Effect of raw and iron-modified biochar on the sorption of As (Ⅴ) by soils
-
摘要:
目的 考察生物质炭及铁改性生物质炭对土壤吸附砷As(Ⅴ)的影响。 方法 以法国梧桐Platanus orientalis修剪枝为原料在650 ℃限氧条件下热解制备生物质炭,并通过氯化铁(FeCl3)溶液浸渍、热解,将其进一步制备成铁改性生物质炭,对比考察改性后生物质炭理化性质和表面官能团的变化;并通过批量吸附试验探究不同As (Ⅴ)初始质量浓度、吸附时间对施炭土壤吸附As (Ⅴ)效果和规律的影响,通过分析吸附等温线特征和吸附动力学特征,探明吸附机制。 结果 铁改性生物质炭较原始生物质炭pH、比表面积及官能团数量降低,但灰分质量分数和电导率有所增加;Langmuir模型能较好拟合施炭土壤对As(Ⅴ)的吸附过程,表明吸附以单分子层为主。当As (Ⅴ)溶液初始质量浓度大于25 mg·L−1后,铁改性生物质炭对As (Ⅴ)的吸附量大于原始生物质炭,且最大吸附量为0.36 mg·g−1。原始生物质炭和铁改性生物质炭对As (Ⅴ)的动力学吸附符合准二级动力学方程,吸附过程在4 h前后分别为快速吸附和慢速吸附2个阶段,在24 h左右趋于平衡,且铁改性生物质炭处理下土壤的饱和吸附量比原始生物质炭处理高11%。 结论 施用2种生物质炭均能提高土壤对As (Ⅴ)的吸附效果,且铁改性生物质炭的吸附效果优于原始生物质炭。因此,施用铁改性生物质炭可以加强土壤对As (Ⅴ)的吸附作用从而降低As生物有效性。图6表3参39 Abstract:Objective This study is aimed to investigate the effect of raw biochar and Fe-modified biochar on the soil adsorption of As(Ⅴ). Method First, the raw biochar was produced from the branches of Platanus orientalis by means of pyrolysis at 650 ℃ in an oxygen-limited condition, while its Fe-modified biochar (weight ratio of Fe∶biochar=1∶20) was obtained from the impregnation with FeCl3 solutions and re-pyrolysis beofe the physiochemical properties and surface functional groups of two biochars were examined for changes. Then with the employment of a batch equilibration method, an investigation was conducted of the impacts of initial As (Ⅴ) concentration and sorption time on As (Ⅴ) sorption by soils treated with raw and Fe-modified biochars. At last, The characteristics of the sorption isotherms and kinetics were analyzed. Result a) The Fe-modified biochar had higher ash content and electrical conductivity, but lower pH, specific surface area and abundance of surface functional groups than those of the raw biochar; b) Langmuir isothermal models could well describe the sorption process of As (Ⅴ) by biochar-amended soils, indicating that the monolayer sorption was the predominant process: with an initial As (Ⅴ) concentration higher than 25 mg·L−1 in the solution, the sorption capacity of the Fe-modified biochar to As (Ⅴ) (up to 0.36 mg·g−1) was greater than that of the raw biochar; c) The kinetic sorption of As (Ⅴ) could be described by the pseudo-second-order kinetics and the sorption process could be divided into two stages from the critical point of reaction at 4th hour, i.e., rapid sorption and slow sorption, respectively; d) The sorption equilibrium was achieved around 24 hours of reaction, and the maximum sorption capacity of the Fe-modified biochar treatment was 11% higher than that of the raw biochar treatment. Conclusion Both biochars could enhance the As (Ⅴ) sorption capacity of the soil, and the addition of the Fe-modified biochar was more effective than that of the raw biochar. Therefore, the Fe-modified biochar is recommended in the reduction of the bioavailability of As (Ⅴ) in contaminated soils by enhancing its adsorption capacity. [Ch, 6 fig. 3 tab. 39 ref.] -
Key words:
- Fe-modified biochar /
- green waste /
- sorption /
- arsenic (Ⅴ) /
- contaminated soil
-
表 1 生物质炭改性前后的基本理化性质
Table 1. Properties of the raw and Fe-modified biochars
生物质炭 碳质量
分数/%氢质量
分数/%氮质量
分数/%比表面积/
(m2·g−1)pH 电导率/
(dS·m−1)灰分质量
分数/%阳离子交
换量/(cmol·kg−1)总铁质量
分数/(g·kg−1)原始生物质炭 69.34 2.74 1.11 110.70 9.25 0.37 9.66 21.59 4.72 铁改性生物质炭 59.91 2.24 0.94 74.47 4.41 4.49 15.77 16.70 39.89 表 2 不同施炭处理土壤对As(Ⅴ)的Langmuir吸附模型拟合参数
Table 2. Parameters of Langmuir isotherms for the adsorption of As(Ⅴ) on the control and biochar-treated soils
处理 Qm/(mg·g−1) KL/(L·mg−1) R2 未施炭处理 0.25 0.032 0.997 原始生物质炭处理 0.31 0.051 0.999 铁改性生物质炭处理 0.36 0.046 0.997 表 3 As(Ⅴ)在不同处理土壤中的吸附动力学拟合参数
Table 3. Parameters of kinetic models for the adsorption of As(Ⅴ) on the control and biochar-treated soils.
处理 准一级动力学方程 准二级动力学方程 颗粒内扩散方程 K1/h−1 R2 Qe/
(mg·g−1)K2/
(mg·g−1·h−1)R2 Qe/
(mg·g−1)Kp1/
(mg·g−1·h−1)Kp2/
(mg·g−1·h−1)R12 R22 未施炭处理 0.909 0.952 0.187 4.865 0.994 0.185 0.063 2 0.015 4 0.834 0.946 原始生物质炭处理 0.827 0.974 0.580 2.926 0.988 0.185 0.035 2 0.018 3 0.882 0.991 铁改性生物质炭处理 0.425 0.928 0.182 4.371 0.996 0.206 0.046 6 0.020 8 0.944 0.983 -
[1] 段志斌, 胡丰青, 安吉平, 等. 土壤砷污染及其植物修复技术研究进展[J]. 现代农业科技, 2016(14): 190 − 193. doi: 10.3969/j.issn.1007-5739.2016.20.107 DUAN Zhibin, HU Fengqing, AN Jiping, et al. Progress on soil arsenic contamination and its phytoremediation technology [J]. Modern Agric Sci Technol, 2016(14): 190 − 193. doi: 10.3969/j.issn.1007-5739.2016.20.107 [2] YANG N, WINKEL L H E, JOHANNESSON K H, et al. Correction to predicting geogenic arsenic contamination in shallow groundwater of south Louisiana, United States [J]. Environ Sci Technol, 2014, 48(13): 5660 − 5666. [3] 纪冬丽, 孟凡生, 薛浩, 等. 国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报, 2016, 6(1): 90 − 99. doi: 10.3969/j.issn.1674-991X.2016.01.014 JI Dongli, MENG Fansheng, XUE Hao, et al. Situation and prospect of soil arsenic pollution and its remediation techniques at home and abroad [J]. J Environ Eng Technol, 2016, 6(1): 90 − 99. doi: 10.3969/j.issn.1674-991X.2016.01.014 [4] 杨兴, 黄化刚, 王玲, 等. 烟秆生物质炭热解温度优化及理化性质分析[J]. 浙江大学学报 (农业与生命科学版), 2016, 42(2): 245 − 255. YANG Xing, HUANG Huagang, WANG Ling, et al. Pyrolysis temperature optimization of biochar from tobacco stalk and its physicochemical characterization [J]. J Zhejiang Univ Agric Life Sci, 2016, 42(2): 245 − 255. [5] 温尔刚, 赵伟宁, 杨兴, 等. 法国梧桐叶片炭和枝条炭对水中Pb2+的吸附特性影响[J]. 水土保持学报, 2019, 33(2): 309 − 316. WEN Ergang, ZHAO Weining, YANG Xing, et al. Effect of biochars derived from platanus orientalis branches and leaves on the adsorption of Pb2+ in aqueous solution [J]. J Soil Water Conserv, 2019, 33(2): 309 − 316. [6] 刘晶晶, 杨兴, 陆扣萍, 等. 生物质炭对土壤重金属形态转化及其有效性的影响[J]. 环境科学学报, 2015, 35(11): 3679 − 3687. LIU Jingjing, YANG Xing, LU Kouping, et al. Effect of bamboo and rice straw biochars on the transformation and bioavailability of heavy metals in soil [J]. Acta Sci Circ, 2015, 35(11): 3679 − 3687. [7] 李梦柯, 周丹, 高震, 等. 稻壳生物炭对污染土壤中稀土元素生物有效性的影响[J]. 中国环境科学, 2018, 38(10): 3823 − 3832. doi: 10.3969/j.issn.1000-6923.2018.10.029 LI Mengke, ZHOU Dan, GAO Zhen, et al. Effect of rice husk biochar on bioavailability of rare earth elements in polluted soil [J]. China Environ Sci, 2018, 38(10): 3823 − 3832. doi: 10.3969/j.issn.1000-6923.2018.10.029 [8] ZHANG Feng, WANG Xin, JI Xionghui, et al. Efficient arsenate removal by magnetite-modified water hyacinth biochar [J]. Environ Pollut, 2016, 216: 575 − 583. doi: 10.1016/j.envpol.2016.06.013 [9] 杜艳艳. 负载铁生物炭和氧化钙对稻田土壤砷、镉的钝化效能与机理[D]. 长沙: 湖南师范大学, 2018. DU Yanyan. The Efficiency and Menchanism of As and Cd Immobilization by Fe-impregnated Biochar and CaO in Paddy Soil[D]. Changsha: Hunan Normal University, 2019. [10] BOLAN N, MAHIMAIRAJA S, KUNHIKRISHNAN A, et al. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils [J]. J Hazardous Mater, 2013, 261: 725 − 732. doi: 10.1016/j.jhazmat.2012.09.074 [11] KATSOYIANNIS I A, RUETTIMANN T, HUG S J. pH dependence of Fenton reagent generation and As(Ⅲ) oxidation and removal by corrosion of zero valent iron in aerated water [J]. Environ Sci Technol, 2008, 42(19): 7424 − 7430. doi: 10.1021/es800649p [12] 胡立琼, 曾敏, 雷鸣, 等. 含铁材料对污染水稻土中砷的稳定化效果[J]. 环境工程学报, 2014, 8(4): 1599 − 1604. HU Liqiong, ZENG Min, LEI Ming, et al. Stabilization effects of iron-containing materials on arsenic in contaminated paddy soils [J]. Chin J Environ Eng, 2014, 8(4): 1599 − 1604. [13] CHEN Hanbo, YANG Xing, WANG Hailong, et al. Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: A trial for reclamation and improvement of degraded soils [J]. J Environ Manage, 2020: 261. doi: 10.1016/j.jenvman.2020.110246 [14] YANG Xing, LIU Jingjing, MCGROUTHER K, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil [J]. Environ Sci Pollut Res, 2016, 23(2): 974 − 984. doi: 10.1007/s11356-015-4233-0 [15] QIN Ping, WANG Hailong, YANG Xing, et al. Bamboo- and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils [J]. Chemosphere, 2018, 198: 450 − 459. doi: 10.1016/j.chemosphere.2018.01.162 [16] CHEN Hanbo, YANG Xing, GIELEN G, et al. Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate toBrassica chinensis L. in contaminated soils [J]. Sci Total Environ, 2019, 678: 43 − 52. doi: 10.1016/j.scitotenv.2019.04.417 [17] 钱钱, 杨兴, 郭明, 等. 生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响[J]. 浙江农林大学学报, 2019, 36(6): 1051 − 1061. doi: 10.11833/j.issn.2095-0756.2019.06.001 QIAN Qian, YANG Xing, GUO Ming, et al. Adsorption of Zn2+ from a Zn2+-DEP(diethyl phthalate)composite solution using biochars in soil [J]. J Zhejiang A&F Univ, 2019, 36(6): 1051 − 1061. doi: 10.11833/j.issn.2095-0756.2019.06.001 [18] HOUBEN D, EVRARD L, SONNET P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L) [J]. Biomass Bioenergy, 2013, 57: 196 − 204. doi: 10.1016/j.biombioe.2013.07.019 [19] YANG Xing, LU Kouping, MCGROUTHER K, et al. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs [J]. J Soils Sediments, 2017, 17: 751 − 762. doi: 10.1007/s11368-015-1326-9 [20] 唐行灿. 生物炭修复重金属污染土壤的研究[D]. 泰安: 山东农业大学, 2013. TANG Xingcan. Amelioration Effect of Biochar on Heavy Metal Contaminated Soil[D]. Tai’an: Shandong Agricultural University, 2013. [21] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review [J]. Chemosphere, 2014, 99: 19 − 33. doi: 10.1016/j.chemosphere.2013.10.071 [22] 王红, 夏雯, 卢平, 等. 生物炭对土壤中重金属铅和锌的吸附特性[J]. 环境科学, 2017, 38(9): 3944 − 3952. WANG Hong, XIA Wen, LU Ping, et al. Adsorption characteristics of biochar on heavy metals (Pb and Zn) in soil [J]. Environ Sci, 2017, 38(9): 3944 − 3952. [23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [24] 胡志新, 时萌, 孙菁, 等. 改性芦苇生物质炭对水中硝态氮的吸附特性[J]. 江苏农业科学, 2018, 46(24): 359 − 362. HU Zhixin, SHI Meng, SUN Jing, et al. Adsorption characteristics of modified reed biomass carbon for nitrate nitrogen in water [J]. Jiangsu Agric Sci, 2018, 46(24): 359 − 362. [25] SWIATKOWSKI A, PAKULA M, BINIAK S, et al. Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(Ⅱ) ions [J]. Carbon, 2004, 42(15): 3057 − 3069. doi: 10.1016/j.carbon.2004.06.043 [26] ODEH A O. Qualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks [J]. J Fuel Chem Technol, 2015, 43(2): 129 − 137. doi: 10.1016/S1872-5813(15)30001-3 [27] LIU Zhengang, ZHANG Fusheng, SASAI R. Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass [J]. Chem Eng J, 2010, 160(1): 57 − 62. doi: 10.1016/j.cej.2010.03.003 [28] 赫斌, 陈亚君, 林军, 等. 改性生物质炭对水溶液中Hg2+的吸附性能研究[J]. 南京师范大学学报(工程技术版), 2018, 18(1): 86 − 92. HE Bin, CHEN Yajun, LIN Jun, et al. The Investigation of modified biochar’s adsorption performance on Hg2+ in solution [J]. J Nanjing Norm Univ Eng Technol Ed, 2018, 18(1): 86 − 92. [29] 秦艳敏, 梁美娜, 王敦球, 等. 桑树杆生物炭/铁锰氧化物复合吸附剂的制备及其对As(Ⅴ)的吸附机理研究[J]. 农业环境科学学报, 2016, 35(7): 1398 − 1406. doi: 10.11654/jaes.2016.07.024 QIN Yanmin, LIANG Meina, WANG Dunqiu, et al. Preparation and arsenic adsorption and its mechanisms by mulberry stem biochar/Fe -Mn oxides composite adsorbent [J]. J Agro-Environ Sci, 2016, 35(7): 1398 − 1406. doi: 10.11654/jaes.2016.07.024 [30] REGMI P, MOSCOSO J L G, KUMAR S, et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process [J]. J Environ Manage, 2012, 109: 61 − 69. doi: 10.1016/j.jenvman.2012.04.047 [31] ZHANG Hanzhi, CHEN Chengrong, GRAY E M, et al. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus [J]. Geoderma, 2016, 276: 1 − 6. doi: 10.1016/j.geoderma.2016.04.020 [32] 胡锋平, 罗文栋, 彭小明, 等. 改性生物质炭去除水中污染物的研究进展[J]. 工业水处理, 2019, 39(4): 1 − 4. doi: 10.11894/1005-829x.2019.39(4).001 HU Fengping, LUO Wendong, PENG Xiaoming, et al. Research progress in modified biochar for the removal of pollutants from water [J]. Ind Water Treat, 2019, 39(4): 1 − 4. doi: 10.11894/1005-829x.2019.39(4).001 [33] CHANG Minyun, JUANG Rueyshin. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. J Colloid Interface Sci, 2004, 278(1): 18 − 25. doi: 10.1016/j.jcis.2004.05.029 [34] MARIA E, GEORGE P, MANISH P, et al. Adsorption of As(Ⅴ) and As(Ⅲ) by nanocrystalline titanium dioxide [J]. Water Res, 2005, 39(11): 2327 − 2337. doi: 10.1016/j.watres.2005.04.006 [35] VIMONSES V, LEI S, JIN B, et al. Kinetic study and equilibrium isotherm analysis of congo red adsorption by clay materials [J]. Chem Eng J, 2008, 148(2/3): 354 − 364. [36] 李丽, 陈旭, 吴丹, 等. 固定化改性生物质炭模拟吸附水体硝态氮潜力研究[J]. 农业环境科学学报, 2015, 34(1): 137 − 143. doi: 10.11654/jaes.2015.01.020 LI Li, CHEN Xu, WU Dan, et al. Adsorption of aqueous Nitrate-N by immobilized modified biochar [J]. J Agro-Environ Sci, 2015, 34(1): 137 − 143. doi: 10.11654/jaes.2015.01.020 [37] BOLANZ R M, BLAESS U, ACKERMANN S, et al. The effect of antimonate, arsenate, and phosphate on the transformation of ferrihydrite to goethite, hematite, feroxyhyte, and tripuhyite [J]. Clays Clay Miner, 2013, 61(1/2): 11 − 25. [38] 王颖馨, 周雪婷, 卜洪龙, 等. 高铁酸钾的制备及其对水中As(Ⅲ), Pb(Ⅱ)的去除效能研究[J]. 华南师范大学学报(自然科学版), 2015, 47(4): 80 − 87. WANG Yingxin, ZHOU Xueting, BU Honglong, et al. Preparation of potassium ferrate and its effectiveness on the removal of As(Ⅲ) and Pb(Ⅱ) [J]. J South China Normal Univ Nat Sci Ed, 2015, 47(4): 80 − 87. [39] 董双快, 徐万里, 吴福飞, 等. 铁改性生物炭促进土壤砷形态转化抑制植物砷吸收[J]. 农业工程学报, 2016, 32(15): 204 − 212. doi: 10.11975/j.issn.1002-6819.2016.15.028 DONG Shuangkuai, XU Wanli, WU Fufei, et al. Fe-modified biochar improving transformation of arsenic form in soil and inhibiting its absorption of plant [J]. Trans Chin Soc Agric Eng, 2016, 32(15): 204 − 212. doi: 10.11975/j.issn.1002-6819.2016.15.028 -
-
链接本文:
http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200392

计量
- 文章访问数: 17
- 被引次数: 0