Effects of biochar from different raw materials on microbial activity in heavy metal contaminated soil
-
摘要:
目的 探究不同原料制备的生物质炭能否缓解长期重金属污染对土壤微生物活性的胁迫效应,为污染土壤生物质炭修复提供科学依据。 方法 将竹材边角料(BB)、山核桃Carya cathayensis蒲壳(PB)和玉米Zea mays秸秆(CB)制备的3种生物质炭分别以3%比例(炭土质量比)添加到长期受铅、镉污染土壤中,分析生物质炭短期施用下土壤养分、重金属有效质量分数和土壤微生物活性的变化特征。 结果 3种生物质炭添加均未影响土壤重金属全量,而显著(P<0.05)降低了土壤氯化钙可提取态铅、镉质量分数。与不施生物质炭处理相比,BB、PB和CB分别使可提取态铅质量分数显著(P<0.05)降低了69%、84%和72%;使可提取态镉质量分数显著(P<0.05)降低了26%、63%和36%,且PB处理显著(P<0.05)低于BB和CB处理。PB和CB添加均显著(P<0.05)提高了土壤pH(0.79和0.51个pH单位)、有机碳质量分数(37%和74%)、全氮质量分数(12%和41%),而BB添加对其影响不显著。BB、PB和CB分别使土壤磷脂脂肪酸总量提高了33%~56%、革兰氏阳性菌提高了30%~41%、革兰氏阴性菌提高了40%~66%、放线菌提高了34%~52%、真菌提高了33%~79%,但3种处理间无显著差异(除PB和CB处理的磷脂脂肪酸总量显著高于BB处理)。3种生物质炭均显著(P<0.05)提高了脱氢酶活性(2~6倍),但未影响土壤基础呼吸速率,而PB处理显著(P<0.05)降低了细菌胁迫指数(13.9%),提高了底物诱导呼吸速率。 结论 山核桃蒲壳制备的生物质炭可作为较好的改良剂,降低土壤铅镉有效性,恢复土壤微生物的数量和活性。图4表3参29 Abstract:Objective This study aims to investigate whether biochar prepared from different raw materials can alleviate the stress effect of long-term heavy metal pollution on soil microbial activity, so as to provide scientific basis for biochar remediation of contaminated soil. Method Three kinds of biochar prepared from bamboo leftover (BB), Carya cathayensis peels (PB) and Zea mays straw (CB) were added to the long-term lead (Pb) and cadmium (Cd) contaminated soil at a ratio of 3% (biochar soil mass ratio) respectively. The changes of soil nutrients, available mass fraction of heavy metals, soil microbial activity under short-term application of biochar were analyzed. Result The addition of three kinds of biochar did not affect the total amount of heavy metals in soil, but significantly (P<0.05) reduced the mass fraction of extractable Pb and Cd in soil calcium chloride (CaCl2). Compared with ck, BB, PB and CB significantly (P<0.05) decreased CaCl2-extractable Pb concentration by 69%, 84% and 72%, and CaCl2-extractable Cd by 26%, 63% and 36%, respectively. PB treatment was significantly (P<0.05) lower than BB and CB treatments. PB and CB significantly increased soil pH (0.79 and 0.51 pH units), soil organic carbon (37% and 74%) and total nitrogen (12% and 41%), respectively, but BB addition had no significant effect. BB, PB and CB significantly (P<0.05) increased the total amount of phospholipid fatty acids (PLFAs) in soil by 33%−56%, gram-positive bacteria by 30%−41%, gram-negative bacteria by 40%−66%, actinobacteria by 34%−52% and fungi by 33%−79%, respectively, but there was no significant difference among the three treatments (except that the total amount of phospholipid fatty acids in PB and CB treatment was significantly higher than that in BB treatment). The three biochar treatments significantly increased the activity of dehydrogenase (2−6 times), but did not affect the soil basal respiration, while PB treatment significantly (P<0.05) decreased the bacterial stress index (13.9%) and increased the substrate induced respiration rate. Conclusion PB and CB can be used as a better modifier to decrease heavy metal availability and restore the number and activity of soil microorganisms. [Ch, 4 fig. 3 tab. 29 ref.] -
Key words:
- heavy metal stress /
- phospholipid fatty acids /
- microbial abundance /
- soil respiration
-
表 1 供试土壤和生物质炭基本性质
Table 1. Basic properties of tested soil and biochar
样品 pH 有机碳/(g·kg−1) 全氮/(g·kg−1) 比表面积/(m2·g−1) 得率/% 容重/(g·cm−3) 铅/(mg·kg−1) 镉/(mg·kg−1) 土壤 6.14 19.45 2.11 − − − 412.00 13.37 竹炭(BB) 9.32 135.62 4.31 0.89 59 0.21 山核桃蒲壳炭(PB) 10.26 337.10 5.24 2.58 45 0.17 玉米秸秆炭(CB) 9.48 436.81 9.53 2.61 32 0.19 说明:−表示未检测到;空白表示未检测 表 2 不同原料生物质炭添加下土壤基础性质和黑麦草生物量变化
Table 2. Changes of soil properties and ryegrass biomass with the addition of different biochars
处理 pH 有机碳/(g·kg−1) 全氮/(g·kg−1) 碳氮比 碱解氮/(mg·kg−1) 黑麦草生物量/g 对照 6.36±0.19 c 20.59±1.15 c 2.07±0.09 c 9.95±0.21 b 157.00±5.28 a 1.54±0.15 b 竹炭 6.59±0.25 bc 23.29±0.72 c 2.16±0.12 bc 10.78±0.31 b 148.00±3.70 b 1.96±0.35 ab 山核桃蒲壳炭 7.15±0.11 a 28.25±2.48 b 2.32±0.13 b 12.16±0.44 a 135.00±6.27 c 2.17±0.37 ab 玉米秸秆炭 6.87±0.08 ab 35.83±4.18 a 2.92±0.08 a 12.26±1.14 a 143.00±3.52 bc 2.29±0.42 a 说明:不同小写字母表示处理间差异显著(P<0.05) 表 3 微生物活性与环境因子相关性分析
Table 3. Correlations between soil microbial activities and environmental factors
项目 pH 有机碳 全氮 碳氮比 碱解氮 总铅 总镉 可提取态铅 可提取态镉 基础呼吸速率 0.46 0.09 −0.10 0.27 −0.21 0.03 −0.25 −0.38 −0.54 底物诱导呼吸速率 0.62* 0.39 0.36 0.30 −0.60* −0.26 0.08 −0.69* −0.68* 脱氢酶活性 0.87** 0.55 0.39 0.59* −0.79** −0.42 −0.03 −0.81** −0.97** PLFA质量摩尔分数 0.78** 0.80** 0.62* 0.78** −0.78** −0.31 0.39 −0.81** −0.83** 细菌胁迫指数 −0.68* −0.25 −0.16 −0.32 0.59* 0.07 −0.08 0.79** 0.76** G−/G+ 0.72** 0.76** 0.62* 0.67* −0.66* −0.14 0.53 −0.65* −0.62* 细菌/真菌 −0.63* −0.72** −0.74** −0.48 0.56 0.46 −0.28 0.53 0.63* 说明:**表示P<0.01; *表示P<0.05 -
[1] 杨文浩, 李佩, 周碧青, 等. 生物炭缓解污染土壤中植物的重金属胁迫研究进展[J]. 福建农林大学学报(自然科学版), 2019, 48(6): 695 − 705. YANG Wenhao, LI Pei, ZHOU Biqing, et al. Biochar-mediated alleviation of heavy metal stress in plants growing in contaminated soils: a review [J]. J Fujian Agric For Univ Nat Sci Ed, 2019, 48(6): 695 − 705. [2] 程金金, 宋静, 陈文超, 等. 镉污染对红壤和潮土微生物的生态毒理效应[J]. 生态毒理学报, 2013, 8(4): 577 − 586. doi: 10.7524/AJE.1673-5897.20120904001 CHENG Jinjin, SONG Jing, CHEN Wenchao, et al. The ecotoxicity effects of cadmium on microorganism in Udic-Ferrosols and Aquic-Cambosols [J]. Asian J Ecotoxicol, 2013, 8(4): 577 − 586. doi: 10.7524/AJE.1673-5897.20120904001 [3] KHAN K S, XIE Zhengmiao, HUANG Changyong. Effect of cadmium, lead on size of microbial biomass in red soil [J]. Pedosphere, 1998, 8(1): 27 − 32. [4] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota: a review [J]. Soil Biol Biochem, 2011, 43(9): 1812 − 1836. doi: 10.1016/j.soilbio.2011.04.022 [5] ZHANG Xiaokai, WANG Haolong, HE Lizhi, et al. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants [J]. Environ Sci Poll Res, 2013, 20(12): 8472 − 8483. doi: 10.1007/s11356-013-1659-0 [6] 戴志楠, 温尔刚, 陈翰博, 等. 施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响[J]. 浙江农林大学学报, 2021, 38(2): 346 − 354. DAI Zhinan, WEN Ergang, CHEN Hanbo, et al. Effect of raw and iron-modified biochar on the sorption of As (Ⅴ) by soils [J]. J Zhejiang A&F Univ, 2021, 38(2): 346 − 354. [7] ZHU Xiaomin, CHEN Baoliang, ZHU Lizhong, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review [J]. Environ Poll, 2017, 227: 98 − 115. doi: 10.1016/j.envpol.2017.04.032 [8] YU Z, CHEN L, PAN S, et al. Feedstock determines biochar-induced soil priming effects by stimulating the activity of specific microorganisms [J]. Eur J Soil Sci, 2018, 69(3): 521 − 534. doi: 10.1111/ejss.12542 [9] JONES D L, ROUSK J, EDWARDS-JONES G, et al. Biochar-mediated changes in soil quality and plant growth in a three year field trial [J]. Soil Biol Biochem, 2012, 45: 113 − 124. doi: 10.1016/j.soilbio.2011.10.012 [10] GUO Kangying, ZHAO Yingzhi, LIU Yang, et al. Pyrolysis temperature of biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil[J/OL]. Geoderma, 2020, 363: 114162[2021-05-18]. doi: 10.1016/j.geoderma.2019.114162. [11] 李鸿博, 钟怡, 张昊楠, 等. 生物炭修复重金属污染农田土壤的机制及应用研究进展[J]. 农业工程学报, 2020, 36(13): 173 − 185. doi: 10.11975/j.issn.1002-6819.2020.13.021 LI Hongbo, ZHONG Yi, ZHANG Haonan, et al. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances [J]. Trans Chin Soc Agric Eng, 2020, 36(13): 173 − 185. doi: 10.11975/j.issn.1002-6819.2020.13.021 [12] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU Rukun. The Analysis Method of Soil Agricultural Chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000. [13] 吴愉萍. 基于磷脂脂肪酸(PLFA)分析技术的土壤微生物群落结构多样性的研究[D]. 杭州: 浙江大学, 2009. WU Yuping. Studies on Soil Microbial Community Structure Based on Phospholipid Fatty Acid (PLFA) Analysis[D]. Hangzhou: Zhejiang University, 2009. [14] ZELLES L. Phospholipid fatty acid profiles in selected members of soil microbial communities [J]. Chemosphere, 1997, 35(1/2): 275 − 294. [15] SERRA-WITTLING C, HOUOT S, BARRIUSO E. Soil enzymatic response to addition of municipal solid-waste compost [J]. Biol Fert Soil, 1995, 20: 226 − 236. doi: 10.1007/BF00336082 [16] UCHIMIYA M, CHANG S C, KLASSON K T. Screening biochars for heavy metal retention in soil: role of oxygen functional groups [J]. J Hazardous Mater, 2013, 190(1): 432 − 441. [17] 张迪, 李婷, 方炫, 等. 钝化剂对土壤镉铅有效性和微生物群落多样性影响[J]. 农业环境科学学报, 2019, 38(12): 2729 − 2737. doi: 10.11654/jaes.2019-0838 ZHANG Di, LI Ting, FANG Xuan, et al. Effects of passivating agents on the availability of Cd and Pb and functional diversity of the microbial community in contaminated soils [J]. J Agro-Environ Sci, 2019, 38(12): 2729 − 2737. doi: 10.11654/jaes.2019-0838 [18] LIU Yang, GUO Kangying, ZHAO Yingzhi, et al. Change in composition and function of microbial communities in an acid bamboo (Phyllostachys praecox) plantation soil with the addition of three different biochars[J/OL]. For Ecol Manage, 2020, 473(2): 118336[2021-05-05]. doi: 10.1016/j.foreco.2020.118336. [19] YUAN Jinhua, XU Renkou, ZHANG Hong. The forms of alkalis in the biochar produced from crop residues at different temperatures [J]. Bioresour Technol, 2011, 102(3): 3488 − 3497. doi: 10.1016/j.biortech.2010.11.018 [20] 包骏瑶, 赵颖志, 严淑娴, 等. 不同农林废弃物生物质炭对雷竹林酸化土壤的改良效果[J]. 浙江农林大学学报, 2018, 35(1): 43 − 50. doi: 10.11833/j.issn.2095-0756.2018.01.006 BAO Junyao, ZHAO Yingzhi, YAN Shuxian, et al. Soil amelioration with biochars pyrolyzed from different feedstocks of an acidic bamboo (Phyllostachys violascens) plantation [J]. J Zhejiang A&F Univ, 2018, 35(1): 43 − 50. doi: 10.11833/j.issn.2095-0756.2018.01.006 [21] TAGHIZADEH-TOOSI A, CLOUGH T J, SHERLOCK R R, et al. Biochar adsorbed ammonia is bioavailable [J]. Plant Soil, 2012, 350(1): 57 − 69. [22] PALANSOORIYA K N, WONG J T F, HASHIMOTO Y, et al. Response of microbial communities to biochar-amended soils: a critical review [J]. Biochar, 2019, 1(1): 3 − 22. doi: 10.1007/s42773-019-00009-2 [23] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721 − 729. BAO Jianping, YUAN Gensheng, DONG Fangyuan, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil [J]. Acta Pedol Sin, 2020, 57(3): 721 − 729. [24] WARNOCK D D, LEHMANN J, KUYPER T W, et al. Mycorrhizal responses to biochar in soil: concepts and mechanisms [J]. Plant Soil, 2007, 300(1): 9 − 20. [25] 黄家庆, 赖永翔, 翁伯琦, 等. 花生壳生物炭对镉污染菜园土壤细菌群落结构的影响[J]. 应用与环境生物学报, 2020, 26(5): 1115 − 1128. HUANG Jiaqing, LAI Yongxiang, WENG Boqi, et al. Effect of peanut shell biochar on the bacterial community structure in cadmium-containing vegetable soil [J]. Chin J Appl Environ Biol, 2020, 26(5): 1115 − 1128. [26] BAILEY V L, FANSLER S J, SMITH J L, et al. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization [J]. Soil Biol Biochem, 2011, 43(2): 296 − 301. doi: 10.1016/j.soilbio.2010.10.014 [27] ZHENG Jufeng, CHEN Junhui, PAN Genxing, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China [J]. Sci Total Environ, 2016, 571: 206 − 217. doi: 10.1016/j.scitotenv.2016.07.135 [28] CHEN Junhui, HE Feng, ZHANG Xuhui, et al. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil [J]. FEMS Microbiol Ecol, 2014, 87(1): 164 − 181. doi: 10.1111/1574-6941.12212 [29] GILLER K E, WITTER E, MCGRATH S P. Heavy metals and soil microbes [J]. Soil Biol Biochem, 2009, 41(10): 2031 − 2037. doi: 10.1016/j.soilbio.2009.04.026 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210438

计量
- 文章访问数: 37
- 被引次数: 0