@qq.com
    通信作者: 李功权(ORCID: 0000-0003-2933-0110),副教授,博士,从事时空大数据分析及挖掘工作等研究。E-mail: 195648169@qq.com
  • 中图分类号: S763.3

Risk assessment of Bursaphelenchus xylophilus in Hubei Province based on ecological niche factor analysis model

  • 摘要:   目的   当前湖北省松材线虫Bursaphelenchus xylophilus疫情形势严峻。通过研究湖北省松材线虫病的入侵风险,分析松材线虫病在湖北省的危害程度,为当前疫情的防治工作提供建议和参考。   方法   结合“3S”技术,应用生态位因子模型(ENFA),选取影响松材线虫定殖和传播的4类影响因素(气候、植被、地形、人类活动),对松材线虫病在湖北的入侵风险进行了预测和评价。   结果   湖北省松材线虫病高风险区面积38 884.62 km2,占湖北省总面积的20.92%,高风险区主要集中于海拔较低,人类活动频繁的的中部和东部地区,中风险区面积66 501.84 km2,占总面积的35.77%,低风险区面积80 513.54 km2,占总面积的43.31%,中低风险地区主要分布在林地稀少的江汉平原和西部的高海拔山地。松材线虫偏好分布在温度较高,降水丰富,海拔较低,离人类居住点较近且人类活动频繁的针叶林地区。通过交叉验证(cross-validation)对模型的预测进行检验,得到P/E曲线,曲线呈单调递增且Boyce指数很高,说明模型精度很高。   结论   ENFA模型能很好模拟松材线虫病的风险区域,模型结果可为湖北省各县市的松材线虫病防治决策提供参考。图2表3参25
  • 图  1  湖北省松材线虫分布点示意图

    Figure  1  Distribution point of B. xylophilus in Hubei Province

    图  2  湖北省松材线虫入侵风险等级分布示意图

    Figure  2  Risk level map of B. xylophilus in Hubei Province

    表  1  ENFA模型分析的生态地理变量

    Table  1.   Ecogeographical variables analyzed by ENFA model

    因素类型生态地理变量(EGV)因素类型生态地理变量(EGV)
    气候因素年平均气温(℃)
    年平均降水量(mm)
    5−10月平均气温(℃)
    5−10月平均降水量(mm)
    人类干扰因素到居民点距离(m)
    到公路距离(m)
    到铁路距离(m)
    到农田距离(m)
    人口分布密度(人·km−2)
    地形因素海拔(m)
    坡度(º)
    坡向
    植被因素  到针叶林距离(m)
    植被覆盖度
    到河流距离(m)
    下载: 导出CSV

    表  2  ENFA模型的因子得分

    Table  2.   Factor scores of the ENFA model

    生态地理变量边际因子特异因子1特异因子2
    年平均气温0.397−0.112−0.702
    年均降水量0.398−0.405−0.099
    5−10月平均气温0.3990.2240.562
    5−10月平均降水量0.3900.2930.290
    海拔−0.013−0.4810.111
    坡度0.0390.0320.027
    坡向0.3640.110−0.008
    到河流距离0.196−0.0690.004
    到居民点距离0.035−0.1420.048
    到公路距离0.2550.3140.144
    到铁路距离−0.010−0.423−0.076
    到农田距离0.0840.030−0.040
    人口分布密度0.242−0.0790.005
    植被覆盖度0.007−0.034−0.065
    到针叶林距离0.048−0.071−0.119
    下载: 导出CSV

    表  3  湖北省各地区的潜在风险区面积

    Table  3.   Areas of potential risk areas in various regions of Hubei Province

    地级市低风险区中风险区高风险区总面积/km2比例/%
    面积/km2比例/%面积/km2比例/%面积/km2比例/%
    十堰 17 070.3371.485 892.8924.67919.313.8523 882.53100.00
    襄樊 11 992.3560.304 283.2821.543 612.3518.1619 887.99100.00
    随州 4 747.9649.242 037.0721.132 857.8829.649 642.92100.00
    孝感 2 288.4125.792 315.5826.104 268.7848.118 872.76100.00
    黄冈 4 652.8126.907 983.5146.154 661.6026.9517 297.91100.00
    武汉 5 939.9469.662 150.6025.22436.075.118 526.60100.00
    鄂州 1 307.5483.41259.7416.570.260.021 567.54100.00
    黄石 1 385.8930.761 810.4140.181 309.8429.074 506.14100.00
    咸宁 2 125.7322.294 117.8543.173 294.3434.549 537.92100.00
    荆州 973.197.013 197.6823.039 714.5169.9613 885.38100.00
    宜昌 7 350.9034.819 922.7346.993 843.4818.2021 117.11100.00
    荆门 4 311.6335.024 600.7737.363 400.9227.6212 313.32100.00
    恩施 7 129.5530.0916 175.9668.26391.641.6523 697.15100.00
    神农架2 244.1869.26996.1630.74003 240.34100.00
    仙桃 2 444.0097.8653.482.14002 497.48100.00
    潜江 1 883.9194.79103.555.21001 987.46100.00
    天门 1 826.6870.23600.5823.09173.646.682 600.90100.00
    总面积80 513.5443.3166 501.8435.7738 884.6220.92185 900.00100.00
    下载: 导出CSV
  • [1] 冯益明, 张海军, 张星耀, 等. 松材线虫病在我国适生性分布的定量估计[J]. 林业科学, 2009, 45(2): 65 − 71.

    FENG Yiming, ZHANG Haijun, ZHANG Xingyao, et al. Quantification of suitability distribution region of Bursaphelenchus xylophilus in China [J]. Sci Silv Sin, 2009, 45(2): 65 − 71.
    [2] 宁眺, 方宇凌, 汤坚, 等. 松材线虫及其关键传媒墨天牛的研究进展[J]. 昆虫知识, 2004, 41(2): 97 − 104.

    NING Tiao, FANG Yuling, TANG Jian, et al. Advances in research on Bursaphelenchus xylophilus and its key vector Monochamus spp. [J]. Chin Bull Entomol, 2004, 41(2): 97 − 104.
    [3] 李兰英. 浙江省松材线虫病环境影响经济评价与治理研究[D]. 北京: 北京林业大学, 2006.

    LI Lanying. Study on the Environmental Impact Eco-assessment and Management of Pine Wood Nematode in Zhejiang Province[D]. Beijing: Beijing Forestry University, 2006.
    [4] 湖北省林业局. 湖北省林业局公告(2020年第1号) [EB/OL]. 2020-04-30[2021-03-07]. http: http://lyj.hubei.gov.cn/bmdt/tzgg_2020/index_3.shtml.
    [5] 潘红伟. 松材线虫(Bursaphelenchus xylophilus)在我国的潜在分布区研究[D]. 北京: 中国林业科学研究院, 2009.

    PAN Hongwei. Study on the Potential Geographic Distribution of Bursaphelenchus xylophilus in China[D]. Beijing: Chinese Academy of Forestry, 2009.
    [6] 韩阳阳, 王焱, 项杨, 等. 基于Maxent生态位模型的松材线虫在中国的适生区预测分析[J]. 南京林业大学学报(自然科学版), 2015, 39(1): 6 − 10.

    HAN Yangyang, WANG Yan, XIANG Yang, et al. Prediction of potential distribution of Bursaphelenchus xylophilus in China based on Maxent ecological niche model [J]. J Nanjing For Univ Nat Sci Ed, 2015, 39(1): 6 − 10.
    [7] HUTCHINSON G E. Concluding remarks, Coldspring Harbor Symposium [J]. Quant Biol, 1957, 22: 415 − 427. doi:  10.1101/SQB.1957.022.01.039
    [8] 王学志, 徐卫华, 欧阳志云, 等. 生态位因子分析在大熊猫(Ailuropoda melanoleuca)生境评价中的应用[J]. 生态学报, 2008, 28(2): 821 − 828. doi:  10.1016/S1872-2032(08)60030-X

    WANG Xuezhi, XU Weihua, OUYANG Zhiyun, et al. The application of ecological-niche factor analysis in giant pandas(Ailuropoda melanoleuca) habitat assessment [J]. Acta Ecol Sin, 2008, 28(2): 821 − 828. doi:  10.1016/S1872-2032(08)60030-X
    [9] 刘鹏, 代娟, 曹大潘, 等. 普洱市亚洲象栖息地适宜度评价[J]. 生态学报, 2016, 36(13): 4164 − 4170.

    LIU Peng, DAI Juan, CAO Dapan, et al. Habitat suitability assessment for Asian elephant in Pu’er prefecture in the Yunnan Province of China [J]. Acta Ecol Sin, 2016, 36(13): 4164 − 4170.
    [10] 李雯. 西双版纳人象冲突风险评估研究[D]. 昆明: 云南财经大学, 2017.

    LI Wen. Research on Risk Assessment of Human Elephant Conflict in Xishuangbanna[D]. Kunming: Yunnan University of Finance and Economics, 2017.
    [11] 杨瑞, 张雅林, 冯纪年. 利用ENFA生态位模型分析玉带凤蝶和箭环蝶异地放飞的适生性[J]. 昆虫学报, 2008, 51(3): 290 − 297.

    YANG Rui, ZHANG Yalin, FENG Jinian. Habitat suitability analysis in live releasing of two butterflies Papilio polytes Linnaeus and Stichophthalma howqua(Westwood) in China using ENFA [J]. Acta Entomol Sin, 2008, 51(3): 290 − 297.
    [12] ZANIEWSKI A E, LEHMANN A, OVERTON J M. Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns [J]. Ecol Model, 2002, 157(2/3): 261 − 280.
    [13] 罗翀, 徐卫华, 周志翔, 等. 基于生态位模型的秦岭山系林麝生境预测[J]. 生态学报, 2011, 31(5): 1221 − 1229.

    LUO Chong, XU Weihua, ZHOU Zhixiang, et al. Habitat prediction of Moschus berezovskii in Qinling mountains based on niche model [J]. Acta Ecol Sin, 2011, 31(5): 1221 − 1229.
    [14] BRAUNISCH V, SUCHANT R. A model for evaluating the habitat potential of a landscape for capercaillie Tetrao urogallus: a tool for conservation planning [J]. Wildl Biol, 2007, 13(suppl): 21 − 33.
    [15] 国家林业与草原局. 国家林业与草原局公告(2020年第4号)[EB/OL]. 2020-03-16[2021-03-07]. http://www.forestry.gov.cn/Common/index/3457.html.
    [16] GÁLLEGO D, CÁNOVAS F, ESTEVE M A, et al. Descriptive biogeography of Tomicus(Coleoptera: Scolytidae) species in Spain [J]. J Biogeogr, 2004, 31(12): 2011 − 2024. doi:  10.1111/j.1365-2699.2004.01131.x
    [17] HIRZEL A H, LE LAY G, HELFER V, et al. Evaluating the ability of habitat suitability models to predict species presences [J]. Ecol Model, 2006, 199: 142 − 152. doi:  10.1016/j.ecolmodel.2006.05.017
    [18] HIRZEL A H, HAUSSER J, CHESSE L. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data [J]. Ecology, 2002, 83(7): 2027 − 2036. doi:  10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2
    [19] 赵宇翔, 董燕, 徐正会. 云南省松墨天牛生物学特性和地理分布研究[J]. 中国森林病虫, 2004, 23(5): 13 − 16.

    ZHAO Yuxiang, DONG Yan, XU Zhenghui. Biological characteristics and geographical distribution of Monochamus alternatus in Yunnan Province [J]. Chin For Pests, 2004, 23(5): 13 − 16.
    [20] 展茂魁. 马尾松蛀干害虫种群动态与松材线虫病的关系及松褐天牛天敌研究[D]. 北京: 中国林业科学研究院, 2014.

    ZHAN Maokui. Studies on Population Dynamics of Woodborers and the Relationship with Pine Disease on Pinus massoniana, and Natural Enemies of Monochamus alternatus[D]. Beijing: Chinese Academy of Forestry, 2014.
    [21] 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26(4): 154 − 158.

    LI Miaomiao, WU Bingfang, YAN Changzhen, et al. Estimation of vegetation fraction in the upper basin of Miyun reservoir by remote sensing [J]. Resour Sci, 2004, 26(4): 154 − 158.
    [22] 魏淑婷, 李涛, 林玉成. 基于MaxEnt模型预测四川省松材线虫的潜在适生区[J]. 四川动物, 2019, 38(1): 37 − 46.

    WEI Shuting, LI Tao, LIN Yucheng. Prediction of the potential distribution of Bursaphelenchus xylophilus in Sichuan Province using MaxEnt model [J]. Sichuan J Zool, 2019, 38(1): 37 − 46.
    [23] 张华锋, 陈思宇, 刘刚, 等. 松材线虫病疫木卫生伐对马尾松纯林林分结构的影响[J]. 浙江农林大学学报, 2020, 37(4): 745 − 751.

    ZHANG Huafeng, CHEN Siyu, LIU Gang, et al. Effects of sanitation cutting pine wilt diseased trees on the stand structure of pure Pinus massoniana plantation [J]. J Zhejiang A&F Univ, 2020, 37(4): 745 − 751.
    [24] 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9): 1 − 10.

    YE Jianren. Epidemic status of pine wilt disease in china and its prevention and control techniques and counter measures [J]. Sci Silv Sin, 2019, 55(9): 1 − 10.
    [25] 黄麟, 叶建仁, 刘雪莲. 松材线虫病病原种群分化研究现状[J]. 南京林业大学学报(自然科学版), 2009, 33(4): 135 − 139.

    HUANG Ling, YE Jianren, LIU Xuelian. Advance in population differentiation of Bursaphelenchus xylophilus [J]. J Nanjing For Univ Nat Sci Ed, 2009, 33(4): 135 − 139.
  • [1] 魏子璐, 朱峻熠, 潘晨航, 王义英, 胡沁沁, 周颖, 金水虎.  宁波市外来入侵植物及其入侵风险评估 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200351
    [2] 张延平, 陈振超, 汤富彬, 任传义, 倪张林, 屈明华.  浙、川、湘毛竹主产区冬笋重金属质量分数及健康风险评估 . 浙江农林大学学报, 2018, 35(4): 635-641. doi: 10.11833/j.issn.2095-0756.2018.04.008
    [3] 张友青, 李凯利, 刘兴泉, 王昭君, 吴俊, 陆品.  浙江省毛笋干有害物质污染及健康风险评估 . 浙江农林大学学报, 2017, 34(1): 178-184. doi: 10.11833/j.issn.2095-0756.2017.01.024
    [4] 王凯, 牛树奎.  基于Rothermel模型的北京鹫峰国家森林公园潜在火行为 . 浙江农林大学学报, 2016, 33(1): 42-50. doi: 10.11833/j.issn.2095-0756.2016.01.006
    [5] 李桥, 张绍勇, 仇辉康, 陈明, 叶玉珠, 袁媛.  6种药剂林间注干施药防控松材线虫效果分析 . 浙江农林大学学报, 2016, 33(4): 718-723. doi: 10.11833/j.issn.2095-0756.2016.04.023
    [6] 詹伟君, 罗优波, 张立斌.  松墨天牛优良球孢白僵菌菌株生物学及毒力研究 . 浙江农林大学学报, 2013, 30(1): 83-89. doi: 10.11833/j.issn.2095-0756.2013.01.012
    [7] 曾腓力, 贲爱玲, 郑敬荣, 韩正敏.  美国松材线虫体表携带优势细菌的鉴定及致病性 . 浙江农林大学学报, 2012, 29(5): 696-702. doi: 10.11833/j.issn.2095-0756.2012.05.010
    [8] 项移娟, 管剑锋, 李健, 黄继玉, 马良进.  浙江省松材线虫病发生程度预测预报模型 . 浙江农林大学学报, 2011, 28(5): 775-778. doi: 10.11833/j.issn.2095-0756.2011.05.015
    [9] 来燕学, 池树友, 王亚红, 张毅丰, 韩正敏.  杀灭松材线虫的高效药物筛选与毒性测定 . 浙江农林大学学报, 2011, 28(3): 479-485. doi: 10.11833/j.issn.2095-0756.2011.03.021
    [10] 巨云为, 樊培峰, 奚月明, 薛中官.  万寿菊提取物对松材线虫的毒杀作用 . 浙江农林大学学报, 2010, 27(2): 316-319. doi: 10.11833/j.issn.2095-0756.2010.02.026
    [11] 徐华潮, 骆有庆.  松材线虫入侵对森林生态系统的影响 . 浙江农林大学学报, 2010, 27(3): 445-450. doi: 10.11833/j.issn.2095-0756.2010.03.020
    [12] 陈培金, 徐爱俊, 邵香君, 刘爱君.  基于GIS的森林火灾灾后评估算法的设计与实现 . 浙江农林大学学报, 2008, 25(1): 72-77.
    [13] 张建军, 张润志, 陈京元.  松材线虫媒介昆虫种类及其扩散能力 . 浙江农林大学学报, 2007, 24(3): 350-356.
    [14] 来燕学.  用松枝解剖法快速检测松材线虫病原 . 浙江农林大学学报, 2005, 22(2): 188-192.
    [15] 谢立群, 巨云为, 杨振德, 赵博光.  接种松材线虫后黑松接种枝内细菌和线虫的数量变化 . 浙江农林大学学报, 2005, 22(3): 310-314.
    [16] 谢立群, 赵博光, 巨云为, 梁波.  松材线虫携带细菌的光镜观察与数量测定 . 浙江农林大学学报, 2002, 19(4): 346-349.
    [17] 来燕学, 俞林祥, 周永平, 李国平, 沈炳顺.  用双环法诱杀松墨天牛成虫控制松材线虫病 . 浙江农林大学学报, 2001, 18(1): 60-65.
    [18] 李修鹏, 王奕交.  墨西哥白松等国外松林间自然感染松材线虫病及枯死情况的调查 . 浙江农林大学学报, 1997, 14(3): 273-276.
    [19] 汪企明, 徐福元, 葛明宏, 王章荣, 陈天华.  13年生马尾松39个种源对松材线虫抗性变异初步研究 . 浙江农林大学学报, 1997, 14(1): 29-34.
    [20] 来燕学, 张世渊, 黄华正, 吕兆田, 史迎寅.  松墨天牛在松树枯萎中的作用 . 浙江农林大学学报, 1996, 13(1): 75-81.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200365

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021/3/1

计量
  • 文章访问数:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-03
  • 修回日期:  2021-03-08
  • 网络出版日期:  2021-03-30

基于生态位因子模型的湖北省松材线虫病风险评估

doi: 10.11833/j.issn.2095-0756.20200365
    作者简介:

    沈鹏(ORCID: 0000-0003-2250-7155),从事地理信息系统应用与开发研究。E-mail: 614650173@qq.com

    通信作者: 李功权(ORCID: 0000-0003-2933-0110),副教授,博士,从事时空大数据分析及挖掘工作等研究。E-mail: 195648169@qq.com
  • 中图分类号: S763.3

摘要:    目的   当前湖北省松材线虫Bursaphelenchus xylophilus疫情形势严峻。通过研究湖北省松材线虫病的入侵风险,分析松材线虫病在湖北省的危害程度,为当前疫情的防治工作提供建议和参考。   方法   结合“3S”技术,应用生态位因子模型(ENFA),选取影响松材线虫定殖和传播的4类影响因素(气候、植被、地形、人类活动),对松材线虫病在湖北的入侵风险进行了预测和评价。   结果   湖北省松材线虫病高风险区面积38 884.62 km2,占湖北省总面积的20.92%,高风险区主要集中于海拔较低,人类活动频繁的的中部和东部地区,中风险区面积66 501.84 km2,占总面积的35.77%,低风险区面积80 513.54 km2,占总面积的43.31%,中低风险地区主要分布在林地稀少的江汉平原和西部的高海拔山地。松材线虫偏好分布在温度较高,降水丰富,海拔较低,离人类居住点较近且人类活动频繁的针叶林地区。通过交叉验证(cross-validation)对模型的预测进行检验,得到P/E曲线,曲线呈单调递增且Boyce指数很高,说明模型精度很高。   结论   ENFA模型能很好模拟松材线虫病的风险区域,模型结果可为湖北省各县市的松材线虫病防治决策提供参考。图2表3参25

English Abstract

沈鹏, 李功权. 基于生态位因子模型的湖北省松材线虫病风险评估[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200365
引用本文: 沈鹏, 李功权. 基于生态位因子模型的湖北省松材线虫病风险评估[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200365
SHEN Peng, LI Gongquan. Risk assessment of Bursaphelenchus xylophilus in Hubei Province based on ecological niche factor analysis model[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200365
Citation: SHEN Peng, LI Gongquan. Risk assessment of Bursaphelenchus xylophilus in Hubei Province based on ecological niche factor analysis model[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200365

返回顶部

目录

    /

    返回文章
    返回