留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

欧洲千里光CYCLOIDEA(CYC)类SvRAY1基因的克隆及功能分析

陈柯俐 朴春兰 郝燕敏 冯丽君 周佳圆 栾思楠 刘乐乐 李菲菲 袁思明 崔敏龙

陈柯俐, 朴春兰, 郝燕敏, 冯丽君, 周佳圆, 栾思楠, 刘乐乐, 李菲菲, 袁思明, 崔敏龙. 欧洲千里光CYCLOIDEA(CYC)类SvRAY1基因的克隆及功能分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200802
引用本文: 陈柯俐, 朴春兰, 郝燕敏, 冯丽君, 周佳圆, 栾思楠, 刘乐乐, 李菲菲, 袁思明, 崔敏龙. 欧洲千里光CYCLOIDEA(CYC)类SvRAY1基因的克隆及功能分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200802
CHEN Keli, PIAO Chunlan, HAO Yanmin, FENG Lijun, ZHOU Jiayuan, LUAN Sinan, LIU Lele, LI Feifei, YUAN Siming, CUI Minlong. Cloning and functional analysis of CYCLOIDEA(CYC)-like SvRAY1 gene from Senecio vulgaris[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200802
Citation: CHEN Keli, PIAO Chunlan, HAO Yanmin, FENG Lijun, ZHOU Jiayuan, LUAN Sinan, LIU Lele, LI Feifei, YUAN Siming, CUI Minlong. Cloning and functional analysis of CYCLOIDEA(CYC)-like SvRAY1 gene from Senecio vulgaris[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200802

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

欧洲千里光CYCLOIDEA(CYC)类SvRAY1基因的克隆及功能分析

doi: 10.11833/j.issn.2095-0756.20200802
基金项目: 浙江农林大学引进人才项目(2018FR004)
详细信息
    作者简介: 陈柯俐(ORCID: 0000-0002-0125-3646),从事植物花对称性发育研究。E-mail: 1462676410@qq.com
    通信作者: 崔敏龙(ORCID: 0000-0003-2370-2227),教授,博士,从事花器官发育分子调控机制及园艺植物分子改良研究。E-mail: minlong.cui@zafu.edu.cn
  • 中图分类号: S943.2

Cloning and functional analysis of CYCLOIDEA(CYC)-like SvRAY1 gene from Senecio vulgaris

  • 摘要:   目的  揭示菊科Asteraceae欧洲千里光Senecio vulgaris CYC2类RAY1基因过表达使舌状花发生不同程度变宽现象的机制,进一步探究其产生原因。  方法  克隆欧洲千里光SvRAY1基因,利用生物信息学、qRT-PCR、超表达载体构建、扫描电镜观察、转基因植株形态学观察与统计等方法与技术,进一步进行SvRAY1基因功能分析。  结果  qRT-PCR反应显示:SvRAY1基因主要在欧洲千里光舌状花及筒状花中表达,且生殖发育第S3和S4阶段舌状花中表达量最高;形态学观察表明转基因欧洲千里光SvRAY1超表达植株的舌状花比野生型长度较短、显著变宽。扫描电镜观察舌状花腹侧表皮细胞大小与形状,宽度显著变宽的株系中显示远轴端细胞排列紧密且细胞分裂旺盛,中轴端细胞形状由边缘弯曲变为平滑,细胞长度变短且分裂旺盛。  结论  欧洲千里光舌状花发育过程中,SvRAY1基因可能促进细胞横向分裂,进而舌状花细胞形态和排列发生不同程度的变化引起舌状花变宽。图6表2参28
  • 图  1  SvRAY1基因超表达载体示意图

    Figure  1  Schematic diagram of overexpression vector of SvRAY1

    图  2  欧洲千里光头状花序的不同发育阶段形态比较

    Figure  2  Comparison of capitulum form of different developmental stages of S. vulgaris

    图  3  SvRAY1系统发育进化树分析

    Figure  3  SvRAY1 phylogenetic tree analysis

    图  4  SvRAY1氨基酸序列二级、三级结构组分及其比例分布

    A. SvRAY1氨基酸序列二级结构推导;B. SvRAY1氨基酸序列空间结构推导;C. AmCYC氨基酸序列空间结构推导

    Figure  4  Secondary structure components of SvRAY1 amino acid sequence and their ratios

    图  5  SvRAY1基因在欧洲千里光不同发育时期和不同部位的相对表达分析

    S1~S4. 第1~4阶段;S3R. 第3阶段舌状花; S3T. 第3阶段筒状花; S4R. 第4阶段舌状花; S4T. 第4阶段筒状花

    Figure  5  Expression analysis of SvRAY1 in different floral development stages and tissues of wild type S. vulgaris by qRT-PCR

    图  6  野生型及SvRAY1舌状花腹侧表皮细胞扫描电镜形态差异观察

    A. 欧洲千里光舌状花示意图;B. 野生型欧洲千里光舌状花远轴端表皮细胞;C. 野生型欧洲千里光舌状花中轴端表皮细胞;D. pBI121-35s:: SvRAY 1-6舌状花远轴端表皮细胞;E. pBI121-35s::SvRAY1-6舌状花中轴端表皮细胞

    Figure  6  Observation of adaxial epidermal cell differentiation between wild type and transgenic S. vulgaris by SEM

    表  1  本研究中SvRAY1基因克隆和用于qRT-PCR的引物序列

    Table  1.   The primers were used for cloning of SvRAY1 and qRT-PCR analysis in this study

    基因上游引物序列(5′→3′)下游引物序列(3′→5′)
    SvRAY1GGATCCATGTTTTCCTCAAACCCTTTGAGCTCCTAGTGTAAATTTAGGAAAC
    qSvRAY1GCCAGTTCGTATCCGGAGATTGCCGTGTGGATCTTGCTATG
    Sv18sATAGCAGAACGACCTGTGAAGAAGCAAGATCCAACGCAAT
    下载: 导出CSV

    表  2  舌状花形态学统计学分析

    Table  2.   Statistical comparison of ray floret morphology between wild type and transgenic S. vulgaris

    实验材料舌状花长/
    mm
    舌状花宽/
    mm
    舌状花数∶
    筒状花数
    野生型5.66±0.401.31±0.100.24±0.02
    SvRAY1-45.60±0.641.46±0.12*0.26±0.39
    SvRAY1-65.38±0.291.53±0.14*0.27±0.33
    SvRAY1-105.43±0.321.56±0.12*0.31±0.11*
    SvRAY1-125.13±1.0*1. 49±0.32*0.26±0.03
    SvRAY1-145.26±0.171.48±0.02*0.29±0.10
    SvRAY1-184.98±0.46*1.48±0.13*0.27±0.05
      说明:*表示在P<0.05水平上差异显著
    下载: 导出CSV
  • [1] 刘轶奇. 菊花‘毛香玉’花对称性调控CmDIV基因克隆及分析[D]. 北京: 北京林业大学, 2016.

    LIU Yiqi. Isolation and Function Analysis of Floral Symmetry Gene in Chrysanthemum morifolium ‘Maoxiangyu’ (dissertation)[D]. Beijing: Beijing Forestry University, 2016.
    [2] SOLTIS D E, SOLTIS P S, ALBERT V A, et al. Missing links: the genetic architecture of flowers and floral diversification [J]. Trends Plant Sci, 2002, 7(1): 22 − 31. doi:  10.1016/S1360-1385(01)02098-2
    [3] CUBAS P, LAUTER N, DOEBLEY J, et al. The TCP domain: a motif found in proteins regulating plant growth and development [J]. Plant J, 1999, 18(2): 215 − 222. doi:  10.1046/j.1365-313X.1999.00444.x
    [4] CHAPMAN M A, LEEBENS-MACK J, BURKE J M. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family [J]. Mol Biol Evol, 2008, 25(7): 1260 − 1273. doi:  10.1093/molbev/msn001
    [5] DOEBLEY J, STEC A, HUBBARD L. The evolution of apical dominance in maize [J]. Nature, 1997, 386: 485 − 488. doi:  10.1038/386485a0
    [6] LUO Da, CARPENTER R, VINCENT C, et al. Origin of floral asymmetry in Antirrhinum [J]. Nature, 1996, 383: 794 − 799. doi:  10.1038/383794a0
    [7] LUO Da, CARPENTER R, COPSEY L, et al. Control of organ asymmetry in flowers of Antirrhinum [J]. Cell, 1999, 99: 367 − 376. doi:  10.1016/S0092-8674(00)81523-8
    [8] KOSUGI S, OHASHIL Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene [J]. Plant Cell, 1997, 9(9): 1607 − 1619.
    [9] 张剑, 徐桂霞, 薛皓月, 等. 植物进化发育生物学的形成与研究进展[J]. 植物学通报, 2007, 24(1): 1 − 30.

    ZHANG Jian, XU Guixia, XUE Haoyue, et al. Fundation and current progress of plant evolutionary development biology [J]. Chin Bull Bot, 2007, 24(1): 1 − 30.
    [10] NAVAUD O, DABOS P, CARNUS E, et al. TCP transcription factors predate the emergence of land plants [J]. J Mol Evol, 2007, 65: 23 − 33. doi:  10.1007/s00239-006-0174-z
    [11] JUNTHEIKKI-PALOVAARA I, TÄHTIHARJU S, LAN Tianying, et al. Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae) [J]. Plant J, 2014, 79(5): 783 − 796. doi:  10.1111/tpj.12583
    [12] KIM M, CUI Minlong, CUBAS P, et al. Regulatory genes control a key morphological and rcological trait transferred between species [J]. Science, 2008, 322(5904): 1116 − 1119. doi:  10.1126/science.1164371
    [13] LETUNIC I, BORK P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees [J]. Nucleic Acid Res, 2016, 44: W242 − W245. doi: 10.1093/nar/gkw290.
    [14] BAILEY T L, MIKAEL B, BUSKE F A, et al. MEME SUITE: tools for motif discovery and searching [J]. Nucleic Acid Res, 2009, 37: W202 − W208. doi: 10.1093/nar/gkw335.
    [15] DELÉAGE G. ALIGNSEC: viewing protein secondary structure predictions within large multiple sequence alignments [J]. Bioinformatics, 2017, 33(24): 3991 − 3992. doi:  10.1093/bioinformatics/btx521
    [16] WATERHOUSE A, BERTONI M, BIENERT S, et al. SWISS-MODEL: homology modelling of protein structures and complexes [J]. Nucleic Acid Res, 2018, 46: W296 − W303. doi: 10.1093/nar/gky427.
    [17] TÄHTIHARJU S, RIJPKEMA A S, VETTERLI A, et al. Evolution and diversification of the CYC/TB1 gene family in Asteraceae: a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae) [J]. Mol Biol Evol, 2012, 29(4): 1155 − 1166. doi:  10.1093/molbev/msr283
    [18] HSU H J, HE C W, KUO W H, et al. Genetic analysis of floral symmetry transition in african violet suggests the involvement of trans-acting factor for CYCLOIDEA expression shifts[J]. Front Plant Sci, 2018, 15(9): 1008. doi: 10.3389/fpls.2018.01008.
    [19] 郭溆. CYC基因在蓝猪耳中的功能研究[D]. 广州: 华南师范大学, 2010.

    GUO Xu. Function Analysis of CYC Gene in Torenia fournieri[D]. Guangzhou: South China Normal University, 2010.
    [20] BERTI F, FAMBRINI M, MAURIZIO T, et al. Mutations of corolla symmetry affect carpel and stamen development in Helianthus annuus [J]. Can J Bot, 2005, 83(8): 1065 − 1072. doi:  10.1139/b05-047
    [21] CHAPMAN M A, TANG S, DRAEGER D. Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae [J]. PLoS Genet, 2012, 8(3): e1002628. doi: 10.1371/journal.pgen.1002628.
    [22] HUANG Di, LI Xiaowei, SUN Ming, et al. Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium [J]. Front Plant Sci, 2016, 7. doi: 10.3389/fpls.2016.0163.
    [23] FINLAYSON S A. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1 [J]. Plant Cell Physiol, 2007, 48(5): 667 − 677. doi:  10.1093/pcp/pcm044
    [24] ANDERSSON S. Pollinator and nonpollinator selection on ray morphology in Leucanthemum vulgare (oxeye daisy, Asteraceae) [J]. Am J Bot, 2008, 95(9): 1072 − 1078. doi:  10.3732/ajb.0800087
    [25] SPENCER V, KIM M. Re“CYC”ling molecular regulators in the evolution and development of flower symmetry [J]. Semin Cell Dev Biol, 2018, 79: 16 − 26. doi:  10.1016/j.semcdb.2017.08.052
    [26] YUAN Cunquan, HUANG Di, YANG Yi, et al. CmCYC2-like transcription factors may interact with each other or bind to the promoter to regulate foral symmetry development inChrysanthemum morifolium [J]. Plant Mol Biol, 2020, 103(5633): 159 − 171.
    [27] WEN Xiaohui, QI Shuai, HUANG He, et al. The expression and interactions of ABCE-class and CYC2-like genes in the capitulum development ofChrysanthemum lavandulifolium and C. × morifolium [J]. Plant Growth Regul, 2019, 88(3): 205 − 214. doi:  10.1007/s10725-019-00491-5
    [28] YANG Xai, PANG Hongbo, LIU Boling, et al. Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes as associated with the origin of floral zygomorphy [J]. Plant Cell, 2012, 24: 1834 − 1847. doi:  10.1105/tpc.112.099457
  • [1] 卜柯丽, 傅卢成, 王灵杰, 栗青丽, 王柯杨, 马元丹, 高岩, 张汝民.  毛竹茎秆快速生长期PeATG1/PeATG4基因表达分析 . 浙江农林大学学报, 2020, 37(1): 43-50. doi: 10.11833/j.issn.2095-0756.2020.01.006
    [2] 原晓龙, 李娟, 李云琴, 王毅.  1个含有SDR结构域PKS/NRPS基因的克隆 . 浙江农林大学学报, 2019, 36(6): 1247-1253. doi: 10.11833/j.issn.2095-0756.2019.06.024
    [3] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [4] 陆军, 孙丽娟, 王晓荣, 吉泓睿, 倪晓详, 程龙军.  巨桉糖基转移酶基因EgrGATL1序列特征及表达分析 . 浙江农林大学学报, 2018, 35(4): 604-611. doi: 10.11833/j.issn.2095-0756.2018.04.004
    [5] 刘玉成, 王艺光, 张超, 董彬, 付建新, 胡绍庆, 赵宏波.  桂花OfCCD1基因启动子克隆与表达特性 . 浙江农林大学学报, 2018, 35(4): 596-603. doi: 10.11833/j.issn.2095-0756.2018.04.003
    [6] 李丹丹, 许馨露, 翟建云, 孙建飞, 曹友志, 高岩, 张汝民.  毛竹笋竹快速生长期可溶性糖质量分数与PeTPS1/PeSnRK1基因表达分析 . 浙江农林大学学报, 2017, 34(6): 1016-1023. doi: 10.11833/j.issn.2095-0756.2017.06.007
    [7] 宋剑刚, 王发鹏, 顾笛.  竹材表面仿生构筑类月季花超疏水结构的研究 . 浙江农林大学学报, 2017, 34(5): 921-925. doi: 10.11833/j.issn.2095-0756.2017.05.020
    [8] 李冰冰, 刘国峰, 魏书, 黄龙全, 张剑韵.  烟草NtPLR1基因克隆与表达分析 . 浙江农林大学学报, 2017, 34(4): 581-588. doi: 10.11833/j.issn.2095-0756.2017.04.003
    [9] 蔡琼, 丁贵杰, 文晓鹏.  马尾松水通道蛋白PmPIP1基因克隆及在干旱胁迫下的表达分析 . 浙江农林大学学报, 2016, 33(2): 191-200. doi: 10.11833/j.issn.2095-0756.2016.02.002
    [10] 赵传慧, 周厚君, 童再康, 林二培, 黄华宏, 牛明月.  光皮桦成花相关MADS-box基因BlMADS1的克隆与表达 . 浙江农林大学学报, 2015, 32(2): 221-228. doi: 10.11833/j.issn.2095-0756.2015.02.008
    [11] 欧静, 刘仁阳, 张仁嫒, 谌端玉, 王丽娟, 陈训.  杜鹃花类菌根菌株对桃叶杜鹃幼苗硝酸还原酶活性和氮的影响 . 浙江农林大学学报, 2014, 31(6): 926-931. doi: 10.11833/j.issn.2095-0756.2014.06.015
    [12] 黄程前, 宋丽青, 童再康, 程龙军.  光皮桦BlFTL基因的克隆和表达模式 . 浙江农林大学学报, 2013, 30(3): 343-349. doi: 10.11833/j.issn.2095-0756.2013.03.006
    [13] 沈红霞, 韩秀杰, 赵凡凡, 张保新, 余风艳, 王晓杜.  猪日本乙型脑炎病毒NS1基因的表达和抗体制备 . 浙江农林大学学报, 2013, 30(3): 396-400. doi: 10.11833/j.issn.2095-0756.2013.03.015
    [14] 马腾飞, 林新春.  植物SOC1/AGL20基因研究进展 . 浙江农林大学学报, 2013, 30(6): 930-937. doi: 10.11833/j.issn.2095-0756.2013.06.019
    [15] 徐小雁, 田敏, 王彩霞, 龙明华.  文心兰花发育相关基因OAP3的克隆与表达分析 . 浙江农林大学学报, 2011, 28(6): 900-906. doi: 10.11833/j.issn.2095-0756.2011.06.010
    [16] 田敏, 龚茂江, 徐小雁, 王彩霞.  兰科植物花发育的基因调控研究进展 . 浙江农林大学学报, 2011, 28(3): 494-499. doi: 10.11833/j.issn.2095-0756.2011.03.023
    [17] 赵宏波, 周莉花, 郝日明.  夏蜡梅和光叶红蜡梅花发育特性和柱头可授性 . 浙江农林大学学报, 2009, 26(3): 302-307.
    [18] 王正加, 黄有军, 夏国华, 郑炳松, 金松恒, 黄坚钦.  山核桃APETALA1同源基因的克隆与序列分析 . 浙江农林大学学报, 2008, 25(4): 427-430.
    [19] 姜贝贝, 房伟民, 陈发棣, 顾俊杰.  氮磷钾配比对切花菊‘神马’生长发育的影响 . 浙江农林大学学报, 2008, 25(6): 692-697.
    [20] 谢一青, 李志真, 黄儒珠, 肖祥希, 王志洁.  光皮桦基因组DNA 提取方法比较 . 浙江农林大学学报, 2006, 23(6): 664-668.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200802

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021/6/1

计量
  • 文章访问数:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-05-20

欧洲千里光CYCLOIDEA(CYC)类SvRAY1基因的克隆及功能分析

doi: 10.11833/j.issn.2095-0756.20200802
    基金项目:  浙江农林大学引进人才项目(2018FR004)
    作者简介:

    陈柯俐(ORCID: 0000-0002-0125-3646),从事植物花对称性发育研究。E-mail: 1462676410@qq.com

    通信作者: 崔敏龙(ORCID: 0000-0003-2370-2227),教授,博士,从事花器官发育分子调控机制及园艺植物分子改良研究。E-mail: minlong.cui@zafu.edu.cn
  • 中图分类号: S943.2

摘要:   目的  揭示菊科Asteraceae欧洲千里光Senecio vulgaris CYC2类RAY1基因过表达使舌状花发生不同程度变宽现象的机制,进一步探究其产生原因。  方法  克隆欧洲千里光SvRAY1基因,利用生物信息学、qRT-PCR、超表达载体构建、扫描电镜观察、转基因植株形态学观察与统计等方法与技术,进一步进行SvRAY1基因功能分析。  结果  qRT-PCR反应显示:SvRAY1基因主要在欧洲千里光舌状花及筒状花中表达,且生殖发育第S3和S4阶段舌状花中表达量最高;形态学观察表明转基因欧洲千里光SvRAY1超表达植株的舌状花比野生型长度较短、显著变宽。扫描电镜观察舌状花腹侧表皮细胞大小与形状,宽度显著变宽的株系中显示远轴端细胞排列紧密且细胞分裂旺盛,中轴端细胞形状由边缘弯曲变为平滑,细胞长度变短且分裂旺盛。  结论  欧洲千里光舌状花发育过程中,SvRAY1基因可能促进细胞横向分裂,进而舌状花细胞形态和排列发生不同程度的变化引起舌状花变宽。图6表2参28

English Abstract

陈柯俐, 朴春兰, 郝燕敏, 冯丽君, 周佳圆, 栾思楠, 刘乐乐, 李菲菲, 袁思明, 崔敏龙. 欧洲千里光CYCLOIDEA(CYC)类SvRAY1基因的克隆及功能分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200802
引用本文: 陈柯俐, 朴春兰, 郝燕敏, 冯丽君, 周佳圆, 栾思楠, 刘乐乐, 李菲菲, 袁思明, 崔敏龙. 欧洲千里光CYCLOIDEA(CYC)类SvRAY1基因的克隆及功能分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200802
CHEN Keli, PIAO Chunlan, HAO Yanmin, FENG Lijun, ZHOU Jiayuan, LUAN Sinan, LIU Lele, LI Feifei, YUAN Siming, CUI Minlong. Cloning and functional analysis of CYCLOIDEA(CYC)-like SvRAY1 gene from Senecio vulgaris[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200802
Citation: CHEN Keli, PIAO Chunlan, HAO Yanmin, FENG Lijun, ZHOU Jiayuan, LUAN Sinan, LIU Lele, LI Feifei, YUAN Siming, CUI Minlong. Cloning and functional analysis of CYCLOIDEA(CYC)-like SvRAY1 gene from Senecio vulgaris[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200802

返回顶部

目录

    /

    返回文章
    返回