Spatial distribution characteristics of soil hydrolase activities and soil fertility evaluation of Carya cathayensis forests in Lin’an District
-
摘要:
目的 探索山核桃Carya cathayensis产区土壤水解酶活性空间分布特征和土壤肥力状况。 方法 在浙江省杭州市临安区山核桃主产区选取了259个样地,测定了土壤α-葡萄糖苷酶(AG)、β-葡萄糖苷酶(BG)、纤维二糖水解酶(CBH)、木糖苷酶(XYL)、亮氨酸氨基肽酶(LAP)、N-乙酰-β-氨基葡萄糖苷酶(NAG)、酸性磷酸酶(PHOS)等7种水解酶活性和主要的肥力指标,并运用主成分分析、地统计分析、相关性分析、冗余分析等方法,分析了临安区山核桃林地土壤中7种水解酶活性的空间异质性、影响因素以及土壤肥力状况。 结果 AG、BG、CBH、LAP、NAG、XYL、PHOS活性的块基比C0/(C+C0)分别为55%、42%、56%、49%、66%、47%、78%,全局莫兰指数(Ig)均大于0。土壤中碱解氮、有效磷、速效钾、有机质位于丰富等级的样地数分别占64%、56%、23%、45%,平均pH为5.76。58.7%的样地土壤肥力低于平均水平,仅32.7%的土壤肥力为Ⅰ、Ⅱ等级,大部分土壤肥力处于Ⅲ、Ⅳ等级 。 结论 7种土壤水解酶中,AG、BG、CBH、LAP、NAG、XYL具有中等空间自相关性,它们的变异情况受人为扰动和地形结构因素的共同影响。PHOS具有较弱的空间自相关,其活性空间分布主要受人为干扰的影响。7种水解酶活性均存在空间相关性,高低聚类情况相似。在岛石镇附近出现高值聚集,在清凉峰以及河桥、龙岗、昌化交界处附近出现低值聚集的情况,有机质、pH、碱解氮是影响水解酶活性高低值聚类的关键因素。土壤肥力指标分级和综合肥力得分结果表明:大部分林地土壤养分足以支撑山核桃林正常生长,但综合肥力还有待提高。图3表5参32 Abstract:Objective This study aims to explore the spatial distribution characteristics of soil hydrolase activity and soil fertility in Caya cathayensis forests. Method 259 sample plots were selected from the main C. cathayensis producing areas in Lin’an District of Hangzhou City, Zhejiang Province to determine the main fertility indicators and the activities of 7 hydrolases such as α-glucosidase (AG), β-glucosidase (BG), cellobiosidase (CBH), xylosidase (XYL), leucine amino peptidase (LAP), N-acetyl-glucosaminidase (NAG), and acid phosphatase (PHOS). Principal component analysis, geostatistical analysis, pearson correlation analysis, and redundancy analysis were used to analyze the soil fertility as well as the spatial variation of 7 hydrolase activities and their influencing factors. Result The spacial structure ratios [C0/(C+C0) ] of AG, BG, CBH, LAP, NAG, XYL, and PHOS were 55%, 42%, 56%, 49%, 66%, 47% and 78% respectively, and the global Morans’I (Ig) was greater than 0. Available N, available P, available K, and organic matter in the rich soil accounted for 64%, 56%, 23% and 45%, respectively, and the average pH was 5.76. The soil fertility of 58.7% of the sample plots was below average. Most of the C. cathayensis plots were in level Ⅲ and Ⅳ, while only 32.7% of the plots were in levelⅠand Ⅱ. Conclusion Among the 7 soil hydrolases, AG, BG, CBH, LAP, NAG, and XYL have moderate spatial autocorrelation, and their variation is jointly affected by human interference and topographic structure factors. PHOS has weak spatial autocorrelation, and its spatial distribution is mainly affected by human interference. The activities of 7 hydrolases have spatial correlations and similar high and low clustering. High value aggregation occurs near Daoshi town while low value clustering occurs near Qingliangfeng town and the boundary of Heqiao, Longgang and Changhua towns. Soil pH, organic matter and available N are the key factors affecting the high and low value clustering of hydrolase activity. The results of soil fertility index classification and comprehensive fertility score show that most soil nutrients are sufficient to support the normal growth of C. cathayensis forests, but the comprehensive fertility needs to be improved. [Ch, 3 fig. 5 tab. 32 ref.] -
Key words:
- Carya cathayensis /
- enzyme activity /
- spatial variation /
- high and low clustering /
- soil fertility
-
表 1 土壤性质描述性统计分析
Table 1. Descriptive statistics of soil properties
项目 有机质/
(g·kg−1)有效磷/
(mg·kg−1)速效钾/
(mg·kg−1)碱解氮/
(mg·kg−1)pH AG/
(mol·g−1·h−1)最小值 5.41 0.52 22.06 28.62 4.50 0.12 最大值 98.08 22.43 466.07 192.53 7.48 1.67 平均值 37.39 4.23 113.77 132.40 5.76 0.35 标准差 15.38 3.90 72.58 43.47 0.59 0.30 变异系数/% 41.15 92.20 63.80 32.83 10.28 88.12 项目 BG/
(mol·g−1·h−1)CBH/
(mol·g−1·h−1)XYL/
(mol·g−1·h−1)LAP/
(mol·g−1·h−1)NAG/
(mol·g−1·h−1)PHOS/
(mol·g−1·h−1)最小值 4.58 0.04 0.17 0.10 0.15 18.31 最大值 192.62 63.06 62.91 32.95 93.60 1042.63 平均值 47.06 8.14 7.44 4.44 17.75 160.43 标准差 31.50 8.09 6.91 3.62 15.27 89.10 变异系数/% 66.95 99.48 92.98 81.54 86.07 55.54 表 2 土壤水解酶与养分因子及pH相关性分析表
Table 2. Correlation coefficients of soil hydrolase activities and soil nutrient factors and pH
水解酶 有机质 有效磷 速效钾 碱解氮 pH AG 0.355** 0.061 0.060 0.419** 0.102 BG 0.406** 0.172** 0.066 0.354** 0.147* CBH 0.356** 0.158* 0.060 0.275** 0.196** XYL 0.302** 0.088 −0.090 0.278** −0.283** LAP 0.170** 0.042 −0.015 0.230** −0.028 NAG 0.431** 0.267** 0.114 0.357** 0.109 PHOS 0.272** 0.123* 0.007 0.346** −0.286** 说明:*P<0.05, **P<0.01 表 3 土壤水解酶活性半方差函数理论模型及其相关参数
Table 3. Theoretical model of semi-variance function of soil hydrolase activities and its related parameters
水解酶 函数模型 块金值(C0) 基台值(C+C0) 块基比[C0/(C+C0)] 变程 决定系数 AG 球状模型 0.050 0.090 0.55 9.63 0.46 BG 指数模型 136.800 324.400 0.42 8.76 0.65 CBH 指数模型 0.140 0.250 0.56 1.60 0.43 XYL 高斯模型 0.080 0.170 0.47 2.12 0.37 LAP 高斯模型 10.970 21.960 0.49 11.20 0.73 NAG 高斯模型 197.150 294.260 0.66 27.30 0.45 PHOS 球状模型 0.032 0.041 0.78 14.60 0.54 表 4 山核桃土壤肥力指标丰缺等级及各等级占比
Table 4. Level of soil fertility indexs and the proportion of each level
项目 碱解氮 有效磷 速效钾 有机质 质量分数/(mg·kg−1) 占比/% 质量分数/(mg·kg−1) 占比/% 质量分数/(mg·kg−1) 占比/% 质量分数/(g·kg−1) 占比/% 缺乏 <80 6 <5 12 <80 34 <10 7 中等 80~120 30 5~10 32 80~110 43 10~40 48 丰富 >120 64 >10 56 >110 23 >40 45 说明:土壤肥力指标丰缺等级参考浙江省地方标准 DB33/T 2205—2019《山核桃分区施肥技术规范》 表 5 主成分贡献率与各因子得分
Table 5. Principal component contribution rates and each factor score
因子 主成分得分 第1主成分(48.39%) 第2主成分(26.50%) 第3主成分(17.12%) 有机质 0.144 0.268 0.225 有效磷 0.071 0.451 0.116 速效钾 0.027 0.481 0.046 碱解氮 0.061 0.040 0.652 AG 0.160 −0.058 0.039 BG 0.205 0.017 −0.299 CB 0.182 0.064 −0.393 XYL 0.177 −0.240 0.042 LAP 0.122 −0.238 0.345 NAG 0.179 0.111 −0.130 PHOS 0.184 −0.219 0.100 -
[1] 张璐璐, 贾桂民, 叶建丰, 等. 浙江临安山核桃干腐病发生发展规律[J]. 浙江农林大学学报, 2013, 30(1): 148 − 152. doi: 10.11833/j.issn.2095-0756.2013.01.022 ZHANG Lulu, JIA Guimin, YE Jianfeng, et al. Frequency of Carya cathayensis canker disease in Lin’an City, Zhejiang Province [J]. J Zhejiang A&F Univ, 2013, 30(1): 148 − 152. doi: 10.11833/j.issn.2095-0756.2013.01.022 [2] 吕惠进. 浙江临安山核桃立地环境研究[J]. 森林工程, 2005, 21(1): 1 − 3, 6. doi: 10.3969/j.issn.1001-005X.2005.01.001 LÜ Huijin. The natural stands conditions of Carya Cathayensis Sarg. in Lin’an County of Zhejiang Province [J]. For Eng, 2005, 21(1): 1 − 3, 6. doi: 10.3969/j.issn.1001-005X.2005.01.001 [3] 袁紫倩, 叶正钱, 李皓, 等. 影响山核桃林地土壤生产性能的主要肥力因子及其临界区间[J]. 植物营养与肥料学报, 2020, 26(1): 163 − 171. doi: 10.11674/zwyf.19038 YUAN Ziqian, YE Zhengqian, LI Hao, et al. Main soil fertility factors and their critical ranges for Chinese walnut(Carya cathayensis Sarg. ) production [J]. J Plant Nutr Fert, 2020, 26(1): 163 − 171. doi: 10.11674/zwyf.19038 [4] 丁立忠, 潘伟华, 马闪闪, 等. 测土配方施肥对临安山核桃生长和产量的影响[J]. 经济林研究, 2018, 36(4): 33 − 39. DING Lizhong, PAN Weihua, MA Shanshan, et al. Effects of testing soil for formulated fertilization on growth and yield in Carya cathayensis [J]. Nonwood For Res, 2018, 36(4): 33 − 39. [5] 张春苗, 张有珍, 姚芳, 等. 临安山核桃主产区土壤pH 值和有效养分的时空变化[J]. 浙江农林大学学报, 2011, 28(6): 845 − 849. doi: 10.3969/j.issn.2095-0756.2011.06.002 ZHANG Chunmiao, ZHANG Youzhen, YAO Fang, et al. Temporal and spatial variation of soil pH and nutrient availability for Carya cathayensis orchards in Lin’an [J]. J Zhejiang A&F Univ, 2011, 28(6): 845 − 849. doi: 10.3969/j.issn.2095-0756.2011.06.002 [6] 杨惠思, 赵科理, 叶正钱, 等. 山核桃品质对产地土壤养分的空间响应[J]. 植物营养与肥料学报, 2019, 25(10): 1752 − 1762. doi: 10.11674/zwyf.18404 YANG Huisi, ZHAO Keli, YE Zhengqian, et al. Spatial response of Carya cathayensis quality to soil nutrients [J]. J Plant Nutr Fert, 2019, 25(10): 1752 − 1762. doi: 10.11674/zwyf.18404 [7] 张红桔, 马闪闪, 赵科理, 等. 山核桃林地土壤肥力状况及其空间分布特征[J]. 浙江农林大学学报, 2018, 35(4): 664 − 673. ZHANG Hongju, MA Shanshan, ZHAO Keli, et al. Soil fertility and its spatial distributionfor Carya cathayensis stands in Lin’an, Zhejiang Province [J]. J Zhejiang A&F Univ, 2018, 35(4): 664 − 673. [8] 丁立忠, 金锦, 张智勇, 等. 临安不同产区镇山核桃林地土壤肥力水平的变化研究[J]. 浙江林业科技, 2020, 40(3): 45 − 50. DING Lizhong, JIN Jin, ZHANG Zhiyong, et al. Changes of soil fertility in Carya cathayensisstands in major production towns of Lin’an City [J]. J Zhejiang For Sci Technol, 2020, 40(3): 45 − 50. [9] GRANDY S A, NEFF J C, WEINTRAU M N. Carbon structure and enzyme activities in alpine and forest ecosystems [J]. Soil Biol Biochem, 2007, 39(11): 2701 − 2711. doi: 10.1016/j.soilbio.2007.05.009 [10] 莫雪, 陈斐杰, 游冲, 等. 黄河三角洲不同植物群落土壤酶活性特征及影响因子分析[J]. 环境科学, 2021, 41(2): 896 − 904. MO Xue, CHEN Feijie, YOU Chong, et al. Characteristics and factors of soil enzyme activity for different plant communities in Yellow River Delta [J]. Environ Sci, 2021, 41(2): 896 − 904. [11] 祝小祥, 徐祖祥, 徐进, 等. 临安山核桃主产区土壤理化性状变化的研究[J]. 农学学报, 2014, 4(6): 32 − 35, 40. doi: 10.3969/j.issn.1007-7774.2014.06.009 ZHU Xiaoxiang, XU Zuxiang, XU Jin, et al. A study on the change in soil physical and chemical propertiesin the Chinese hickory production area of Lin’an [J]. J Agric, 2014, 4(6): 32 − 35, 40. doi: 10.3969/j.issn.1007-7774.2014.06.009 [12] SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biol Biochem, 2002, 34(9): 1309 − 1315. doi: 10.1016/S0038-0717(02)00074-3 [13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2002. LU Rukun. The Analysis Method of Soil Agricultural Chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000. [14] WEBSTER R, OLIVER M A. Geostatistics for Environmental Scientists[M]. Totnes: John Wiley & Sons, 2007. [15] 史舟, 李艳. 地统计学在土壤学中的应用[M]. 北京: 中国农业出版社, 2006. SHI Zhou, LI Yan. Application of Geostatistics in Soil Science [M]. Beijing: China Agricultural Press, 2006. [16] KATSALIROU E, SHIPING D, NOFNIGER D L, et al. Spatial structure of microbial biomass and activity in prairie soil ecosystems [J]. Eur J Soil Biol, 2010, 46: 181 − 189. doi: 10.1016/j.ejsobi.2010.04.005 [17] ZHAO Keli, FU Weijun, QIU Qiaozhen, et al. Spatial patterns of potentially hazardous metals in paddy soils in a typical electrical waste dismantling area and their pollution characteristics [J]. Geoderma, 2019, 337(3): 453 − 462. [18] 王强, 郑梦蕾, 叶治山, 等. 基于Moran’s I的菜地土壤属性空间分布格局分析[J]. 农业环境科学学报, 2020, 39(10): 2297 − 2306. doi: 10.11654/jaes.2020-0324 WANG Qiang, ZHENG Menglei, YE Zhishan, et al. Analysis of spatial distribution pattern of vegetable soil properties based on Moran’s I [J]. J Agro-Environ Sci, 2020, 39(10): 2297 − 2306. doi: 10.11654/jaes.2020-0324 [19] 陶吉兴, 傅伟军, 姜培坤, 等. 基于Moran’s I和地统计学的浙江森林土壤有机碳空间分布研究[J]. 南京林业大学学报(自然科学版), 2014, 38(5): 97 − 101. TAO Jixing, FU Weijun, JIANG Peikun, et al. Using Moran’s I and geostatistics to analyze the spatial distribution of organic carbon in forest soil of Zhejiang Province [J]. J Nanjing For UnivNat Sci Ed, 2014, 38(5): 97 − 101. [20] 黄进, 陈金华, 张方敏. 基于主成分分析的安徽省冬小麦气候灾损风险的时空演变[J]. 应用生态学报, 2021, 32(9): 3185 − 3194. HUANG Jin, CHEN Jinhua, ZHANG Fangmin. Spatio-temporal evolution of climate-induced reduction risk for winter wheat in Anhui Province based on principal component analysis. [J]. Chin J Appl Ecol, 2021, 32(9): 3185 − 3194. [21] 赵瑞芬, 程滨, 滑小赞, 等. 基于主成分分析的山西省核桃主产区土壤肥力评价[J]. 山西农业大学学报(自然科学版), 2020, 40(6): 61 − 68. ZHAO Ruifen, CHENG Bin, HUA Xiaozan, et al. Evaluation of soil fertility status in main walnut production areas in Shanxi based on principal component analysis [J]. J Shanxi Agric Univ Nat Sci Ed, 2020, 40(6): 61 − 68. [22] ZHANG Xinyi, SUI Yueyu, ZHANG Xudong, et al. Spatial variability of fertility properties in black soil of Northeast China [J]. Pedosphere, 2007, 17(1): 19 − 29. doi: 10.1016/S1002-0160(07)60003-4 [23] TRASAR-CEPEDA C, LEIRÓS M C, GIL-SOTRES F. Hydrolytic enzyme activities in agricultural and forest soils: some implications for their use as indicators of soil quality [J]. Soil Biol Biochem, 2008, 40(9): 2146 − 2155. doi: 10.1016/j.soilbio.2008.03.015 [24] 张贾宇, 佘婷, 鄂晓伟, 等. 杨树人工林幼林阶段林下植被管理对土壤微生物生物量碳、氮及酶活性的影响[J]. 生态学报, 2021, 41(24): 9898 − 9909. doi: 10.5846/stxb202009152407 ZHANG Jiayu, SHE Ting, E Xiaowei, et al. Effects of understory vegetation management on soil microbial biomass carbon and nitrogen and extracellular enzyme activities in the early stages of poplar plantation [J]. Acta Ecol Sin, 2021, 41(24): 9898 − 9909. doi: 10.5846/stxb202009152407 [25] 万忠梅, 吴景贵. 土壤酶活性影响因子研究进展[J]. 西北农林科技大学学报(自然科学版), 2005, 33(6): 87 − 92. WAN Zhongmei, WU Jinggui. Study progress on factors affecting soil enzyme activity [J]. J Northwest A&F Univ Nat Sci Ed, 2005, 33(6): 87 − 92. [26] 刘烁, 王秋兵, 史文娇, 等. 喀斯特典型集水区土壤水解酶活性空间异质性及其影响因素[J]. 应用生态学报, 2018, 29(8): 2615 − 2623. LIU Shuo, WANG Qiubing, SHI Wenjiao, et al. Spatial heterogeneity of soil hydrolase activities and their influencing factors in a typical Karst catchment of Guizhou Province, China [J]. Chin J Appl Ecol, 2018, 29(8): 2615 − 2623. [27] 刘霜, 张心昱. 不同植物根际土壤碳氮水解酶活性热点区的空间分布特征[J]. 生态学报, 2020, 40(13): 4462 − 4469. LIU Shuang, ZHANG Xinyu. Spatial distribution of carbon and nitrogen acquiring hydrolase activity hotspots in rhizosphere soils of different plants [J]. Acta Ecol Sin, 2020, 40(13): 4462 − 4469. [28] 白尚斌, 张彦东, 王政权. 落叶松根际 pH 值与供磷水平及土壤磷有效性的关系[J]. 林业科学, 2001, 37(4): 130 − 133. BAI Shangbin, ZHANG Yandong, WANG Zhengquan. The relationship between pH changes and P-availability in rhizosphere of Larix gmelinii [J]. Sci Silv Sin, 2001, 37(4): 130 − 133. [29] 王政权, 王庆成. 森林土壤物理性质的空间异质性研究[J]. 生态学报, 2000, 20(6): 945 − 950. doi: 10.3321/j.issn:1000-0933.2000.06.007 WANG Zhengquan, WANG Qingcheng. The spatial heterogeneity of soil physical properties in forests [J]. Acta Ecol Sin, 2000, 20(6): 945 − 950. doi: 10.3321/j.issn:1000-0933.2000.06.007 [30] 张红桔, 赵科理, 叶正钱, 等. 典型山核桃产区土壤重金属空间异质性及其风险评价[J]. 环境科学, 2018, 39(6): 2893 − 2903. ZHANG Hongju, ZHAO Keli, YE Zhengqian, et al. Spatial variation of heavy metals in soils and its ecological risk evaluation in a typical Carya cathayensis production area [J]. Environ Sci, 2018, 39(6): 2893 − 2903. [31] 蒲生彦, 王宇, 陈文英, 等. 植物根际土壤酶对重金属污染的响应机制研究综述[J]. 生态毒理学报, 2020, 15(4): 11 − 20. PU Shengyan, WANG Yu, CHEN Wenying, et al. Review on the mechanism of plant rhizosphere soil enzyme response to heavy metal pollution [J]. Asian J Ecotoxicol, 2020, 15(4): 11 − 20. [32] 沈一凡, 钱进芳, 郑小平, 等. 山核桃中心产区林地土壤肥力的时空变化特征[J]. 林业科学, 2016, 52(7): 1 − 12. SHEN Yifan, QIAN Jinfang, ZHENG Xiaoping, et al. Spatial-temporal variation of soil fertility in Chinese walnut (Carya cathayensis) plantation [J]. Sci Silv Sin, 2016, 52(7): 1 − 12. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210417