留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续投影算法-遗传算法-BP神经网络的可见/近红外光谱木材识别

栾景然 冯国红 朱玉杰

栾景然, 冯国红, 朱玉杰. 基于连续投影算法-遗传算法-BP神经网络的可见/近红外光谱木材识别[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210377
引用本文: 栾景然, 冯国红, 朱玉杰. 基于连续投影算法-遗传算法-BP神经网络的可见/近红外光谱木材识别[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210377
LUAN Jingran, FENG Guohong, ZHU Yujie. Visible/near infrared spectrum wood identification based on SPA-GA-BP neural network[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210377
Citation: LUAN Jingran, FENG Guohong, ZHU Yujie. Visible/near infrared spectrum wood identification based on SPA-GA-BP neural network[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210377

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

基于连续投影算法-遗传算法-BP神经网络的可见/近红外光谱木材识别

doi: 10.11833/j.issn.2095-0756.20210377
基金项目: 中央高校基本科研业务费专项资金项目(2572020BL01);黑龙江省自然科学基金资助项目(LH2020C050)
详细信息
    作者简介: 栾景然(ORCID: 0000-0002-7931-7670),从事木材种类识别研究。E-mail: luanjr@163.com
    通信作者: 冯国红(ORCID: 0000-0001-8756-7154),副教授,博士,从事木材种类识别研究。E-mail: fgh_1980@126.com
  • 中图分类号: S781.1

Visible/near infrared spectrum wood identification based on SPA-GA-BP neural network

  • 摘要:   目的  基于可见/近红外光谱技术,以10种木材为研究对象,探索不同预处理和特征提取方法下BP神经网络识别木材的效果。  方法  利用美国ASD公司生产的LabSpec 5000光谱仪采集10种木材的光谱图,分别进行移动平均法处理、移动平均法+多元散射校正(MSC)、移动平均法+标准正态变量变换(SNV)、Savitzky-Golay卷积平滑算法(S-G滤波器)、S-G滤波器+MSC和S-G滤波器+SNV的预处理,运用主成分分析法(PCA)、连续投影算法(SPA)、SPA和遗传算法(GA)联合分别进行特征提取,将提取的特征结合BP神经网络进行木材识别试验。  结果  以SPA和GA联合提取光谱特征时,移动平均法+SNV的预处理效果最佳,以吸收峰为起始波段(Winitial=1 445 nm)、吸收峰个数为特征个数(Ntot=9)时,识别率较高,特征个数大部分减少为SPA提取特征值个数的一半左右。BP神经网络的平均识别速度提升明显。10种木材的平均识别率为98.0%,其中7种木材的识别率达到了100.0%。  结论  在移动平均法+SNV的预处理下,SPA和GA联合提取光谱图的特征,既可提高BP神经网络识别木材的正确率,又可提升识别速度。图3表6参23
  • 图  1  SPA-GA-BP设计步骤

    Figure  1  SPA-GA-BP design steps

    图  2  红檀的原始光谱图

    Figure  2  Original spectra of red sandalwood

    图  3  10种木材的光谱图

    Figure  3  Spectral diagrams of 10 types of wood

    表  1  不同预处理的PCA-BP神经网络识别率

    Table  1.   PCA-BP neural network recognition with different preprocessing      

    检测方式预处理方法累计贡
    献率/%
    主成分
    个数/个
    平均识
    别率/%
    可见/近红外光谱 对照组 95 12 80.2
    移动平均法 95 14 81.4
    移动平均法+MSC 95 10 82.1
    移动平均法+SNV 95 11 83.5
    S-G滤波器 95 12 81.3
    S-G滤波器+MSC 95 13 82.9
    S-G滤波器+SNV 95 15 84.7
    下载: 导出CSV

    表  2  不同预处理的SPA-BP神经网络平均识别率      

    Table  2.   Average recognition rate of SPA-BP neural network with different pretreatments

    预处理方法平均识
    别率/%
    预处理方法平均识
    别率/%
    对照组 86.1 S-G滤波器 86.4
    移动平均法 87.2 S-G滤波器+MSC 86.8
    移动平均法+MSC 86.5 S-G滤波器+SNV 87.3
    移动平均法+SNVSNV 88.2
    下载: 导出CSV

    表  3  10种木材吸收峰个数和集中波段

    Table  3.   Number of absorption peaks and concentrated bands of 10 kinds of wood

    木材种类吸收峰个数/个集中分布波段/nm
    红檀 7 920~970、1 010~1 060、1 210~1 260、1 570~1 620、1 779~1 829、1 921~1 971、2 122~2 172
    大果紫檀 7 930~980、1 020~1 070、1 220~1 270、1 580~1 630、1 780~1 830、1 920~1 970、2 120~2 170
    檀香紫檀 7 932~982、1 023~1 073、1 221~1 271、1 568~1 618、1 777~1 827、1 921~1 971、2 123~2 173
    刺猬紫檀 9 763~813、1 222~1 272、1 308~1 358、1 461~1 511、1 548~1 598、1 760~1 810、1 931~1 981、
    2 092~2 142、2 211~2 261
    巴里黄檀 9 765~815、1 221~1 271、1 307~1 357、1 466~1 516、1 545~1 595、1 769~1 819、1 930~1 980、
    2 087~2 137、2 219~2 269
    红檀香 9 753~803、1 223~1 273、1 309~1 359、1 463~1 513、1 558~1 608、1 771~1 821、1 932~1 982、
    2 092~2 142、2 212~2 262
    破布木 9 763~813、1 222~1 272、1 317~1 367、1 463~1 513、1 551~1 601、1 772~1 822、1 933~1 983、
    2097~2147、2214~2264
    木犀科豆瓣香 9 766~816、1230~1280、1317~1367、1468~1518、1554~1604、1775~1825、1940~1990、
    2095~2145、2 216~2 266
    中美洲黄檀 9 753~803、1 218~1 268、1 305~1 355、1 457~1 507、1 544~1 594、1 769~1 819、1 928~1 978、
    2 084~2 134、2 209~2 259
    黑檀 9 881~931、1 218~1 268、1 305~1 355、1 452~1 502、1 557~1 607、1 772~1 822、1 923~1 973、
    2 092~2 142、2 218~2 268
    下载: 导出CSV

    表  4  不同起始波段的SPA-BP神经网络平均识别率

    Table  4.   Average recognition rate of SPA-BP neural network with different starting bands

    特征值数/起始波段/nm10种木材提取特征波长分布/nm平均识别率/%
    10 895 364~368、2 141~2 144;402~410;418~426;324、2 135~2 142;375~383;432~440;400~408;476~484;420~428;1 452~1 460 89.7
    10 1 445 478~586;410~418;423~431;500~508;405~413;436~444;418~426;693~701;891~899;888~896 90.4
    10 1 605 133~135、2 137~2 142;891~899;891~899;2 135~2 142、2 132;419~427;819~827;420~428;446~454;892~990;893~901 90.1
    10 15 2133~135、2 137~2 142;2 133~2 135、2 137~2 142;408~416;292、22 135~2 142;375~383;430~438;414~422;461~469;420~428;890~898 88.3
    10 795 61~64、2 139~2 143;405~413;420~428;326、2 135~2 142;378~386;527~
    535;403~411;478~486;420~422、1 453~1 458;1 350~1 358
    89.5
    10 995 203~209、2 141~2 142;399~407;418~426;349~352、2 138~2 142;3381~389;434~442;421~429;485~493;527~535;1 452、1 454~ 1458、1 461~1 463 89.2
    10 1 350 82~90;891~899;434~442;519~527;416~424;886~894;420~428;694~702;891~899;888~896 88.9
    10 1 950 13、2 135~2 142;379~387;407~415;281、2 135~2 142;293~301;428~436;
    1 058~1 066;450~458;413、1 452~1 459;1 452~1 460
    88.6
    下载: 导出CSV

    表  5  同一起始波段不同特征波段的SPA-BP神经网络平均识别率

    Table  5.   Average recognition rate of SPA-BP neural network with the same starting band and different characteristic bands

    起始波
    段/nm
    特征值
    数/个
    平均识
    别率/%
    起始波
    段/nm
    特征值
    数/个
    平均识
    别率/%
    1 445592.31 4451090.6
    1 445793.01 4452092.7
    1 445993.21 4452591.2
    1 445891.6
    下载: 导出CSV

    表  6  同一预处理方式10种木材的SPA-BP神经网络平均识别率

    Table  6.   Average recognition rate of SPA-BP neural network for 10 kinds of wood with the same pretreatment method

    木材种类平均识
    别率/%
    木材种类平均识
    别率/%
    木材种类平均识
    别率/%
    红檀  90.9巴里黄檀  94.2中美洲黄檀100.0
    大果紫檀100.0红檀香   100.0黑檀   100.0
    檀香紫檀90.7破布木   94.6平均   95.7
    刺猬紫檀95.1木犀科豆瓣香91.0
      说明:预处理方式为移动平均法+SNV,起始波段为1 445 nm,
         特征值数为9个
    下载: 导出CSV
  • [1] LEE H T, SOON L L, KEVIN K N, et al. DNA extraction from dry wood of Neobalanocarpus heimii (Diperocarpaceae)for forensic DNA profiling and timeber tracking [J]. Wood Sci Technol, 2012, 46(5): 813 − 815. doi:  10.1007/s00226-011-0447-6
    [2] 陈利顶, 李秀珍, 傅伯杰, 等. 中国景观生态学发展历程与未来研究重点[J]. 生态学报, 2014, 34(12): 3129 − 3141.

    CHEN Liding, LI Xiuzhen, FU Bojie, et al. Development history and future research priorities of landscape ecology in China [J]. J Ecol, 2014, 34(12): 3129 − 3141.
    [3] JIAO Lichao, YIN Yafang, XIAO Fuming, et al. Comparative analysis of two DNA extraction protocols from fresh and dried wood of Cunninghamia lanceolata(Taxodiaceae) [J]. J Iawa, 2012, 4(33): 441 − 456.
    [4] 王宪, 沈华杰, 于清琳, 等. 基于IAWA的3种简易木材识别方法探究[J]. 西南林业大学学报, 2019, 39(6): 167 − 172. doi:  10.11929/j.swfu.201902073

    WANG Xian, SHEN Huajie, YU Qinglin, et al. Research on 3 simple timber identification methods based on IAWA [J]. J Southwest For Univ, 2019, 39(6): 167 − 172. doi:  10.11929/j.swfu.201902073
    [5] MUECHER S. , KLIJN J A, WASCHER D, et al. A new European landscape clasification(LANMAP): a transparent, flexible and user-oriented methodology to distinguish landscapes [J]. Ecol Indic, 2010, 10(1): 87 − 103. doi:  10.1016/j.ecolind.2009.03.018
    [6] 王学顺, 黄安民, 孙一丹, 等. 基于BP神经网络的木材近红外光谱树种识别[J]. 东北林业大学学报, 2015, 43(12): 82 − 85, 89. doi:  10.3969/j.issn.1000-5382.2015.12.018

    WANG Xueshun, HUANG Anmin, SUN Yidan, et al. Back propagation artificial neural network combine with near infrared spectroscopy for timber recognition [J]. J Northeast For Univ, 2015, 43(12): 82 − 85, 89. doi:  10.3969/j.issn.1000-5382.2015.12.018
    [7] 谭念, 孙一丹, 王学顺, 等. 基于主成分分析和支持向量机的木材近红外光谱树种识别研究[J]. 光谱学与光谱分析, 2017, 37(11): 3370 − 3374.

    TAN Nian, SUN Yidan, WANG Xueshun, et al. Research on near infrared spectrum with principal component analysis and support vector machine for timber identification [J]. Spectrosc Spectral Anal, 2017, 37(11): 3370 − 3374.
    [8] 陈远哲, 王巧华, 高升, 等. 基于近红外光谱的淡水鱼贮藏期质构品质的无损检测模型[J]. 激光与光电子学进展, 2021, 58(12): 491 − 499.

    CHEN Yuanzhe, WANG Qiaohua, GAO Sheng, et al. Nondestructive testing model for textural quality of freshwater fish instorage usingnear-infrared spectroscopy [J]. Laser Optoelectron Prog, 2021, 58(12): 491 − 499.
    [9] 郭文川, 朱德宽, 张乾, 等. 基于近红外光谱的掺伪油茶籽油检测[J]. 农业机械学报, 2020, 51(9): 350 − 357. doi:  10.6041/j.issn.1000-1298.2020.09.040

    GUO Wenchuan, ZHU Dekuan, ZHANG Qian, et al. Detection on adulterated oil-tea camellia seed oil based on near-infrared spectroscopy [J]. J Agric Mach, 2020, 51(9): 350 − 357. doi:  10.6041/j.issn.1000-1298.2020.09.040
    [10] 潘拓, 马鑫, 谢安, 等. 利用主成分分析法优化BP神经网络模型在砂砾岩岩性识别中的应用[J]. 新疆地质, 2020, 38(3): 417 − 420. doi:  10.3969/j.issn.1000-8845.2020.03.022

    PAN Tuo, MA Xin, XIE An, et al. Application of the optimized BP neural network model based on principal component analysis in lithology identification of glutenite reservoirs [J]. Xinjiang Geol, 2020, 38(3): 417 − 420. doi:  10.3969/j.issn.1000-8845.2020.03.022
    [11] ZHU Hongyan, CHU Bingquan, FAN Yangyang, et al. Hyperspectral imaging for predicting the internal quality of kiwifruits based on variable selection algorithms and chemometric models [J]. Sci Rep, 2017, 7(1): 1 − 13. doi:  10.1038/s41598-016-0028-x
    [12] ARAÚJO M C U, SALDANHA T C B, GALVÃO R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis [J]. Chemometrics Intell Lab Syst, 2001, 57(2): 65 − 73. doi:  10.1016/S0169-7439(01)00119-8
    [13] 董蒙, 栾希亭, 吴宝元, 等. 基于自适应遗传算法的电液伺服系统控制[J]. 机床与液压, 2019, 47(14): 78 − 83. doi:  10.3969/j.issn.1001-3881.2019.14.018

    DONG Meng, LUAN Xiting, WU Baoyuan, et al. Control of electro-hydraulic servo system control based on adaptive genetic algorithm [J]. Mach Tools Hydraul, 2019, 47(14): 78 − 83. doi:  10.3969/j.issn.1001-3881.2019.14.018
    [14] 冯国红, 朱玉杰, 徐华东, 等. 应用遗传算法-主成分分析-反向传播神经网络的近红外光谱识别树种效果[J]. 东北林业大学学报, 2020, 48(6): 56 − 60. doi:  10.3969/j.issn.1000-5382.2020.06.011

    FENG Guohong, ZHU Yujie, XU Huadong, et al. Using near infrared spectrum to identify tree species by GA-PCA-BP neural network [J]. J Northeast For Univ, 2020, 48(6): 56 − 60. doi:  10.3969/j.issn.1000-5382.2020.06.011
    [15] 许锋, 付丹丹, 王彬, 等. 基于MCCV-CARS-RF建立红提糖度和酸度的可见-近红外光谱无损检测方法[J]. 食品科学, 2018, 39(8): 149 − 154. doi:  10.7506/spkx1002-6630-201808024

    XU Feng, FU Dandan, WANG Bin, et al. Nondestructive detection of sugar content and acidity in red globe table grapes using visible near infrared spectroscopy based on Monte-Carlo Cross Validation-Competitive Adaptive Reweighted Sampling-Random Forest (MCCV-CARS-RF) [J]. Food Sci, 2018, 39(8): 149 − 154. doi:  10.7506/spkx1002-6630-201808024
    [16] ROMERO-TORRES S, PÉREZ-RAMOS J D, MORRIS K R. Raman spectroscopic measurement of tablet-to-tablet coating variability [J]. J Pharm Biomed Anal, 2005, 38(2): 270 − 274. doi:  10.1016/j.jpba.2005.01.007
    [17] 于慧伶, 门洪生, 梁浩, 等. SA-PBT-SVM的实木表面缺陷近红外光谱识别[J]. 光谱学与光谱分析, 2018, 38(6): 1724 − 1728.

    YU Huiling, MEN Hongsheng, LIANG Hao, et al. Near, infrared spectroscopy identification method of wood surface defects based on SA-PBT-SVM [J]. Spectrosc Spectral Anal, 2018, 38(6): 1724 − 1728.
    [18] 殷勇, 王光辉. 连续投影算法融合信息熵选择霉变玉米高光谱特征波长[J]. 核农学报, 2020, 34(2): 356 − 362. doi:  10.11869/j.issn.100-8551.2020.02.0356

    YIN Yong, WANG Guanghui. Hyperspectral characteristic wavelength selection method for moldy maize based on continuous projection algorithm fusion information entropy [J]. J Nucl Agric Sci, 2020, 34(2): 356 − 362. doi:  10.11869/j.issn.100-8551.2020.02.0356
    [19] 朱淑鑫, 顾兴健, 杨宸, 等. K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J]. 江苏农业学报, 2020, 36(2): 358 − 365. doi:  10.3969/j.issn.1000-4440.2020.02.015

    ZHU Shuxin, GU Xingjian, YANG Chen, et al. K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content [J]. J Jiangsu Agric Sci, 2020, 36(2): 358 − 365. doi:  10.3969/j.issn.1000-4440.2020.02.015
    [20] 陈伟, 李创, 唐荣年. 应用间隔随机蛙结合连续投影算法检测橡胶树叶片氮含量[J]. 河南科技大学学报, 2019, 40(5): 51 − 56.

    CHEN Wei, LI Chuang, TANG Rongnian. Application of interval randomfrog combined with successive projections algorithm to detecting nitrogen content in rubber tree leaves [J]. J Henan Univ Sci Technol Nat Sci, 2019, 40(5): 51 − 56.
    [21] 熊智新, 房桂干, 梁龙, 等. 近红外光谱结合连续投影算法检测综纤维素含量[J]. 中国造纸学报, 2019, 34(4): 46 − 51. doi:  10.11981/j.issn.1000-6842.2019.04.46

    XIONG Zhixin, FANG Guigan, LIANG Long, et al. Full cellulose content in composite optical fibrous in combination with continuous projection algorithm [J]. Transac China Pulp Paper, 2019, 34(4): 46 − 51. doi:  10.11981/j.issn.1000-6842.2019.04.46
    [22] 明曼曼, 陈芳, 孙恺琦, 等. 基于集群算法优化BP神经网络的NIRS树种识别研究[J]. 西部林业科学, 2020, 49(5): 124 − 128.

    MING Manman, CHEN Fang, SUN Kaiqi, et al. NIRS tree species identification based on cluster algorithm optimized BP neural network [J]. J West China For Sci, 2020, 49(5): 124 − 128.
    [23] 汪紫阳, 尹世逵, 李耀翔, 等. 基于可见/近红外光谱识别东北地区常见木材[J]. 浙江农林大学学报, 2019, 36(1): 162 − 169. doi:  10.11833/j.issn.2095-0756.2019.01.020

    WANG Ziyang, YIN Shikui, LI Yaoxiang, et al. Identification of common wood species in northeast China using Vis/NIR spectroscopy [J]. J Zhejiang A&F Univ, 2019, 36(1): 162 − 169. doi:  10.11833/j.issn.2095-0756.2019.01.020
  • [1] 李雅琳, 李素艳, 孙向阳, 郝丹, 蔡琳琳, 常晓彤.  基于人工神经网络算法的2株木质素降解菌固体菌剂的制备 . 浙江农林大学学报, 2022, 39(2): 364-371. doi: 10.11833/j.issn.2095-0756.20210311
    [2] 刘光武, 陈晨, 王柯力.  基于神经网络的马尾松人工林密度指数模型 . 浙江农林大学学报, 2020, 37(1): 100-104. doi: 10.11833/j.issn.2095-0756.2020.01.013
    [3] 黄鹏桂, 赵璠, 李晓平, 吴章康, 汤正捷, 张严风.  卷积神经网络在红木树种识别中的应用 . 浙江农林大学学报, 2020, 37(6): 1200-1206. doi: 10.11833/j.issn.2095-0756.20190672
    [4] 卯光宪, 谭伟, 柴宗政, 赵杨, 杨深钧.  基于BP神经网络的马尾松人工林胸径-树高模型预测 . 浙江农林大学学报, 2020, 37(4): 752-760. doi: 10.11833/j.issn.2095-0756.20190486
    [5] 郑泽宇, 冯海林, 杜晓晨, 方益明.  木材径切面内部缺陷的应力波成像算法 . 浙江农林大学学报, 2019, 36(2): 211-218. doi: 10.11833/j.issn.2095-0756.2019.02.001
    [6] 谢福明, 字李, 舒清态.  基于优化k-NN模型的高山松地上生物量遥感估测 . 浙江农林大学学报, 2019, 36(3): 515-523. doi: 10.11833/j.issn.2095-0756.2019.03.012
    [7] 汪紫阳, 尹世逵, 李颖, 李耀翔.  基于可见/近红外光谱识别东北地区常见木材 . 浙江农林大学学报, 2019, 36(1): 162-169. doi: 10.11833/j.issn.2095-0756.2019.01.020
    [8] 胡梦霄, 杭芸, 黄华宏, 张胜龙, 童再康, 楼雄珍.  杉木木材结晶度的近红外预测模型建立及变异分析 . 浙江农林大学学报, 2017, 34(2): 361-368. doi: 10.11833/j.issn.2095-0756.2017.02.022
    [9] 周竹, 尹建新, 周素茵, 周厚奎.  基于近红外光谱技术的针叶材板材表面节子缺陷检测 . 浙江农林大学学报, 2017, 34(3): 520-527. doi: 10.11833/j.issn.2095-0756.2017.03.018
    [10] 王晓丽, 张晓丽, 周国民.  基于近红外光谱技术的果树花期树种识别方法 . 浙江农林大学学报, 2017, 34(6): 1008-1015. doi: 10.11833/j.issn.2095-0756.2017.06.006
    [11] 倪茜茜, 祁亨年, 周竹, 汪杭军.  基于高光谱成像技术的红酸枝木材种类识别 . 浙江农林大学学报, 2016, 33(3): 489-494. doi: 10.11833/j.issn.2095-0756.2016.03.017
    [12] 郑剑, 周竹, 仲山民, 曾松伟.  基于近红外光谱与随机青蛙算法的褐变板栗识别 . 浙江农林大学学报, 2016, 33(2): 322-329. doi: 10.11833/j.issn.2095-0756.2016.02.019
    [13] 周竹, 郑剑, 王允祥, 曾松伟.  雷竹笋硬度的近红外光谱检测模型优化 . 浙江农林大学学报, 2015, 32(6): 875-882. doi: 10.11833/j.issn.2095-0756.2015.06.008
    [14] 张高品, 李光辉, 李剑, 冯海林.  木材无损检测技术中的应力波传播时延估计算法 . 浙江农林大学学报, 2014, 31(3): 394-398. doi: 10.11833/j.issn.2095-0756.2014.03.010
    [15] 方益明, 郑红平, 冯海林.  基于傅里叶变换和独立成分分析的木材显微图像特征提取与识别 . 浙江农林大学学报, 2010, 27(6): 826-830. doi: 10.11833/j.issn.2095-0756.2010.06.004
    [16] 汪杭军, 张广群, 祁亨年, 李文珠.  木材识别方法研究综述 . 浙江农林大学学报, 2009, 26(6): 896-902.
    [17] 施拥军, 徐小军, 杜华强, 周国模, 金伟, 周宇峰.  基于BP神经网络的竹林遥感监测研究 . 浙江农林大学学报, 2008, 25(4): 417-421.
    [18] 田有圳, 黄金桃, 林照授, 涂育合, 叶功富.  凹叶厚朴一元立木材积方程的研究 . 浙江农林大学学报, 2002, 19(3): 255-258.
    [19] 管宇.  方程求实根的四分试位算法 . 浙江农林大学学报, 2001, 18(2): 184-187.
    [20] 何东进, 洪伟, 吴承祯.  人工神经网络用于杉木壮苗定向培育规律的研究 . 浙江农林大学学报, 1997, 14(4): 339-343.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210377

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/2/1

计量
  • 文章访问数:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 录用日期:  2021-12-02
  • 修回日期:  2021-12-02

基于连续投影算法-遗传算法-BP神经网络的可见/近红外光谱木材识别

doi: 10.11833/j.issn.2095-0756.20210377
    基金项目:  中央高校基本科研业务费专项资金项目(2572020BL01);黑龙江省自然科学基金资助项目(LH2020C050)
    作者简介:

    栾景然(ORCID: 0000-0002-7931-7670),从事木材种类识别研究。E-mail: luanjr@163.com

    通信作者: 冯国红(ORCID: 0000-0001-8756-7154),副教授,博士,从事木材种类识别研究。E-mail: fgh_1980@126.com
  • 中图分类号: S781.1

摘要:   目的  基于可见/近红外光谱技术,以10种木材为研究对象,探索不同预处理和特征提取方法下BP神经网络识别木材的效果。  方法  利用美国ASD公司生产的LabSpec 5000光谱仪采集10种木材的光谱图,分别进行移动平均法处理、移动平均法+多元散射校正(MSC)、移动平均法+标准正态变量变换(SNV)、Savitzky-Golay卷积平滑算法(S-G滤波器)、S-G滤波器+MSC和S-G滤波器+SNV的预处理,运用主成分分析法(PCA)、连续投影算法(SPA)、SPA和遗传算法(GA)联合分别进行特征提取,将提取的特征结合BP神经网络进行木材识别试验。  结果  以SPA和GA联合提取光谱特征时,移动平均法+SNV的预处理效果最佳,以吸收峰为起始波段(Winitial=1 445 nm)、吸收峰个数为特征个数(Ntot=9)时,识别率较高,特征个数大部分减少为SPA提取特征值个数的一半左右。BP神经网络的平均识别速度提升明显。10种木材的平均识别率为98.0%,其中7种木材的识别率达到了100.0%。  结论  在移动平均法+SNV的预处理下,SPA和GA联合提取光谱图的特征,既可提高BP神经网络识别木材的正确率,又可提升识别速度。图3表6参23

English Abstract

栾景然, 冯国红, 朱玉杰. 基于连续投影算法-遗传算法-BP神经网络的可见/近红外光谱木材识别[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210377
引用本文: 栾景然, 冯国红, 朱玉杰. 基于连续投影算法-遗传算法-BP神经网络的可见/近红外光谱木材识别[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210377
LUAN Jingran, FENG Guohong, ZHU Yujie. Visible/near infrared spectrum wood identification based on SPA-GA-BP neural network[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210377
Citation: LUAN Jingran, FENG Guohong, ZHU Yujie. Visible/near infrared spectrum wood identification based on SPA-GA-BP neural network[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210377

返回顶部

目录

    /

    返回文章
    返回