留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响

戴志楠 温尔刚 陈翰博 杨兴 陈俊辉 郭佳 王海龙

李伟成, 郑彦超, 盛海燕, 等. 浙江庆元巾子峰国家森林公园植被群落的数量分类与排序[J]. 浙江农林大学学报, 2021, 38(3): 523-533. DOI: 10.11833/j.issn.2095-0756.20200393
引用本文: 戴志楠, 温尔刚, 陈翰博, 等. 施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响[J]. 浙江农林大学学报, 2021, 38(2): 346-354. DOI: 10.11833/j.issn.2095-0756.20200392
LI Weicheng, ZHENG Yanchao, SHENG Haiyan, et al. Numerical classification and ordination of vegetation communities in Jinzifeng National Forest Park, Qingyuan, Zhejiang[J]. Journal of Zhejiang A&F University, 2021, 38(3): 523-533. DOI: 10.11833/j.issn.2095-0756.20200393
Citation: DAI Zhinan, WEN Ergang, CHEN Hanbo, et al. Effect of raw and iron-modified biochar on the sorption of As (Ⅴ) by soils[J]. Journal of Zhejiang A&F University, 2021, 38(2): 346-354. DOI: 10.11833/j.issn.2095-0756.20200392

施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响

DOI: 10.11833/j.issn.2095-0756.20200392
基金项目: 国家自然科学基金资助项目(21876027);佛山市科技创新团队项目(1920001000083)
详细信息
    作者简介: 戴志楠(ORCID: 0000-0002-3946-9813),从事农业废弃物资源化利用研究。E-mail: daizhinan123@126.com
    通信作者: 王海龙(ORCID: 0000-0002-6107-5095 ),教授,博士,博士生导师,从事生物质炭的环境功能和土壤修复研究。E-mail: Hailong@zafu.edu.cn
  • 中图分类号: S153.6

Effect of raw and iron-modified biochar on the sorption of As (Ⅴ) by soils

  • 摘要:   目的  考察生物质炭及铁改性生物质炭对土壤吸附砷[As(Ⅴ)]的影响。  方法  以法国梧桐Platanus orientalis修剪枝为原料在650 ℃限氧条件下热解制备生物质炭,并通过氯化铁(FeCl3)溶液浸渍、热解,将其进一步制备成铁改性生物质炭,对比考察改性后生物质炭理化性质和表面官能团的变化;并通过批量吸附试验探究不同As (Ⅴ)初始质量浓度、吸附时间对施炭土壤吸附As (Ⅴ)效果和规律的影响,通过分析吸附等温线特征和吸附动力学特征,探明吸附机制。  结果  铁改性生物质炭较原始生物质炭pH、比表面积及官能团数量降低,但灰分质量分数和电导率有所增加;Langmuir模型能较好拟合施炭土壤对As(Ⅴ)的吸附过程,表明吸附以单分子层为主。当As (Ⅴ)溶液初始质量浓度大于25 mg·L−1后,铁改性生物质炭对As (Ⅴ)的吸附量大于原始生物质炭,且最大吸附量为0.36 mg·g−1。原始生物质炭和铁改性生物质炭对As (Ⅴ)的动力学吸附符合准二级动力学方程,吸附过程在4 h前后分别为快速吸附和慢速吸附2个阶段,在24 h左右趋于平衡,且铁改性生物质炭处理下土壤的饱和吸附量比原始生物质炭处理高11%。  结论  施用2种生物质炭均能提高土壤对As (Ⅴ)的吸附效果,且铁改性生物质炭的吸附效果优于原始生物质炭。因此,施用铁改性生物质炭可以加强土壤对As (Ⅴ)的吸附作用从而降低As生物有效性。图6表3参39
  • 植被数量分类和排序是植被生态学研究的热点问题之一,被广泛应用于森林、草原、湿地等各种生态类型的群落研究中[1-5]。数量分类是植被分类的分支学科,是基于样方及物种间相似关系之上的一种分类方法,通过计算样方或物种间的相似系数,把样方或物种归并为组,使得组内成员尽量相似,而不同组的成员尽量相异。双向指示种分析(twinspan)是常用的数量分类方法之一,它能同时完成样方和物种的分类,并反映一定的生态特征。排序是将样方或物种排列在一定的空间,使得排序轴能够反映一定的生态梯度,从而能够解释植被或物种的分布与环境因子间的关系。只使用物种组成数据的排序称为间接排序,同时使用物种数据和环境因子数据的排序称为直接排序。去趋势对应分析(DCA)和典范对应分析(CCA)是应用最为广泛的间接排序和直接排序方法[6]。应用植被数量分类和排序不仅可以把植物群落的分布格局与环境因子进行比较,还可以更好地解释植被或物种的分布与环境因子之间的关系,具有重要的生态学意义[4, 7-8]。浙江省庆元县巾子峰地处亚热带常绿阔叶林植被带,区内生物多样性丰富,特有珍稀物种多。浙江省正按照“一园两区”思路建设钱江源—百山祖国家公园,其中,庆元巾子峰国家森林公园作为中亚热带常绿阔叶林生态系统的典型代表,将与浙江凤阳山—百山祖国家级自然保护区、浙江庆元大鲵国家级水产种质资源保护区等自然保护地整合为百山祖国家公园。范良敏等[9-10]对该公园的木本植物区系及生态旅游开发进行了研究,但关于其森林群落的数量分类、排序、环境生态因子之间的关系还未见报道。本研究以巾子峰国家森林公园森林群落为研究对象,运用双向指示种分析分类和去趋势对应分析、典范对应分析排序方法,分析其植被群落类型及特征,揭示森林群落及优势种与环境因子之间的关系,以期为巾子峰国家森林公园的科学管理、有效保护和可持续利用提供基本资料和科学依据。

    巾子峰国家森林公园位于浙江省庆元县西部,面积5 752 hm2,27°27′~27°39′N,118°50′~119°06′E,最高峰巾子峰海拔1 563 m。该区气候属中亚热带季风气候区,温暖潮湿,雨水充沛,四季分明。年平均气温为17.2 ℃,最高月平均气温26.9 ℃,最低月平均气温7.0 ℃,年平均降水量1 689.0 mm,平均相对湿度76%;年平均日照时数1 828.2 h,日照率41%;年平均无霜期256.0 d。土壤类型为红壤和黄壤2个土类,均为地带性土壤。红壤广泛分布于海拔800 m以下的低山丘陵,黄壤分布于800 m以上的中低山。主要植被类型有常绿阔叶林、常绿-落叶阔叶混交林、针阔叶混交林、针叶林、毛竹Phyllostachys edulis林等,地带性典型植被为常绿阔叶林。

    2019年4−5月,在巾子峰国家森林公园海拔500~1 500 m内,隔100 m设置1个取样区间,每个取样区间布设2~8个20 m×20 m样方,共布设10个取样区间48个样方。记录样方内胸径(DBH)≥2 cm的木本植物个体种名、高度、胸径、盖度,每种灌木及草本的种名、高度、盖度、株数或丛数,同时记录每个样方的海拔、坡向、坡度、土壤类型、土壤湿度、土壤温度。其中,海拔高度用全球定位系统测量,坡向和坡度用罗盘仪测定,土壤温度和土壤湿度用Veinasa-TS土壤温湿速测仪测量。48个样方的各个生境因子如表1所示。

    表 1  浙江庆元巾子峰国家森林公园样方环境因子
    Table 1  Environmental factors of plots in Jinzifeng Forest Park, Qingyuan, Zhejiang
    样方号群落郁闭度海拔/m坡位坡度/(°)坡向北纬(N)东经(E)土壤类型
    10.85 554下坡位20西南27°41'04.026"119°00'42.080"红壤
    20.90 550下坡位30东北27°41'07.635"119°00'41.897"红壤
    30.85 540中坡位30东 27°41'16.329"119°00'40.030"红壤
    40.80 572中坡位30东 27°41'00.230"119°00'36.095"红壤
    50.85 657中坡位30东 27°40'40.769"119°00'26.647"红壤
    60.90 565下坡位35东南27°41'12.993"119°00'40.357"红壤
    70.70 694中坡位30西北27°41'40.270"119°01'06.858"红壤
    80.80 727中坡位30东北27°40'37.443"119°00'23.501"红壤
    90.901 052山脊 35东 27°39'59.132"118°59'59.641"黄壤
    100.50 628中坡位25东南27°39'51.851"119°00'37.342"黄壤
    110.90 571下坡位25东 27°41'00.880"119°00'41.821"红壤
    120.90 538下坡位25北 27°41'18.531"119°00'39.928"红壤
    130.85 791中坡位30西 27°41'27.328"119°01'02.480"红壤
    140.80 780上坡位10西 27°41'13.857"119°00'57.785"红壤
    150.85 767中坡位25东 27°41'33.945"119°01'09.110"红壤
    160.60 750下坡位45东北27°41'37.304"119°01'09.533"红壤
    170.70 832中坡位25南 27°41'11.570"119°01'07.716"红壤
    180.80 797下坡位25西南27°41'14.264"119°00'58.968"红壤
    190.80 734下坡位30北 27°40'32.842"119°00'29.121"红壤
    200.80 821谷底 30东南27°40'23.970"119°00'33.259"红壤
    210.801 108上坡位35东 27°39'59.474"118°59'54.098"黄壤
    220.601 382上坡位35西北27°39'44.438"118°59'42.841"黄壤
    230.80 776下坡位25东北27°40'33.656"119°00'48.684"红壤
    240.95 731中坡位25西南27°42'06.523"119°00'48.359"红壤
    250.80 518中坡位25西 27°39'37.175"119°00'54.164"黄壤
    260.70 613中坡位 5南 27°39'44.363"119°00'35.918"黄壤
    270.80 562中坡位30西 27°41'13.205"119°00'41.127"红壤
    280.85 736山脊 10北 27°40'43.434"119°00'39.118"红壤
    290.85 681下坡位25东北27°40'43.766"119°00'48.120"红壤
    300.85 820下坡位30西 27°40'25.046"119°00'33.625"红壤
    310.851 250山顶 30西南27°39'53.117"118°59'49.230"黄壤
    320.601 317上坡位35西北27°39'46.784"118°59'44.727"黄壤
    330.80 680下坡位30东北27°40'36.989"119°00'52.495"红壤
    340.80 590下坡位25东 27°40'55.924"119°00'46.219"红壤
    350.80 747下坡位30东南27°40'31.064"119°00'51.985"红壤
    360.70 720下坡位30东 27°40'35.337"119°00'55.786"红壤
    370.75 925山脊 10东 27°40'18.521"119°00'25.013"红壤
    380.60 784中坡位25西北27°40'44.187"119°00'56.161"红壤
    390.95 767中坡位25西 27°41'39.635"119°01'10.765"红壤
    400.701 148山脊 25东北27°40'13.334"118°59'41.175"黄壤
    410.851 178上坡位30东 27°40'07.905"118°59'34.997"黄壤
    420.851 197上坡位25东 27°40'08.949"118°59'29.214"黄壤
    430.951 203上坡位30西 27°40'11.715"118°59'22.209"黄壤
    440.951 194上坡位10南 27°40'08.334"118°59'37.403"黄壤
    450.851 198上坡位30北 27°39'56.373"118°59'33.218"黄壤
    460.851 231山脊 25南 27°39'54.912"118°59'46.670"黄壤
    470.601 271中坡位25东北27°39'49.007"118°59'47.710"黄壤
    480.601 413上坡位10北 27°39'41.018"118°59'42.226"黄壤
    下载: 导出CSV 
    | 显示表格
    1.3.1   重要值

    用重要值表示每个物种在森林群落中的优势程度,按照乔木树种、灌木及草本植物不同的生长特征,选择不同的重要值计算方法。计算公式如下:乔木树种重要值=(相对密度+相对优势度+相对频度)/3。灌木及草本植物重要值=(相对盖度+相对高度)/2。

    1.3.2   环境因子

    海拔高度、坡度、土壤湿度、土壤温度直接测量数值。用数字表示不同的土壤类型,其中:0代表红壤,1代表黄壤。为了分析森林群落的向阳程度,将坡向因子进行转换,以数字表示不同的坡向等级,其中:1表示北坡(0°~22.5°和337.5°~360°),2表示东北坡(22.5°~67.5°),3表示西北坡(292.5°~337.5°),4表示东坡(67.5°~112.5°),5表示西坡(247.5°~292.5°),6表示东南坡(112.5°~157.5°),7表示西南坡(202.5°~247.5°),8表示南坡(157.5°~202.5°)。数值越大说明越向阳。

    1.3.3   数量分类

    使用Wintwins 2.3软件,采用双向指示种分析分类方法,对由48个样方及样方内194个种的重要值组成的48×194维矩阵进行分析,得出数量分类结果。

    1.3.4   排序

    使用CANOCO 4.5软件[11],采用去趋势对应分析排序方法,对由48个样方及样方内194个种的重要值组成的48×194维矩阵进行分析,得出排序结果。采用典范对应分析对由48个样方及样方内194个种的重要值组成的48×194维矩阵和48个样方及6个环境因子组成的48×6维矩阵进行分析,得出排序结果。

    野外调查共记录种子植物193种,隶属66科129属。科物种组成占总物种数比例分别为壳斗科Fagaceae 28.79% (19种)、樟科Lauraceae 27.27% (18种)、山茶科 Theaceae 13.64% (9种)、杜鹃花科Ericaceae 13.64% (9种)、蔷薇科Rosaceae 13.64% (9种)、冬青科Aquifoliaceae 9.09% (6种)、禾本科Gramineae 9.09% (6种)、茜草科Rubiaceae 9.09% (6种)、金粟兰科Chloranthaceae 7.58% (5种)、百合科 Liliaceae 7.58% (5种)。根据表2中群落不同层次物种重要值的排序可知(排名前20),乔木层优势物种主要为杉木、木荷、黄山松、青冈、甜槠、红楠、少叶黄杞和拟赤杨。灌木层优势种为杜茎山、草珊瑚、隔药柃和映山红。草本层优势种为蕨、芒萁、黑足鳞毛蕨、中华薹草、白茅、江南卷柏和荩草。

    表 2  浙江庆元巾子峰国家森林公园植被群落优势种数量特征
    Table 2  Quantitative characteristics of dominant species of the plant communities in Jinzifeng Forest Park of Qingyuan, Zhejiang
    种名科名生活型重要值/%
    Pteridum aquilinum var. latiusculum蕨科Pteridiaceae草本      1 130.85
    芒萁 Dicranopteris dichotoma里白科Gleicheniaceae草本      1 061.41
    杉木 Cunninghamia lanceolata杉科Taxodiaceae乔木      925.88
    木荷 Schima superba山茶科Theaceae乔木      621.38
    黄山松 Pinus taiwanensis松科Pinaceae乔木      515.13
    杜茎山 Maesa japonica紫金牛科Myrsinaceae灌木      435.24
    黑足鳞毛蕨 Dryopteris fuscipes鳞毛蕨科Dryopteridaceae草本      431.89
    中华薹草 Carex chinensis莎草科Cyperaceae草本      407.44
    毛竹 Phyllostachys edulis禾本科Gramineae乔木状禾本科植物343.66
    青冈 Cyclobalanopsis glauca壳斗科Fagaceae乔木      334.72
    甜槠 Castanopsis eyrei壳斗科乔木      314.95
    白茅 Imperata cylindrica禾本科草本      269.49
    红楠 Machilus thunbergii 樟科Lauraceae乔木      247.42
    草珊瑚 Sarcandra glabra 金粟兰科Chloranthaceae灌木      240.64
    少叶黄杞 Engelhardtia fenzlii胡桃科Juglandaceae乔木      230.03
    隔药柃 Eurya muricata山茶科灌木      221.27
    江南卷柏 Selaginella moellendorffii卷柏科Selaginellaceae草本      213.64
    拟赤杨 Alniphyllum fortunei安息香科Styracaceae乔木      200.82
    映山红 Rhododendron simsii杜鹃花科Ericaceae灌木      195.90
    荩草 Arthraxon hispidus禾本科草本      183.05
    树参 Dendropanax dentiger五加科Araliaceae灌木      167.01
    石栎 Lithocarpus glaber 壳斗科乔木      158.91
    马尾松 Pinus massoniana松科乔木      158.34
    山莓 Rubus corchorifolius 蔷薇科Rosaceae灌木      142.24
    矩形叶鼠刺 Itea chinensis var. oblonga虎耳草科Saxifragaceae灌木      141.90
    虎皮楠 Daphniphyllum oldhami 虎皮楠科Daphniphyllaceae乔木      140.93
    薯豆 Elacocarpus japonicus杜英科Elaeocarpaceae乔木      138.80
    朱砂根 Ardisia crenata紫金牛科灌木      135.49
    马银花 Rhododendron ovatum杜鹃花科灌木      134.90
    毛花连蕊茶 Camellia fraterna 山茶科灌木      134.69
    少花万寿竹 Disporum uniflorum秋水仙科Colchicaceae草本      132.29
    冬青 Ilex chinensis冬青科Aquifoliaceae乔木      125.19
    宜昌荚蒾 Viburnum erosum忍冬科Caprifoliaceae灌木      123.84
    乌药 Lindera aggregata樟科灌木      116.19
    多花黄精 Polygonatum cyrtonema百合科Liliaceae草本      109.51
    中华野海棠 Bredia sinensis野牡丹科Melastomataceae灌木      108.62
    里白 Hicriopteris glauca里白科Gleicheniaceae草本      107.89
    藜芦 Veratrum nigrum百合科草本      106.03
    刨花楠 Machilus pauhoi樟科乔木      103.29
    细枝柃 Eurya loquaiana山茶科灌木      99.45
    Castanopsis fargesii壳斗科乔木      98.24
    细叶青冈 Cyclobalanopsis gracilis壳斗科乔木      94.52
    苦茶槭 Acer ginnala subsp. theiferum槭树科Aceraceae灌木      93.11
    锥栗 Castanea henryi 壳斗科乔木      86.52
    黄绒润楠 Machilus grijsii山矾科Symplocaceae乔木      84.86
    米槠 Castanopsis carlesii 樟科乔木77.54
    老鼠矢 Symplocos stellaris壳斗科乔木74.62
    刺毛杜鹃 Rhododendron championiae杜鹃花科灌木74.18
    蓝果树 Nyssa sinensis蓝果树科Nyssaceae乔木68.94
    江南越橘 Vaccinium mandarinorum杜鹃花科灌木68.88
    赤楠 Syzygium buxifolium桃金娘科Ericaceae灌木63.31
    五针松 Pinus parviflora松科乔木62.94
    檵木 Loropetalum chinensis金缕梅科Hamamelidaceae灌木61.97
    光皮桦 Betula luminifera桦木科Betulaceae乔木59.91
    地菍 Melastoma dodecandrum野牡丹科草本58.65
    贯众 Dryopteris setosa鳞毛蕨科草本57.01
    日本蛇根草 Ophiorrhiza japonica茜草科Rubiaceae草本56.71
    豹皮樟 Litsea coreana var. sinensis樟科灌木56.41
    宽叶金粟兰 Chloranthus henryi金粟兰科草本53.94
    大叶青冈 Cyclobalanopsis jenseniana壳斗科乔木53.88
      说明:物种重要值为48个样方的累加,包括乔木层、灌木层和草本层重要值排序为前60的物种[5]
    下载: 导出CSV 
    | 显示表格

    根据中国植被群落的分类原则[12]和双向指示种分析分类结果,将48个样方分成10个群丛(图1),采用生境指示种及群丛优势种的方式对群丛进行命名。各群丛环境因子描述见表3

    图 1  浙江庆元巾子峰国家森林公园植被群落的双向指示种分析分类结果树状图
    Figure 1  Dendrogram of TWINSPAN classified result in Jinzifeng Forest Park of Qingyuan, Zhejiang
    图中数字为样方号

    群丛Ⅰ:黄山松-映山红-东方古柯-少花万寿竹群丛Association Pinus taiwanensis-Rhododendron simsii-Erythroxylum sinense-Disporum uniflorum,包括38、39、43号样方。乔木层优势种为黄山松,主要伴生种为木荷。灌木层优势种为映山红、东方古柯,主要伴生种为宜昌荚蒾、麂角杜鹃Rhododendron latoucheae。草本层优势种为少花万寿竹、藜芦。

    群丛Ⅱ:黄山松-木荷-映山红-多花黄精群丛Association Pinus taiwanensis-Schima superba-Rhododendron simsii-Polygonatum cyrtonema,包括34、41、42、44、45号样方。乔木层优势种为黄山松、木荷、青冈、甜槠,主要伴生种为浙闽樱Prunus schneideriana、云和新木姜子Neolitsea aurata var. paraciculata、苦茶槭、湖北鹅耳枥Carpinus hupeana、多脉鹅耳枥Carpinus polyneura。灌木层优势种为映山红、麂角杜鹃,主要伴生种为映山红、江南越橘、中华野海棠。草本层优势种为多花黄精、少花万寿竹。

    群丛Ⅲ:甜槠-木荷-黄丹木姜子-少花万寿竹群丛Association Castanopsis eyrei-Schima superba-Litsea elongata-Disporum uniflorum,包括32、33号样方。乔木层优势种为甜槠、木荷、青冈,主要伴生种为马银花、多脉鹅耳枥、江南油杉Keteleeria fortunei var. cyclolepis、浙江樟Cinnamomum chekiangense、红楠、四照花Cornus kousa subsp. chinensis。灌木层优势种为黄丹木姜子Litsea elongata,主要伴生种为毛花连蕊茶、隔药柃、江南越橘。草本层优势种为少花万寿竹、藜芦、蕨。

    群丛Ⅳ:杉木-毛花连蕊茶-江南卷柏群丛Association Cunninghamia lanceolata-Camellia fraterna-Selaginella moellendorffii,包括15、19、22、24、31、35、36、37、40号样方。乔木层优势种为杉木,主要伴生种为木荷、拟赤杨、虎皮楠、刨花楠、光皮桦、青冈、薯豆、少叶黄杞。灌木层优势种为毛花连蕊茶,主要伴生种为细枝柃、杜茎山、隔药柃、矩形叶鼠刺、毛冬青Ilex pubescens、黄绒润楠、乌药、赤楠、山鸡椒Litsea cubeba、刺毛杜鹃、豹皮樟、山莓、映山红。草本层优势种为江南卷柏、蕨、赤车Pellionia radicans,主要伴生种为贯众、黑足鳞毛蕨、芒萁、日本蛇根草。

    群丛Ⅴ:杉木-木荷-杜茎山-芒萁群丛Association Cunninghamia lanceolata-Schima superba-Maesa japonica-Dicranopteris pedata,包括1、2、3、5、6、7号样方。乔木层优势种为杉木、木荷、薯豆、拟赤杨,主要伴生种为少叶黄杞、细叶青冈、树参、青冈、刨花楠、米槠、红楠。灌木层优势种为杜茎山、刺毛杜鹃,主要伴生种为江南越橘、草珊瑚、矩形叶鼠刺、檵木、黄绒润楠。草本层优势种为芒萁、黑足鳞毛蕨,主要伴生种为蕨、赤车、江南卷柏、中华薹草。

    群丛Ⅵ:青冈-木荷-细枝柃-黑足鳞毛蕨群丛Association Cyclobalanopsis glauca-Schima superba-Eurya loquaiana-Dryopteris fuscipes,包括4、11、12、18、21号样方。乔木层优势种为青冈、木荷、锥栗,主要伴生种为冬青、虎皮楠、少叶黄杞、米槠、马银花。灌木层优势种为细枝柃,主要伴生种为杜茎山、石楠 Photinia serrulata、草珊瑚、乌药、狗骨柴Diplospora dubia、赤楠、矩形叶鼠刺、刺毛杜鹃、江南越橘。草本层优势种为黑足鳞毛蕨、芒萁、中华薹草。

    群丛Ⅶ:拟赤杨-虎皮楠-山矾-日本蛇根草群丛Association Alniphyllum fortunei-Daphniphyllum oldhami-Symplocos sumuntia-Ophiorrhiza japonica,包括8、10、28号样方。乔木层优势种为拟赤杨、虎皮楠,主要伴生种为米槠、树参、光皮桦、少叶黄杞、木荷、马银花。灌木层优势种为山矾Symplocos sumuntia,主要伴生种为杜茎山、矩形叶鼠刺、黄绒润楠、草珊瑚、乌药、隔药柃。草本层优势种为日本蛇根草、黑足鳞毛蕨,主要伴生种为中华薹草、蕨、江南卷柏。

    群丛Ⅷ:刨花楠-隔药柃-蕨群丛Association Machilus pauhoi-Eurya muricata-Pteridium aquilinum var. latiusculum,包括16、20、25、26、27、29、46号样方。乔木层优势种为刨花楠、甜槠、栲,主要伴生种为少叶黄杞、深山含笑Michelia maudiae、青冈、大叶青冈、冬青、虎皮楠、锥栗。灌木层优势种为隔药柃,主要伴生种为毛花连蕊茶、细枝柃、山矾、乌药、黄绒润楠、石楠、矩形叶鼠刺、赤楠、豹皮樟、乌冈栎Quercus phillyreoides。草本层优势种为蕨,主要伴生种为中华薹草、江南卷柏、贯众、地菍。

    群丛Ⅸ:马尾松-木荷-草珊瑚-中华薹草群丛Association Pinus massoniana-Schima superba-Sarcandra glabra-Carex chinensis,包括9、13、17、30号样方。乔木层优势种为马尾松、木荷、青冈,主要伴生种为少叶黄杞、拟赤杨、虎皮楠、锥栗、细叶青冈、红楠、蓝果树。灌木层优势种为草珊瑚,主要伴生种为檵木、黄绒润楠、朱砂根、映山红、江南越橘、隔药柃、山莓、老鼠矢。草本层优势种为中华薹草、芒萁、日本蛇根草。

    群丛Ⅹ:毛竹-山鸡椒-地菍群丛Association Phyllostachys edulis-Litsea cubeba-Melastoma dodecandrum,包括14、23、47、48号样方。乔木层优势种为毛竹,主要伴生种为杉木、拟赤杨、马尾松。灌木层优势种为山鸡椒,主要伴生种为隔药柃、乌药、黄绒润楠、檵木、胡枝子Lespedeza bicolor、老鼠矢。草本层优势种为地菍,主要伴生种为芒萁、杏香兔耳风Ainsliaea fragrans、蕨、中华薹草。

    表 3  浙江庆元巾子峰国家森林公园植被群落各群丛环境因子描述
    Table 3  Description of environmental factors for each association in Jinzifeng Forest Park of Qingyuan, Zhejiang
    群丛群丛名称海拔/m坡向坡度/(°)土壤类型土壤温度/℃土壤湿度/%
    黄山松-映山红-东方古柯-少花万寿竹群丛1 200~1 500北    10~30黄壤   15~2016~19
    黄山松-木荷-映山红-多花黄精群丛1 200~1 400西北、东北25~35黄壤   15~2210~32
    甜槠-木荷-黄丹木姜子-少花万寿竹群丛1 000~1 200东    30~35黄壤   24~2512~16
    杉木-毛花连蕊茶-江南卷柏群丛 600~1 300东、西  10~30红壤、黄壤17~2525~52
    杉木-木荷-杜茎山-芒萁群丛500~800东北、东南20~30红壤   17~2218~61
    青冈-木荷-细枝柃-黑足鳞毛蕨群丛500~800东、东南 10~30红壤   18~2618~28
    拟赤杨-虎皮楠-山矾-日本蛇根草群丛500~800东    25~30红壤   19~2319~40
    刨花楠-隔药柃-蕨群丛500~900东南、南 25~45红壤   20~2315~52
    马尾松-木荷-草珊瑚-中华薹草群丛500~900西    10~30红壤   20~2416~39
    毛竹-山鸡椒-地菍群丛500~800西南、西  5~25红壤   21~2523~42
    下载: 导出CSV 
    | 显示表格

    48个样方的去趋势对应分析结果表明:4个排序轴的特征值分别为0.549、0.400、0.295、0.225,因前2个排序轴的特征值比较大,能显示出一定的生态意义,所以采用前2个排序轴的数据分别作二维排序图(图2)。从图2可以看出:去趋势对应分析排序的横轴和纵轴基本反映了不同的生态意义。第1排序轴(横轴)反映了各群丛所在环境的海拔和土壤类型梯度,即沿第1排序轴从左往右,随着海拔高度逐渐升高,土壤类型由红壤变为黄壤;第2排序轴(纵轴)反映了各群丛所在的坡度和土壤情况变化,沿第2排序轴从下往上,坡度由陡坡转为缓坡,土壤温度逐渐降低,土壤湿度逐渐升高。

    图 2  浙江庆元巾子峰国家森林公园植被群落样方的去趋势对应分析排序图
    Figure 2  DCA two-dimensional ordination diagram for samples of plant communities in Jinzifeng Forest Park of Qingyuan, Zhejiang

    结合双向指标种分析的分类结果对排序图进行分析,发现不同的森林群落类型在排序图中呈现出一定规律的分布。黄山松、黄山松-木荷群丛分布在海拔较高的中山带阴坡、半阴坡,土壤类型为黄壤,土壤温度和湿度均较低,位于排序图的右下方。甜槠-木荷群丛分布在中山半阳坡、半阴坡,坡度较陡,土壤类型为黄壤,土壤温度较高,土壤湿度较小,位于排序图的左下方。杉木-毛花连蕊茶群丛分布在中山带半阳坡、半阴坡,土壤类型为红壤或黄壤,位于排序图的中心。杉木-木荷、马尾松-木荷群丛分布在低山半阳坡、半阴坡,土壤类型为红壤,位于排序图的中心靠左位置。青冈-木荷群丛分布在低山半阳坡、半阴坡,土壤类型为红壤,位于排序图的左方。拟赤杨-虎皮楠群丛分布在低山半阳坡,土壤类型为红壤,位于排序图的左上方。刨花楠群丛分布在低山阳坡、半阳坡,土壤类型为红壤,位于排序图的左下方。毛竹群丛分布在低山半阳坡,土壤类型为红壤,位于排序图的上方。

    浙江庆元巾子峰国家森林公园植被群落物种重要值和样方矩阵的典范对应分析排序所有轴的梯度长度最大为4.115,所以选择单峰模型。蒙特卡罗检验结果显示:所有典范排序轴通过统计检验(F=1.629, P=0.002),说明所选择的环境因子对植被群落物种分布具有显著影响。由表4可知:典范对应分析排序轴中前2轴累计解释了物种-环境因子关系的55.2%,说明典范对应分析前2轴能较好地反映森林植被与环境因子之间的关系。根据环境因子与排序轴的相关性大小可知,海拔、土壤类型与第1排序轴呈极显著正相关(P<0.01),土壤温度与第1排序轴呈显著负相关(P<0.05),相关性从大到小依次为海拔、土壤类型、土壤温度,表明第1排序轴反映的是海拔和土壤类型的梯度变化。土壤温度与第2排序轴呈极显著负相关(P<0.01),与坡度呈显著正相关(P<0.05),表明第2排序轴反映了土壤温度的梯度变化。

    表 4  浙江庆元巾子峰国家森林公园植被群落的典范对应分析排序
    Table 4  The CCA analysis of characteristics of the plant communities in Jinzifeng Forest Park of Qingyuan, Zhejiang
    排序轴土壤湿度土壤温度坡度坡向海拔土壤类型特征值物种-环境
    相关性
    物种数据累计
    贡献率/%
    物种-环境因子关系
    数据累计贡献率/%
    第1排序轴−0.171−0.432*−0.038−0.1540.962**0.906**0.4970.9757.338.0
    第2排序轴−0.152−0.699**0.352*0.0030.0590.0440.2240.88510.655.2
    第3排序轴−0.0680.226−0.5060.347*−0.0150.1520.1840.81813.369.2
    第4排序轴0.661**0.140−0.304*0.240−0.022−0.1630.1600.83915.781.5
      说明:**P<0.01, *P<0.05。所有典范轴的显著性监测F=1.629,P=0.002
    下载: 导出CSV 
    | 显示表格

    样方-环境因子的典范对应分析排序图较为直观地呈现了植被群落各群丛类型分布与环境因子的关系(图3),带箭头射线代表环境因子,射线长度表示植被群落与环境因子相关性的大小,射线所在象限表示环境因子与排序轴相关性的正负。典范对应分析排序第1轴代表了海拔和土壤类型,从左往右海拔逐渐升高,土壤由红壤转变为黄壤;第2排序轴代表了土壤温度,从下往上土壤温度逐渐增加。群丛Ⅰ和群丛Ⅱ的分布与海拔和土壤类型关系比较密切,分布在海拔最高的区域,且均是黄壤。群丛Ⅲ分布在较高海拔。群丛Ⅳ分布比较宽泛,在海拔600~1 300 m均有分布,土壤有红壤还有黄壤。群丛Ⅴ和群丛Ⅶ与土壤湿度关系较密切。群丛Ⅷ、群丛Ⅸ和群丛Ⅹ则与土壤温度和土壤湿度关系密切。

    图 3  浙江庆元巾子峰国家森林公园植被群落样方与环境因子的典范对应分析排序图
    Figure 3  CCA diagram for samples and environmental variables of the plant communities in Jinzifeng Forest Park of Qingyuan, Zhejiang

    优势乔木树种对群落结构和群落环境的形成有明显控制作用,个体数量不一定很多,但却能决定群落结构和内部环境条件,是植被群落的建造者。对森林群落中20个优势乔木树种进行典范对应分析排序,排序结果如图4所示。海拔、土壤类型、土壤湿度和坡度对物种分布起决定作用。黄山松分布在中山带阴坡,土壤类型为黄壤,位于排序图的右方。甜槠、锥栗分布在低山半阳坡,土壤类型为黄壤,位于排序图的上方。杉木分布在低山、中山带半阳坡、半阴坡,土壤类型为红壤或黄壤,位于排序图的中间靠上位置。青冈、木荷分布在低山、中山带半阳坡、半阴坡,土壤类型为红壤或黄壤,位于排序图的中间靠下位置。拟赤杨、石栎分布在低山半阳坡,土壤类型为红壤,位于排序图的中间靠左位置。马尾松分布在低山半阳坡,土壤类型为红壤,位于排序图的左方。刨花楠、虎皮楠、栲、米槠、红楠、冬青、薯豆、少叶黄杞、细叶青冈、黄绒润楠分布在低山半阳坡、半阴坡,土壤类型为红壤,位于排序图的左下方。毛竹分布在低山阳坡,土壤类型为红壤,位于排序图的左上方。

    图 4  浙江庆元巾子峰国家森林公园20个优势树种的典范对应分析排序图
    Figure 4  CCA diagram for trees and environmental variables in Jinzifeng Forest Park of Qingyuan, Zhejiang

    本研究根据中国植被群落的分类原则和双向指标种分析方法,将浙江庆元巾子峰国家森林公园内48个样方分成10个群丛。对10个群丛及其相应样方进行去趋势对应分析排序。结果表明:各群丛在排序图中的分布均较为集中,说明去趋势对应分析排序结果与双向指标种分析分类结果较为一致,综合应用双向指标种分析分类和去趋势对应分析排序能够更好地解释森林群落之间的差异性和连续性,这与以往的研究结果相同[13-17]。双向指标种分析数量分类是依据指示种和地区分布差异划分的,而去趋势对应分析是依据排序轴的综合信息,将样方或植物物种排列在一定的空间[2]。去趋势对应分析排序轴能够反映一定的生态梯度。本研究横轴主要反映了样方的海拔高度和土壤类型,纵轴主要反映了样方的土壤温度和坡度。各群丛在排序图中的位置能有效反映出各群丛的环境特征及群丛间的连续分布关系,可以看出植被类型间出现了交错现象,表明植被类型与环境因子间关系比较复杂,植被类型的分布受海拔、土壤环境、坡度、坡向等多种环境因子的共同影响。

    典范对应分析排序与去趋势对应分析排序相比,去趋势对应分析排序仅使用物种数据,在反映样方之间或物种之间的关系上具有较大优势,但不能较好地反映与环境因子之间的相关性;典范对应分析同时使用了物种数据和环境因子数据,能较好地表达群落的环境梯度,排序轴能更好地对环境因子进行解释[2, 4, 18]。本研究划分的10种群丛类型与样方在典范对应分析排序图上的分布格局基本吻合,能较好地揭示植被类型与环境因子之间的关系,反映特定的植被类型对不同的环境因子差异具有指示作用。从典范对应分析排序图上可以看出:海拔、土壤类型和土壤温度这3个主要环境因子共同影响了植被的分布。物种丰富度海拔梯度格局及其形成机制一直是宏观生态学研究的热点。研究表明:海拔梯度是影响植被群落物种分布格局的主要控制因子[4,19]。因为通过海拔梯度的变化可以改变局部水分状况、土壤理化性质、干扰程度等其他生态环境,直接或间接地对群落分布格局产生影响[20-22]。本研究也证明海拔对山地植被分布具有决定性作用,海拔是影响巾子峰国家森林公园植被群落分布的最重要环境因子。

    综上所述,本研究中影响植被群落分布最重要的环境因子是海拔,其次为土壤类型、土壤温度和坡度,土壤湿度和坡向对植被群落分布的影响相对较小。对20个优势树种进行的典范对应分析排序发现,优势树种的分布特征与各群丛及相应样方的分布特征具有较好的相似性,影响各优势树种分布最重要的环境因子也是海拔,其次为土壤类型、土壤温度和坡度。这与各群丛及相应样方典范对应分析排序结果一致,说明各优势树种的分布在一定程度上决定了各群丛类型的分布。

  • 图  1  改性前后生物质炭的扫描电镜图

    Figure  1  X-ray diffraction scanning electron microscope (SEM) images of raw and iron-modified biochars

    图  2  改性前后生物质炭的红外光谱图

    Figure  2  X-ray diffraction Fourier transform infrared (FTIR) spectrometry of raw and iron-modified biochars

    图  3  不同施炭处理土壤对砷(Ⅴ)的等温吸附曲线

    Figure  3  Sorption isotherms of As(Ⅴ) on the control and biochar-treated soils

    图  4  不同施炭处理土壤对砷(Ⅴ)的Langmuir模型吸附拟合曲线

    Figure  4  Langmuir sorption isotherms of As(Ⅴ) on the control and biochar-treated soils

    图  5  吸附时间对不同生物质炭处理土壤吸附砷(Ⅴ)的影响

    Figure  5  Effect of time on As(Ⅴ) adsorption on the control and biochar-treated soils

    图  6  砷(Ⅴ)在不同施炭处理土壤中准一级线性方程(A)、准二级线性方程(B)和颗粒内扩散方程(C)的拟合曲线

    Figure  6  Sorption kinetic curves of the pseudo-first-order kinetics (A), the pseudo-second-order kinetics (B) and internal diffusional models (C) for the adsorption of As(Ⅴ) on the control and biochar-treated soils

    表  1  生物质炭改性前后的基本理化性质

    Table  1.   Properties of the raw and Fe-modified biochars

    生物质炭碳质量
    分数/%
    氢质量
    分数/%
    氮质量
    分数/%
    比表面积/
    (m2·g−1)
    pH电导率/
    (dS·m−1)
    灰分质量
    分数/%
    阳离子交
    换量/(cmol·kg−1)
    总铁质量
    分数/(g·kg−1)
    原始生物质炭 69.342.741.11110.709.250.37 9.6621.59 4.72
    铁改性生物质炭59.912.240.94 74.474.414.4915.7716.7039.89
    下载: 导出CSV

    表  2  不同施炭处理土壤对砷()的Langmuir吸附模型拟合参数

    Table  2.   Parameters of Langmuir isotherms for the adsorption of As(Ⅴ) on the control and biochar-treated soils

    处理Qm/(mg·g−1)KL/(L·mg−1)R2
    未施炭处理    0.250.0320.997
    原始生物质炭处理 0.310.0510.999
    铁改性生物质炭处理0.360.0460.997
    下载: 导出CSV

    表  3  砷()在不同处理土壤中的吸附动力学拟合参数

    Table  3.   Parameters of kinetic models for the adsorption of As(Ⅴ) on the control and biochar-treated soils

    处理准一级动力学方程准二级动力学方程颗粒内扩散方程
    K1/h−1R2Qe/
    (mg·g−1)
    K2/
    (mg·g−1·h−1)
    R2Qe/
    (mg·g−1)
    Kp1/
    (mg·g−1·h−1)
    Kp2/
    (mg·g−1·h−1)
    R12R22
    未施炭处理    0.9090.9520.1874.8650.9940.1850.063 20.015 40.8340.946
    原始生物质炭处理 0.8270.9740.5802.9260.9880.1850.035 20.018 30.8820.991
    铁改性生物质炭处理0.4250.9280.1824.3710.9960.2060.046 60.020 80.9440.983
    下载: 导出CSV
  • [1] 段志斌, 胡丰青, 安吉平, 等. 土壤砷污染及其植物修复技术研究进展[J]. 现代农业科技, 2016(14): 190 − 193.

    DUAN Zhibin, HU Fengqing, AN Jiping, et al. Progress on soil arsenic contamination and its phytoremediation technology [J]. Modern Agric Sci Technol, 2016(14): 190 − 193.
    [2] YANG Ningfang, WINKEL L H E, JOHANNESSON K H, et al. Correction to predicting geogenic arsenic contamination in shallow groundwater of south Louisiana, United States [J]. Environ Sci Technol, 2014, 48(13): 5660 − 5666.
    [3] 纪冬丽, 孟凡生, 薛浩, 等. 国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报, 2016, 6(1): 90 − 99.

    JI Dongli, MENG Fansheng, XUE Hao, et al. Situation and prospect of soil arsenic pollution and its remediation techniques at home and abroad [J]. J Environ Eng Technol, 2016, 6(1): 90 − 99.
    [4] 杨兴, 黄化刚, 王玲, 等. 烟秆生物质炭热解温度优化及理化性质分析[J]. 浙江大学学报 (农业与生命科学版), 2016, 42(2): 245 − 255.

    YANG Xing, HUANG Huagang, WANG Ling, et al. Pyrolysis temperature optimization of biochar from tobacco stalk and its physicochemical characterization [J]. J Zhejiang Univ Agric Life Sci, 2016, 42(2): 245 − 255.
    [5] 温尔刚, 赵伟宁, 杨兴, 等. 法国梧桐叶片炭和枝条炭对水中Pb2+的吸附特性影响[J]. 水土保持学报, 2019, 33(2): 309 − 316.

    WEN Ergang, ZHAO Weining, YANG Xing, et al. Effect of biochars derived from platanus orientalis branches and leaves on the adsorption of Pb2+ in aqueous solution [J]. J Soil Water Conserv, 2019, 33(2): 309 − 316.
    [6] 刘晶晶, 杨兴, 陆扣萍, 等. 生物质炭对土壤重金属形态转化及其有效性的影响[J]. 环境科学学报, 2015, 35(11): 3679 − 3687.

    LIU Jingjing, YANG Xing, LU Kouping, et al. Effect of bamboo and rice straw biochars on the transformation and bioavailability of heavy metals in soil [J]. Acta Sci Circ, 2015, 35(11): 3679 − 3687.
    [7] 李梦柯, 周丹, 高震, 等. 稻壳生物炭对污染土壤中稀土元素生物有效性的影响[J]. 中国环境科学, 2018, 38(10): 3823 − 3832.

    LI Mengke, ZHOU Dan, GAO Zhen, et al. Effect of rice husk biochar on bioavailability of rare earth elements in polluted soil [J]. China Environ Sci, 2018, 38(10): 3823 − 3832.
    [8] ZHANG Feng, WANG Xin, JI Xionghui, et al. Efficient arsenate removal by magnetite-modified water hyacinth biochar [J]. Environ Pollut, 2016, 216: 575 − 583.
    [9] 杜艳艳. 负载铁生物炭和氧化钙对稻田土壤砷、镉的钝化效能与机理[D]. 长沙: 湖南师范大学, 2018.

    DU Yanyan. The Efficiency and Menchanism of As and Cd Immobilization by Fe-impregnated Biochar and CaO in Paddy Soil[D]. Changsha: Hunan Normal University, 2019.
    [10] BOLAN N, MAHIMAIRAJA S, KUNHIKRISHNAN A, et al. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils [J]. J Hazardous Mater, 2013, 261: 725 − 732.
    [11] KATSOYIANNIS I A, RUETTIMANN T, HUG S J. pH dependence of Fenton reagent generation and As(Ⅲ) oxidation and removal by corrosion of zero valent iron in aerated water [J]. Environ Sci Technol, 2008, 42(19): 7424 − 7430.
    [12] 胡立琼, 曾敏, 雷鸣, 等. 含铁材料对污染水稻土中砷的稳定化效果[J]. 环境工程学报, 2014, 8(4): 1599 − 1604.

    HU Liqiong, ZENG Min, LEI Ming, et al. Stabilization effects of iron-containing materials on arsenic in contaminated paddy soils [J]. Chin J Environ Eng, 2014, 8(4): 1599 − 1604.
    [13] CHEN  Hanbo,  YANG  Xing,  WANG  Hailong, et al. Animal  carcass-  and  wood-derived  biochars  improved  nutrientbioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: a trial for reclamationand improvement of degraded soils [J]. J Environ Manage, 2020 (261). doi: 10.1016/j.jenvman.2020.110246.
    [14] YANG Xing, LIU Jingjing, MCGROUTHER K, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil [J]. Environ Sci Pollut Res, 2016, 23(2): 974 − 984.
    [15] QIN Ping, WANG Hailong, YANG Xing, et al. Bamboo- and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils [J]. Chemosphere, 2018, 198: 450 − 459.
    [16] CHEN Hanbo, YANG Xing, GIELEN G, et al. Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate toBrassica chinensis L. in contaminated soils [J]. Sci Total Environ, 2019, 678: 43 − 52.
    [17] 钱钱, 杨兴, 郭明, 等. 生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响[J]. 浙江农林大学学报, 2019, 36(6): 1051 − 1061.

    QIAN Qian, YANG Xing, GUO Ming, et al. Adsorption of Zn2+ from a Zn2+-DEP(diethyl phthalate)composite solution using biochars in soil [J]. J Zhejiang A&F Univ, 2019, 36(6): 1051 − 1061.
    [18] HOUBEN D, EVRARD L, SONNET P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.) [J]. Biomass Bioenergy, 2013, 57: 196 − 204.
    [19] YANG Xing, LU Kouping, MCGROUTHER K, et al. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs [J]. J Soils Sediments, 2017, 17: 751 − 762.
    [20] 唐行灿. 生物炭修复重金属污染土壤的研究[D]. 泰安: 山东农业大学, 2013.

    TANG Xingcan. Amelioration Effect of Biochar on Heavy Metal Contaminated Soil[D]. Tai’an: Shandong Agricultural University, 2013.
    [21] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review [J]. Chemosphere, 2014, 99: 19 − 33.
    [22] 王红, 夏雯, 卢平, 等. 生物炭对土壤中重金属铅和锌的吸附特性[J]. 环境科学, 2017, 38(9): 3944 − 3952.

    WANG Hong, XIA Wen, LU Ping, et al. Adsorption characteristics of biochar on heavy metals (Pb and Zn) in soil [J]. Environ Sci, 2017, 38(9): 3944 − 3952.
    [23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [24] 胡志新, 时萌, 孙菁, 等. 改性芦苇生物质炭对水中硝态氮的吸附特性[J]. 江苏农业科学, 2018, 46(24): 359 − 362.

    HU Zhixin, SHI Meng, SUN Jing, et al. Adsorption characteristics of modified reed biomass carbon for nitrate nitrogen in water [J]. Jiangsu Agric Sci, 2018, 46(24): 359 − 362.
    [25] SWIATKOWSKI A, PAKULA M, BINIAK S, et al. Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(Ⅱ) ions [J]. Carbon, 2004, 42(15): 3057 − 3069.
    [26] ODEH A O. Qualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks [J]. J Fuel Chem Technol, 2015, 43(2): 129 − 137.
    [27] LIU Zhengang, ZHANG Fusheng, SASAI R. Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass [J]. Chem Eng J, 2010, 160(1): 57 − 62.
    [28] 赫斌, 陈亚君, 林军, 等. 改性生物质炭对水溶液中Hg2+的吸附性能研究[J]. 南京师范大学学报(工程技术版), 2018, 18(1): 86 − 92.

    HE Bin, CHEN Yajun, LIN Jun, et al. The Investigation of modified biochar’s adsorption performance on Hg2+ in solution [J]. J Nanjing Norm Univ Eng Technol Ed, 2018, 18(1): 86 − 92.
    [29] 秦艳敏, 梁美娜, 王敦球, 等. 桑树杆生物炭/铁锰氧化物复合吸附剂的制备及其对As(Ⅴ)的吸附机理研究[J]. 农业环境科学学报, 2016, 35(7): 1398 − 1406.

    QIN Yanmin, LIANG Meina, WANG Dunqiu, et al. Preparation and arsenic adsorption and its mechanisms by mulberry stem biochar/Fe -Mn oxides composite adsorbent [J]. J Agro-Environ Sci, 2016, 35(7): 1398 − 1406.
    [30] REGMI P, MOSCOSO J L G, KUMAR S, et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process [J]. J Environ Manage, 2012, 109: 61 − 69.
    [31] ZHANG Hanzhi, CHEN Chengrong, GRAY E M, et al. Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus [J]. Geoderma, 2016, 276: 1 − 6.
    [32] 胡锋平, 罗文栋, 彭小明, 等. 改性生物质炭去除水中污染物的研究进展[J]. 工业水处理, 2019, 39(4): 1 − 4.

    HU Fengping, LUO Wendong, PENG Xiaoming, et al. Research progress in modified biochar for the removal of pollutants from water [J]. Ind Water Treat, 2019, 39(4): 1 − 4.
    [33] CHANG Minyun, JUANG Rueyshin. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. J Colloid Interface Sci, 2004, 278(1): 18 − 25.
    [34] MARIA E, GEORGE P, MANISH P, et al. Adsorption of As(Ⅴ) and As(Ⅲ) by nanocrystalline titanium dioxide [J]. Water Res, 2005, 39(11): 2327 − 2337.
    [35] VIMONSES V, LEI Shaomin, JIN Bo, et al. Kinetic study and equilibrium isotherm analysis of congo red adsorption by clay materials [J]. Chem Eng J, 2008, 148(2/3): 354 − 364.
    [36] 李丽, 陈旭, 吴丹, 等. 固定化改性生物质炭模拟吸附水体硝态氮潜力研究[J]. 农业环境科学学报, 2015, 34(1): 137 − 143.

    LI Li, CHEN Xu, WU Dan, et al. Adsorption of aqueous Nitrate-N by immobilized modified biochar [J]. J Agro-Environ Sci, 2015, 34(1): 137 − 143.
    [37] BOLANZ R M, BLAESS U, ACKERMANN S, et al. The effect of antimonate, arsenate, and phosphate on the transformation of ferrihydrite to goethite, hematite, feroxyhyte, and tripuhyite [J]. Clays Clay Miner, 2013, 61(1/2): 11 − 25.
    [38] 王颖馨, 周雪婷, 卜洪龙, 等. 高铁酸钾的制备及其对水中As(Ⅲ), Pb(Ⅱ)的去除效能研究[J]. 华南师范大学学报(自然科学版), 2015, 47(4): 80 − 87.

    WANG Yingxin, ZHOU Xueting, BU Honglong, et al. Preparation of potassium ferrate and its effectiveness on the removal of As(Ⅲ) and Pb(Ⅱ) [J]. J South China Normal Univ Nat Sci Ed, 2015, 47(4): 80 − 87.
    [39] 董双快, 徐万里, 吴福飞, 等. 铁改性生物炭促进土壤砷形态转化抑制植物砷吸收[J]. 农业工程学报, 2016, 32(15): 204 − 212.

    DONG Shuangkuai, XU Wanli, WU Fufei, et al. Fe-modified biochar improving transformation of arsenic form in soil and inhibiting its absorption of plant [J]. Trans Chin Soc Agric Eng, 2016, 32(15): 204 − 212.
  • [1] 王瑞萍, 杨兴, 高玉蓉, 陆扣萍, 何丽芝, 吴家森, 王海龙.  锰改性生物质炭对砷铅在大蒜中积累及土壤酶活性的影响 . 浙江农林大学学报, 2024, 41(5): 1024-1036. doi: 10.11833/j.issn.2095-0756.20230584
    [2] 毛浩楠, 杨兴, 陆扣萍, 吴家森, 王海龙.  铁改性生物质炭对农田土壤养分及砷、铅有效性的影响 . 浙江农林大学学报, 2024, 41(6): 1222-1232. doi: 10.11833/j.issn.2095-0756.20240171
    [3] 李钧洋, 霍丽竹, 龚著祥, 许浩, 王宇轩, 郭超飞, 杨雪娟, 罗锡平.  木质素磺酸钠吸附材料的制备及对刚果红的吸附性能 . 浙江农林大学学报, 2024, 41(4): 870-878. doi: 10.11833/j.issn.2095-0756.20230585
    [4] 张弼, 方先芝, 马嘉伟, 吴愉萍, 潘贤, 叶黎挺, 柳丹, 叶正钱.  果园废弃物生物质炭在果园中应用效果的研究进展 . 浙江农林大学学报, 2023, 40(2): 453-464. doi: 10.11833/j.issn.2095-0756.20220535
    [5] 闫芳彬, 郑景明, 宫殷婷, 赵一臣, 张家琦.  园林废弃物资源化处理对人工林土壤养分及微生物碳源利用的影响 . 浙江农林大学学报, 2023, 40(5): 1045-1053. doi: 10.11833/j.issn.2095-0756.20220620
    [6] 史航, 李兵, 郭建忠.  功能化枝状复合吸附材料的制备及吸附Cr(Ⅵ)的性能 . 浙江农林大学学报, 2022, 39(2): 396-404. doi: 10.11833/j.issn.2095-0756.20200119
    [7] 胡自航, 赵霞, 董晓芸, 郑景明, 蒋丽伟.  污泥与园林废弃物混合堆肥施用量对林地土壤重金属质量分数及微生物活性的影响 . 浙江农林大学学报, 2021, 38(1): 31-37. doi: 10.11833/j.issn.2095-0756.20200262
    [8] 李思艳, 刘俊蕃, 李梅.  不同官能团多壁碳纳米管对镉的吸附及细菌毒性 . 浙江农林大学学报, 2021, 38(2): 355-361. doi: 10.11833/j.issn.2095-0756.20200297
    [9] 孟童瑶, 李素艳, 邹荣松, 余克非, 付冰妍, 揭阳.  固定化木质素降解菌对园林废弃物堆肥的影响 . 浙江农林大学学报, 2021, 38(1): 38-46. doi: 10.11833/j.issn.2095-0756.20200219
    [10] 欧盛业, 丁黎, 余宁尔, 吴胜春, 梁鹏.  牦牛废弃物对沙化土壤养分淋溶损失的影响 . 浙江农林大学学报, 2020, 37(6): 1088-1096. doi: 10.11833/j.issn.2095-0756.20190703
    [11] 胡蝶, 李文奇, 张利萍, 关莹, 高慧.  废报纸生物质炭的制备及对铜离子的吸附性能 . 浙江农林大学学报, 2020, 37(2): 325-334. doi: 10.11833/j.issn.2095-0756.2020.02.018
    [12] 钱钱, 杨兴, 郭明, 秦鹏, 徐颂, 王海龙.  生物质炭对土壤吸附Zn2+-DEP复合污染溶液中Zn2+的影响 . 浙江农林大学学报, 2019, 36(6): 1051-1061. doi: 10.11833/j.issn.2095-0756.2019.06.001
    [13] 肖继波, 黄志达, 陈玉莹, 瞿倩, 褚淑祎.  高效除磷型底泥陶粒的制备及性能分析 . 浙江农林大学学报, 2019, 36(2): 415-421. doi: 10.11833/j.issn.2095-0756.2019.02.024
    [14] 朱光耀, 何丽芝, 秦鹏, 杨兴, 陆扣萍, 刘兴元, 王海龙.  施用猪炭对土壤吸附Pb2+的影响 . 浙江农林大学学报, 2019, 36(3): 573-580. doi: 10.11833/j.issn.2095-0756.2019.03.019
    [15] 包骏瑶, 赵颖志, 严淑娴, 白珊, 李松昊, 徐秋芳, 叶正钱, 沈颖, 陈俊辉.  不同农林废弃物生物质炭对雷竹林酸化土壤的改良效果 . 浙江农林大学学报, 2018, 35(1): 43-50. doi: 10.11833/j.issn.2095-0756.2018.01.006
    [16] 赵伟宁, 杨兴, 何丽芝, 郭佳, 王海龙.  热解温度对典型南方木本园林废弃物生物质炭理化特性的影响 . 浙江农林大学学报, 2018, 35(6): 1007-1016. doi: 10.11833/j.issn.2095-0756.2018.06.003
    [17] 沈振明, 夏俊, 戴勇, 沈秋兰, 李永春, 徐秋芳.  阴离子淀粉对土壤养分离子的吸附作用 . 浙江农林大学学报, 2014, 31(3): 366-372. doi: 10.11833/j.issn.2095-0756.2014.03.006
    [18] 吴光前, 孙新元, 张齐生.  活性炭表面氧化改性技术及其对吸附性能的影响 . 浙江农林大学学报, 2011, 28(6): 955-961. doi: 10.11833/j.issn.2095-0756.2011.06.020
    [19] 窦春英, 徐温新, 叶正钱, 张圆圆, 姚芳, 吕家珑.  6种典型农田土壤的锌吸附-解吸特性 . 浙江农林大学学报, 2010, 27(1): 8-14. doi: 10.11833/j.issn.2095-0756.2010.01.002
    [20] 周兵, 安传福, 董云发, 强胜.  用大孔吸附树脂分离链格孢菌毒素 . 浙江农林大学学报, 2007, 24(2): 198-202.
  • 期刊类型引用(2)

    1. 赵若雨,郭晓雪,朱文慧,李瑞梅,赵佳雪,杜丹,代丽,刘志国,王立新,刘孟军. 枣77个品种果肉愈伤组织诱导培养研究. 园艺学报. 2024(04): 903-914 . 百度学术
    2. 谢钰,刘婉婷,崔珺,成仿云,钟原. 远缘杂种牡丹分生结节诱导及不定芽分化. 植物研究. 2024(05): 702-710 . 百度学术

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200392

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/2/346

图(6) / 表(3)
计量
  • 文章访问数:  1551
  • HTML全文浏览量:  293
  • PDF下载量:  85
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-06-19
  • 修回日期:  2020-12-22
  • 网络出版日期:  2021-04-01
  • 刊出日期:  2021-04-01

施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响

doi: 10.11833/j.issn.2095-0756.20200392
    基金项目:  国家自然科学基金资助项目(21876027);佛山市科技创新团队项目(1920001000083)
    作者简介:

    戴志楠(ORCID: 0000-0002-3946-9813),从事农业废弃物资源化利用研究。E-mail: daizhinan123@126.com

    通信作者: 王海龙(ORCID: 0000-0002-6107-5095 ),教授,博士,博士生导师,从事生物质炭的环境功能和土壤修复研究。E-mail: Hailong@zafu.edu.cn
  • 中图分类号: S153.6

摘要:   目的  考察生物质炭及铁改性生物质炭对土壤吸附砷[As(Ⅴ)]的影响。  方法  以法国梧桐Platanus orientalis修剪枝为原料在650 ℃限氧条件下热解制备生物质炭,并通过氯化铁(FeCl3)溶液浸渍、热解,将其进一步制备成铁改性生物质炭,对比考察改性后生物质炭理化性质和表面官能团的变化;并通过批量吸附试验探究不同As (Ⅴ)初始质量浓度、吸附时间对施炭土壤吸附As (Ⅴ)效果和规律的影响,通过分析吸附等温线特征和吸附动力学特征,探明吸附机制。  结果  铁改性生物质炭较原始生物质炭pH、比表面积及官能团数量降低,但灰分质量分数和电导率有所增加;Langmuir模型能较好拟合施炭土壤对As(Ⅴ)的吸附过程,表明吸附以单分子层为主。当As (Ⅴ)溶液初始质量浓度大于25 mg·L−1后,铁改性生物质炭对As (Ⅴ)的吸附量大于原始生物质炭,且最大吸附量为0.36 mg·g−1。原始生物质炭和铁改性生物质炭对As (Ⅴ)的动力学吸附符合准二级动力学方程,吸附过程在4 h前后分别为快速吸附和慢速吸附2个阶段,在24 h左右趋于平衡,且铁改性生物质炭处理下土壤的饱和吸附量比原始生物质炭处理高11%。  结论  施用2种生物质炭均能提高土壤对As (Ⅴ)的吸附效果,且铁改性生物质炭的吸附效果优于原始生物质炭。因此,施用铁改性生物质炭可以加强土壤对As (Ⅴ)的吸附作用从而降低As生物有效性。图6表3参39

English Abstract

李伟成, 郑彦超, 盛海燕, 等. 浙江庆元巾子峰国家森林公园植被群落的数量分类与排序[J]. 浙江农林大学学报, 2021, 38(3): 523-533. DOI: 10.11833/j.issn.2095-0756.20200393
引用本文: 戴志楠, 温尔刚, 陈翰博, 等. 施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响[J]. 浙江农林大学学报, 2021, 38(2): 346-354. DOI: 10.11833/j.issn.2095-0756.20200392
LI Weicheng, ZHENG Yanchao, SHENG Haiyan, et al. Numerical classification and ordination of vegetation communities in Jinzifeng National Forest Park, Qingyuan, Zhejiang[J]. Journal of Zhejiang A&F University, 2021, 38(3): 523-533. DOI: 10.11833/j.issn.2095-0756.20200393
Citation: DAI Zhinan, WEN Ergang, CHEN Hanbo, et al. Effect of raw and iron-modified biochar on the sorption of As (Ⅴ) by soils[J]. Journal of Zhejiang A&F University, 2021, 38(2): 346-354. DOI: 10.11833/j.issn.2095-0756.20200392
  • 砷(As)在自然环境中分布较为广泛。近年来,由于含As矿物的开采加工和含As废弃物处理不当等原因造成了中国农田土壤中As含量不断上升[1]。据调查统计,中国产生含As矿渣50万t·a−1,已囤积的As渣超过200万t,约有2 000万人生活在土壤As污染高风险区域[2-3]。在从源头进行调控的同时,寻求一种合理且高效的土壤As污染治理方法已迫在眉睫。生物质炭作为一种新兴吸附剂,是将生物质材料置于高温限氧环境中热解后得到的一类稳定的、高度芳香化且含碳丰富的固态物质[4]。生物质炭具有孔隙发达,比表面积较大,阳离子交换性能较强等优点[5],将它作为吸附剂施入土壤后可钝化土壤中重金属,降低其生物有效性[6]。李梦柯等[7]研究发现:施用10%稻壳生物质炭可显著降低土壤中重金属有效态的含量。As(Ⅴ)通常比As(Ⅲ)更容易被吸附在铁介质表面上,当铁处于氧化态时,As(Ⅲ)将被氧化为As(Ⅴ),从而促进As从不稳定态向稳定态转化[8]。将含铁材料施入土壤后可影响土壤pH,进而影响土壤胶体的表面电荷和土壤中As的形态[9-10]。铁改性生物质炭施入土壤后,铁材料在被氧化生成铁氧化物的过程中可以通过共沉淀的方式固定土壤中的As。另外,生物质炭表面存在—OH、—COOH等含氧官能团,可以与土壤中的As生成非晶态的难溶络合物[11]。胡立琼等[12]将氯化铁(FeCl3)、氯化亚铁(FeCl2)、铁(Fe0)和氧化铁(Fe2O3)等4种含铁材料加入As污染水稻Oryza sativa土中,这4种材料对As均有较好的稳定效果,且以FeCl3效果最好。园林废弃物,即园林植物自然凋落或人工修剪所产生的植物残体,主要有草屑、树叶、乔灌木剪枝和死亡植株等[5]。随着城市园林绿化面积的增加,园林废弃物的产生量也在逐年增加。有学者通过园林废弃物热解工艺将其制备成生物质炭并将其施入土壤,可有效提高土壤有机碳含量,增强土壤保水保肥能力[13],还可以有效吸附土壤中重金属污染物,降低重金属在土壤中的迁移性和生物有效性[14]。目前,已有不少研究利用园林废弃物制备生物质炭进行重金属污染土壤修复[15-17],但将它进行载铁改性作为吸附剂用以固定As(Ⅴ)的研究鲜有报道。本研究以典型园林废弃物法国梧桐Platanus orientalis的修剪枝为原料制备铁改性生物质炭,与土壤混合制备炭土混合物,用于批量吸附试验[16, 18-19],研究施用改性生物质炭后,土壤对溶液中As(Ⅴ)的吸附效果。此外,本研究通过拟合等温吸附模型和动力学吸附模型考察As(Ⅴ)溶液初始质量浓度和吸附时间对吸附效果的影响,初步揭示其吸附机制,以期为生物质炭及铁改性生物质炭在As(Ⅴ)污染土壤治理方面的应用提供依据。

    • 所用土壤采自浙江省杭州市临安区竹林村的一处菜地。根据中国土壤质地分类标准,该土壤为粉砂质黏壤土。将所采土壤于自然条件下风干、剔除碎石及植物根系等杂物,研磨并过2 mm筛备用。

      法国梧桐修剪枝由诚邦生态环境股份有限公司提供。将枝条切碎通风晾干至恒量后,使用小型炭化设备(ECO-8-10,湖州宜可欧环保科技有限公司)在限氧条件下热解制备生物质炭。设置热解炉的升温速率为25 ℃·min−1,当温度上升至650 ℃后保持2 h,使样品充分热解制备成生物质炭。将生物质炭研磨后过2.000 mm和0.145 mm筛待用,取一定量过2.000 mm筛,以炭铁质量比为20∶1的比例加入FeCl3溶液中,充分搅拌后将溶液-炭混合物放入超声仪中,在25 ℃条件下超声1 h使其混合均匀;放入恒温烘箱中于65 ℃条件下烘干至恒量;再置于炭化炉中于650 ℃条件下再次热解1 h,得到铁改性生物质炭。将制备完成的铁改性生物质炭研磨过筛后备用。

    • 分别将原始生物质炭和铁改性生物质炭以3%的质量分数与供试土壤混合制成炭土混合物[20-22],分别标记为原始生物质炭处理和铁改性生物质炭处理,以不施炭的土壤为对照。

      等温吸附试验:以砷酸二氢钠(Na2HAsO4·7H2O)为试剂配置质量浓度为1 000 mg·L−1的As(Ⅴ)溶液,以0.01 mol·L−1的NaCl溶液作为支持电解质。分别称取1.00 g未施炭对照土壤和施炭土壤,投加到25 mL As(Ⅴ)初始质量浓度分别为0、2、5、10、20、40、100、200 mg·L−1的As(Ⅴ)溶液中,调节pH为7.0,于25 ℃恒温摇床中以180 r·min−1振荡24 h,而后在3 500 r·min−1的转速下离心20 min,经0.45 μm尼龙滤膜过滤,取滤液用电感耦合等离子体发射光谱(ICP-OES)测定溶液中As(Ⅴ)的质量浓度。

      动力学吸附试验:分别称取1.00 g未施炭对照土壤和施炭土壤,投加到25 mL 40 mg·L−1的As(Ⅴ)溶液中,调节pH至7.0,放入恒温摇床中在25 ℃条件下以180 r·min−1振荡,分别于0.5、1.0、2.0、4.0、8.0、12.0、18.0、24.0 h取出,于3 500 r·min−1的转速下离心20 min,后经0.45 μm尼龙滤膜过滤,取滤液用ICP-OES测定溶液中As(Ⅴ)的质量浓度。

    • 供试土壤基本理化性质按照《土壤农业化学分析方法》[23]中的方法测定。土壤砂粒、粉粒和黏粒质量分数分别为19.7%、34.9%和45.4%。根据联合国粮农组织(FAO)的分类体系,该土壤为黏壤土。其有机质质量分数为3.08%,土壤pH为5.14,阳离子交换量为12.9 cmol·kg−1,电导率为0.10 dS·m−1,在该土壤中未检出As(Ⅴ)。供试生物质炭的基本理化性质测定参照YANG等[14]。2种生物质炭的元素组成采用元素分析仪(Flash EA1112,Thermo Finnigan,意大利)测定,表面形貌特征采用扫描电镜(SEM)分析仪(SU-8010,日立公司,日本)分析,表面官能团采用傅里叶红外光谱仪(FTIR)(NICOLET iS10,Thermo Fisher Scientific,美国)测定。利用比表面积及孔隙度仪(TristarⅡ3020,Micromeritica Instument Corporation,美国),根据BET法测定生物质炭比表面积,用干烧法测定灰分质量分数[16]

    • 采用Microsoft Excel 2013进行数据处理,Origin 8.5进行模型拟合及作图。

    • 等温吸附模型。Langmuir方程线性式:Ce/Qe=1/(KLQm)+Ce/Qm。其中,Ce表示平衡时溶液中的As(Ⅴ)质量浓度(mg·L−1);Qe表示平衡时单位质量的土壤吸附As(Ⅴ)的量(mg·g−1);Qm为土壤对As(Ⅴ)的饱和吸附量(mg·g−1);KL为吸附速率常数(L·mg−1)。

      吸附动力学模型。准一级线性方程(1)、准二级线性方程(2)和颗粒内扩散线性方程(3):

      $${1/{Q_t} = {K_{1}}/ \left( {{Q_{\rm{e}}}t} \right) + 1/{Q_{\rm{e}}}}\text{;}$$ (1)
      $${t/{Q_t} = 1/{K_2}Q_{\rm{e}}^2 + t/{Q_{\rm{e}}}}\text{;}$$ (2)
      $${Q_t} = {K_{\rm{p}}}{t^{0.5}} + {\rm{C}}\text{。}$$ (3)

      式(1)~式(3)中:t为吸附时间(h);Qtt时刻时单位质量的土壤吸附As(Ⅴ)的量(mg·g−1);Qe为平衡时单位质量的土壤吸附As(Ⅴ)的量(mg·g−1);K1为准一级反应速率常数(h−1),K2为准二级反应速率常数[mg·(g·h)−1],Kp为颗粒内扩散速率常数(mg·g−1·h0.5);C是由数据代入公式中得出的常数。

    • 表1所示:铁改性生物质炭的pH为4.41,较原始生物质炭pH(9.25)明显降低,这是由于经过铁改性处理后的生物质炭表面的铁化合物水解后会产生大量的氢离子(H+),且改性处理会使生物质炭表面的碱性官能团数量减少,从而使生物质炭的pH降低[24]。铁改性生物质炭的灰分含量和电导率均高于原始生物质炭,这一方面是因为铁的负载使铁氧化物增加,另一方面氯离子(Cl)的大量引入增大了电荷之间的移动性;与原始生物质炭相比,改性后生物质炭的比表面积(74.5 m2·g−1)有所减小,这与王思源等[9]的研究结果相一致,主要是由于改性过程中铁化合物进入生物质炭孔隙内,使部分孔隙被堵塞导致其比表面积减小。此外,改性过后生物质炭的铁质量分数是原始生物质炭的8倍,这也验证了铁材料在生物质炭表面的成功负载。

      表 1  生物质炭改性前后的基本理化性质

      Table 1.  Properties of the raw and Fe-modified biochars

      生物质炭碳质量
      分数/%
      氢质量
      分数/%
      氮质量
      分数/%
      比表面积/
      (m2·g−1)
      pH电导率/
      (dS·m−1)
      灰分质量
      分数/%
      阳离子交
      换量/(cmol·kg−1)
      总铁质量
      分数/(g·kg−1)
      原始生物质炭 69.342.741.11110.709.250.37 9.6621.59 4.72
      铁改性生物质炭59.912.240.94 74.474.414.4915.7716.7039.89

      对比2种生物质炭的扫描电镜图(图1)可以看出,改性前后生物质炭均呈排列均匀的管束结构,说明原始生物质法国梧桐枝条的导管结构经炭化后仍被保存。原始生物质炭表面较为光滑,结构层次更为清晰;在经过FeCl3改性后,铁改性生物质炭的横截面略为粗糙,呈蜂窝状,这可能是改性过程导致生物质炭表面的孔隙被堵塞。这与改性后生物质炭的比表面积降低的结果一致(表1)。

      图  1  改性前后生物质炭的扫描电镜图

      Figure 1.  X-ray diffraction scanning electron microscope (SEM) images of raw and iron-modified biochars

      由FTIR图谱(图2)可见:2种生物质炭具有4个大致相同的特征峰,在3 400~3 500 cm−1处的宽峰是由2种生物质炭中羟基(O—H)的伸缩振动形成;1 448~1 576 cm−1处的特征峰主要是由羰基C=O的伸缩振动引起的,又包含共轭的C=C伸缩振动,与SWIATKOWSKI等[25]的研究结果一致。650~1 000 cm−1处表示的是芳香结构取代基C—H面外伸缩振动峰[26]。与原始生物质炭相比,铁改性生物质炭在1 448~1 576 cm−1的峰高强度降低,推断这可能是由生物质炭二次裂解导致部分官能团丢失。杨兴等[4]研究表明:随着热解温度和时间的增加,生物质炭表面的官能团逐渐降低甚至消失。值得注意的是,2种生物质炭在600 cm−1附近的波形图有所差异,有研究表明:该区域为Fe—O基团的弯曲振动[27],这进一步验证了铁材料在生物质炭表面的成功负载。

      图  2  改性前后生物质炭的红外光谱图

      Figure 2.  X-ray diffraction Fourier transform infrared (FTIR) spectrometry of raw and iron-modified biochars

    • 土壤对As的吸附是一个动态平衡的过程,吸附等温线是反映吸附剂与吸附质亲和力强弱的重要依据[28]。由图3可知:溶液中As(Ⅴ)的初始质量浓度与平衡吸附量之间关系密切,2种施炭土壤对As(Ⅴ)的平衡吸附量随As(Ⅴ)初始质量浓度的升高而逐渐增大,增加的速度遵循先快后慢的规律,最后趋于平衡。2种施炭土壤的吸附过程基本一致,当As(Ⅴ)溶液初始质量浓度小于25 mg·L−1时,2种施炭土壤对As(Ⅴ)的平衡吸附量也基本一致;但当As(Ⅴ)初始质量浓度大于25 mg·L−1后,铁改性生物质炭处理对As(Ⅴ)的平衡吸附量逐渐大于原始生物质炭,As(Ⅴ)初始质量浓度为200 mg·L1时其平衡吸附量比原始生物质炭高19%。由于在一定条件下土壤对As(Ⅴ)的吸附点位是一定的,随着As(Ⅴ)质量浓度的增加,有限的吸附点位被占据,逐渐减少的吸附位点使土壤对As(Ⅴ)的吸附趋于缓慢[29]

      图  3  不同施炭处理土壤对砷(Ⅴ)的等温吸附曲线

      Figure 3.  Sorption isotherms of As(Ⅴ) on the control and biochar-treated soils

      本研究采用Langmuir等温吸附模型对数据进行拟合。从拟合结果(表2图4)可知:Langmuir方程的相关系数R2为0.997~0.999,能较好地对数据进行拟合,这表明施炭土壤对As(Ⅴ)的整个吸附过程以单分子层吸附为主[30]。Langmuir等温吸附模型中对照土壤、原始生物质炭和铁改性生物质炭的最大吸附量分别为0.25、0.31和0.36 mg·g−1。铁改性生物质炭对As(Ⅴ)的吸附量显著高于对照土壤和原始生物质炭处理,其最大吸附量Qm较未施炭对照土壤和原始生物质炭处理分别提高了44.0%和16.1%。该结果与等温吸附试验结果一致。

      表 2  不同施炭处理土壤对砷()的Langmuir吸附模型拟合参数

      Table 2.  Parameters of Langmuir isotherms for the adsorption of As(Ⅴ) on the control and biochar-treated soils

      处理Qm/(mg·g−1)KL/(L·mg−1)R2
      未施炭处理    0.250.0320.997
      原始生物质炭处理 0.310.0510.999
      铁改性生物质炭处理0.360.0460.997

      图  4  不同施炭处理土壤对砷(Ⅴ)的Langmuir模型吸附拟合曲线

      Figure 4.  Langmuir sorption isotherms of As(Ⅴ) on the control and biochar-treated soils

    • 图5所示:2种施炭处理的土壤对As(Ⅴ)的吸附量随着吸附时间的增加而增大。整个吸附过程可分为2个阶段:第1阶段是0~4 h的快速吸附阶段,在4 h内原始生物质炭和铁改性生物质炭的吸附量已达到饱和吸附量的67.7%和73.9%;第2阶段为4~24 h的慢速吸附阶段,吸附量增长速率减慢至饱和。未施炭处理、原始生物质炭和铁改性生物质炭处理的平衡吸附量分别为0.186、0.181和0.201 mg·g−1,铁改性生物质炭处理的土壤的平衡吸附量比未施炭处理高8.1%、比原始生物质炭处理高11.0%,而原始生物质炭处理的土壤的平衡吸附量比未施炭处理低2.8%。在4~24 h的慢速吸附过程中,随着吸附剂的吸附位点逐渐被占据后达到饱和,As(Ⅴ)从外部进入内部位点的速度相对较慢,吸附量增加也相对缓慢。此过程占主导的吸附方式是以表面吸附为主的化学吸附过程[31]

      图  5  吸附时间对不同生物质炭处理土壤吸附砷(Ⅴ)的影响

      Figure 5.  Effect of time on As(Ⅴ) adsorption on the control and biochar-treated soils

      为了更好地描述施炭土壤对As(Ⅴ)的吸附动力学特性,本研究采用准一级动力学方程、准二级动力学方程和颗粒内扩散方程对数据进行拟合(图6表3)。原始生物质炭和铁改性生物质炭处理的准二级动力学方程的相关系数分别为0.928和0.974,大于准一级线性方程的拟合度,且通过准二级动力学方程计算所得的平衡吸附量与实际吸附量更为接近,因此2种施炭土壤的整个吸附过程更符合准二级动力学方程,表明整个吸附过程以化学吸附为主[32]。准二级动力学方程可以描述化学吸附的所有过程,包括外部液膜扩散、表面吸附、颗粒内扩散等,能更好地描述快速与慢速相互叠加的吸附过程[33-34]。在准二级动力学方程中,未施炭处理、原始生物质炭和铁改性生物质炭处理的平衡吸附量分别为0.186、0.181和0.201 mg·g−1,铁改性生物质炭的平衡吸附量高于未施炭处理和原始生物质炭处理,且铁改性生物质炭处理的K2大于原始生物质炭处理,说明施用铁改性生物质炭土壤的吸附速率高于施用原始生物质炭土壤。为了进一步探究施炭土壤对As(Ⅴ)的具体吸附过程,本研究结合颗粒内扩散方程进行分析。由图6可知:施炭土壤对As(Ⅴ)的吸附曲线是一条不通过原点的直线,说明颗粒内扩散不是唯一扩散方式,而是由外部液膜扩散和颗粒内扩散共同组成[35]。本研究中土壤对As(Ⅴ)的吸附过程可分为2个阶段:第1阶段为外部液膜扩散,即溶液中的As(Ⅴ)被吸附到吸附剂表面的过程;第2阶段为颗粒内扩散,即As(Ⅴ)在施炭土壤表面间由外部向内部层间扩散。对比实际吸附过程和曲线拟合结果可得,施用铁改性生物质炭的土壤对As(Ⅴ)的吸附速率和平衡吸附量均大于原始生物质炭处理。

      图  6  砷(Ⅴ)在不同施炭处理土壤中准一级线性方程(A)、准二级线性方程(B)和颗粒内扩散方程(C)的拟合曲线

      Figure 6.  Sorption kinetic curves of the pseudo-first-order kinetics (A), the pseudo-second-order kinetics (B) and internal diffusional models (C) for the adsorption of As(Ⅴ) on the control and biochar-treated soils

      表 3  砷()在不同处理土壤中的吸附动力学拟合参数

      Table 3.  Parameters of kinetic models for the adsorption of As(Ⅴ) on the control and biochar-treated soils

      处理准一级动力学方程准二级动力学方程颗粒内扩散方程
      K1/h−1R2Qe/
      (mg·g−1)
      K2/
      (mg·g−1·h−1)
      R2Qe/
      (mg·g−1)
      Kp1/
      (mg·g−1·h−1)
      Kp2/
      (mg·g−1·h−1)
      R12R22
      未施炭处理    0.9090.9520.1874.8650.9940.1850.063 20.015 40.8340.946
      原始生物质炭处理 0.8270.9740.5802.9260.9880.1850.035 20.018 30.8820.991
      铁改性生物质炭处理0.4250.9280.1824.3710.9960.2060.046 60.020 80.9440.983
    • 本研究以园林废弃物法国梧桐修剪枝作为原料,制备了原始生物质炭和铁改性生物质炭。铁改性生物质炭较原始生物质炭的pH、比表面积及官能团数量降低、但灰分质量分数和电导率有所增加。Langmuir等温吸附方程和准二级动力学方程能更好地描述施炭土壤对As(Ⅴ)的吸附过程,最大吸附量分别为0.31和0.36 mg·g−1。吸附过程以化学吸附为主,又包含液膜扩散和颗粒内扩散共同作用。铁改性生物质炭施入土壤后明显提高了土壤对As(Ⅴ)的吸附能力,吸附速率和吸附量均高于未施炭土壤和原始生物质炭处理。

      生物质炭负载铁后对As的修复可能存在以下几种机制:①经铁改性后生物质炭pH显著降低,加入土壤中可降低土壤pH,从而使土壤胶体所带正电荷增加[36],而As在土壤中大多是以AsO43−或AsO33−等阴离子形态存在,因此可通过静电吸附使As固定吸附在土壤胶体表面[37];②铁改性生物质炭能促进As在铁氧化物表面形成稳定的单齿或双齿配位体,进而降低As的移动性[38];③将铁改性生物质炭施入土壤后,其游离铁离子易与As形成较稳定的Fe−As共沉淀物[39]。基于此,施用铁改性生物质炭的土壤比施用未改性生物质炭的土壤对As(Ⅴ)的吸附能力更强。

参考文献 (39)

目录

/

返回文章
返回