留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展

黄瑾 余龙飞 李文娟 黄平

黄瑾, 余龙飞, 李文娟, 黄平. 基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210458
引用本文: 黄瑾, 余龙飞, 李文娟, 黄平. 基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210458
HUANG Jin, YU Longfei, LI Wenjuan, HUANG Ping. Stable isotope natural abundance techniques in the studies on nitrous oxide production and emission processes: a review[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210458
Citation: HUANG Jin, YU Longfei, LI Wenjuan, HUANG Ping. Stable isotope natural abundance techniques in the studies on nitrous oxide production and emission processes: a review[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210458

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展

doi: 10.11833/j.issn.2095-0756.20210458
基金项目: 国家自然科学基金资助项目(41771266,41401243);土壤与农业可持续发展国家重点实验室开放基金项目(Y812000005);中国科学院西部青年学者项目(202082)
详细信息
    作者简介: 黄瑾(ORCID: 0000-0002-1575-816X),从事生源物质生物地球化学循环研究。E-mail: huangjin@cigit.ac.cn
    通信作者: 黄平(ORCID: 0000-0002-3320-1672),研究员,博士,从事土壤结构演变与界面物质循环研究。E-mail: huangping@cigit.ac.cn
  • 中图分类号: S153

Stable isotope natural abundance techniques in the studies on nitrous oxide production and emission processes: a review

  • 摘要: 氧化亚氮(N2O)是主要的温室气体之一,并且对平流层臭氧层分解起到重要作用。土壤中N2O的产生和排放过程复杂多样,对其进行精准溯源与过程区分有助于制定减排策略。稳定同位素自然丰度技术利用N2O的同位素值δ15Nbulk(N2O中15N在整体水平上的同位素特征值)、δ18O(N2O中18O在整体水平上的同位素特征值)以及δ15Nsp(N2O分子内15N的位点特异性同位素值),可以示踪N2O来源、指示N2O产生的微生物作用途径,在N2O转化过程溯源中已取得重要进展。而同位素分馏效应是稳定同位素自然丰度技术应用的理论基础,其中微生物过程及其导致的同位素分馏是需要重点关注的问题。本研究概述了同位素分馏效应在N2O的产生、排放过程中的研究进展及其主要影响因素,梳理了同位素特征值δ15Nbulk、δ18O和δ15Nsp在分析N2O来源的研究进展,并且提出了影响准确区分过程的因素。因素包括单一产生路径的同位素特征值范围广、不同产生路径的同位素特征值范围的重叠、反应底物同位素组成的变化、以及与N2O还原相关的分馏因子的可变性等问题。明确了今后需加强δ15Nsp等N2O同位素特征值分馏效应的测定、利用组合同位素特征值及先进手段进行全面的N2O溯源研究。图2参80
  • 图  1  微生物驱动的土壤N2O产生和排放过程中的同位素分馏效应

    Figure  1  Isotope fractionation effects in N2O production process driven by microbe

    图  2  稳定同位素技术在N2O溯源中的发展

    Figure  2  Development of stable isotope techniques in N2O source partioning

  • [1] BUTTERBACH-BAHL K, BAGGS E M, DANNENMANN M, et al. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? [J]. Philosl Transac Royal Soc B Biol Sci, 2013, 368(1621): 1 − 13.
    [2] DUAN H, YE L, ERLER D, et al. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology: a critical review [J]. Water Res, 2017, 122: 96 − 113. doi:  10.1016/j.watres.2017.05.054
    [3] BAGGS E M. A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations [J]. Rap Commun Mass Spectrom RCM, 2010, 22(11): 1664 − 1672.
    [4] 林伟, 李昱佳, 王宇, 等. 基于双同位素图谱评估肥料类型对滴灌白菜地N2O来源的影响[J]. 农业工程学报, 2020, 36(23): 109 − 116. doi:  10.11975/j.issn.1002-6819.2020.23.013

    LIN Wei, LI Yujia, WANG Yu, et al. Evaluation of N2O sources from Chinese cabbage fields affected by fertilizer types under drip irrigation based on dual isotopocule plot method [J]. Transac Chin Soc Agric Eng, 2020, 36(23): 109 − 116. doi:  10.11975/j.issn.1002-6819.2020.23.013
    [5] LEWICKA-SZCZEBAK D, GIESEMANN A, WELL R, et al. Quantifying N2O reduction to N2 based on N2O isotopocules-validation with independent methods (helium incubation and 15N gas flux method) [J]. Biogeosciences, 2017, 14(3): 711 − 732. doi:  10.5194/bg-14-711-2017
    [6] 林伟, 房福力, 张薇, 等. 稳定同位素技术在土壤N2O溯源研究中的应用[J]. 应用生态学报, 2017, 28(7): 2344 − 2352.

    LIN Wei, FANG Fuli, ZHANG Wei, et al. A review on development of stable isotope technique in the studies of N2O formation mechanism [J]. Chin J Appl Ecol, 2017, 28(7): 2344 − 2352.
    [7] PEREZ T, TRUMBORE S E, TYLER S C, et al. Identifying the agricultural imprint on the global N2O budget using stable isotopes[J]. J Geophys Res, 2001, 106: 9869. doi: 10.1029/2000JD900809.
    [8] YAMULKI S, TOYODA S, YOSHIDA N, et al. Diurnal fluxes and the isotopomer ratios of N2O in a temperate grassland following urine amendment [J]. Rapid Commun Mass Spectrum RCM, 2001, 15: 1263 − 1269. doi:  10.1002/rcm.352
    [9] BOL R, TOYODA S, YAMULKI S, et al. Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertiliser application [J]. Rapid Commun Mass Spectrum RCM, 2010, 17(22): 2550 − 2556.
    [10] HATTORI S, PALMA Y N, ITOH Y, et al. Isotopic evidence for seasonality of microbial internal nitrogen cycles in a temperate forested catchment with heavy snowfall [J]. Sci Total Environ, 2019, 690(10): 290 − 299.
    [11] LIN Wei, LI Yuzhong, LI Yujia, et al. Advances in the mechanism of microbe-driven nitrogen cycling [J]. J Plant Nutr Fert, 2020, 26(6): 1146 − 1155.
    [12] 方运霆, 刘冬伟, 朱飞飞, 等. 氮稳定同位素技术在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2020, 26(6): 1146 − 1155.

    FANG Yunting, LIU Dongwei, ZHU Feifei, et al. Applications of nitrogen stable isotope techniques in the study of nitrogen cycling in terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 26(6): 1146 − 1155.
    [13] BOER W D, KOWALCHUK G A. Nitrification in acid soils: microorganisms and mechanisms [J]. Soil Biol Biochem, 2001, 33(7/8): 853 − 866.
    [14] ARP D J, STEIN L Y. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria [J]. Crit Rev Biochem Mol Biol, 2003, 38(6): 47 − 495.
    [15] KOBAYASHI K, MAKABE A, YANO M, et al. Dual nitrogen and oxygen isotope fractionation during anaerobic ammonium oxidation by anammox bacteria [J]. ISME J, 2019, 13(10): 2426 − 2436. doi:  10.1038/s41396-019-0440-x
    [16] CASCIOTTI K L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation [J]. Geochim Cosmochim Acta, 2009, 73(7): 2061 − 2076. doi:  10.1016/j.gca.2008.12.022
    [17] WRAGE N, GROENIGEN J W V, OENEMA O, et al. A novel dual-isotope labelling method for distinguishing between soil sources of N2O [J]. Rap Commun Mass Spectrom RCM, 2005, 19(22): 3298 − 3306. doi:  10.1002/rcm.2191
    [18] DENK T, MOHN J, DECOCK C, et al. The nitrogen cycle: A review of isotope effects and isotope modeling approaches [J]. Soil Biol Biochem, 2017, 105: 121 − 137. doi:  10.1016/j.soilbio.2016.11.015
    [19] SHAW L J, NICOL G W, SMITH Z, et al. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway [J]. Environ Microbiol, 2006, 8(2): 214 − 222. doi:  10.1111/j.1462-2920.2005.00882.x
    [20] BEYER S, GILCH S, MEYER O, et al. Transcription of genes coding for metabolic key functions in Nitrosomonas europaea during aerobic and anaerobic growth [J]. J Mol Microbiol Biotechnol, 2009, 16(3/4): 187 − 197.
    [21] ZHANG Jinbo, CAI Zuocong, CHENG Yi, et al. Denitrification and total nitrogen gas production from forest soils of eastern China [J]. Soil Biol Biochem, 2009, 41(12): 2551 − 2557. doi:  10.1016/j.soilbio.2009.09.016
    [22] BRAKER G, CONRAD R. Diversity, structure, and size of N2O-producing microbial communities in soils-what matters for their functioning? [J]. Adv Appl Microbiol, 2011, 75: 33 − 70.
    [23] CHAPUIS-LARDY L, WRAGE N, METAY A, et al. Soils, a sink for N2O? a review [J]. Glob Change Biol, 2010, 13(1): 1 − 17.
    [24] PEREZ T, GARCIA-MONTIEL D, TRUMBORE S, et al. Nitrous oxide nitrification and denitrification N-15 enrichment factors from Amazon forest soils [J]. Ecol Appl, 2006, 16(6): 2153 − 2167. doi:  10.1890/1051-0761(2006)016[2153:NONADN]2.0.CO;2
    [25] YANG Hui, GANDHI H, OSTROM N E, et al. Isotopic fractionation by a fungal P450 nitric oxide reductase during the production of N2O [J]. Environ Sci Technol, 2014, 48(18): 10707 − 10715. doi:  10.1021/es501912d
    [26] OSTROM N E, PITT A, SUTKA R, et al. Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers[J]. J Geophys Res Biogeosci, 2007, 112(G2). doi: 10.1029/2006JG000287.
    [27] LEWICKA-SZCZEBAK D, WELL R, BOL R, et al. Isotope fractionation factors controlling isotopocule signatures of soil-emitted N2O produced by denitrification processes of various rates [J]. Rapid Commun Mass Spectrom RCM, 2015, 29(3): 269 − 282. doi:  10.1002/rcm.7102
    [28] SUTKA R L, ADAMS G C, OSTROM N E, et al. Isotopologue fractionation during N2O production by fungal denitrification [J]. Rapid Commun Mass Spectrom RCM, 2008, 22(24): 3989 − 3996. doi:  10.1002/rcm.3820
    [29] THAMDRUP B, DALSGAARD T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments [J]. Appl Environ Microbiol, 2002, 68(3): 131 − 1318.
    [30] MAEDA K, SPOR A, EDEL-HERMANN V, et al. N2O production, a widespread trait in fungi[J]. Sci Rep, 2015, 5: 7. doi: 10.1038/srep09697.
    [31] SMITH M S. Dissimilatory reduction of NO2 to NH4 + and N2O by a soil Citrobacter sp. [J]. Appl Environ Microbiol, 1982, 43(4): 854 − 860. doi:  10.1128/aem.43.4.854-860.1982
    [32] CORKER H, POOLE R K. Nitric oxide formation by Escherichia coli dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp [J]. J Biol Chem, 2003, 278(34): 31584 − 31592. doi:  10.1074/jbc.M303282200
    [33] SANFORD R A, WAGNER D D, WU Q, et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils [J]. Proc Nat Acad Sci USA, 2012, 109(48): 19709 − 19714. doi:  10.1073/pnas.1211238109
    [34] MURRAY N J, PHINN S R, DEWITT M, et al. The global distribution and trajectory of tidal flats [J]. Nature, 2019, 565(7738): 222 − 225. doi:  10.1038/s41586-018-0805-8
    [35] SIMON J, EINSLE O, KRONECK P M H, et al. The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase [J]. FEBS Lett, 2004, 569(1/3): 7 − 12.
    [36] LARSEN K S, ANDRESEN L C, BEIER C, et al. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments [J]. Glob Change Biol, 2011, 17(5): 1884 − 1899. doi:  10.1111/j.1365-2486.2010.02351.x
    [37] MARIOTTI A, GERMON J C, LECLERC A. Nitrogen isotope fractionation associated with the NO2-N2O step of denitrification in soils [J]. Can J Soil Sci, 1982, 62(2): 227 − 241. doi:  10.4141/cjss82-027
    [38] MARIOTTI A, GERMON J C, HUBERT P, et al. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes [J]. Plant Soil, 1981, 62(3): 413 − 430. doi:  10.1007/BF02374138
    [39] SNIDER D M, SCHIFF S L, SPOELSTRA J. 15N/14N and 18O/16O stable isotope ratios of nitrous oxide produced during denitrification in temperate forest soils [J]. Geochim Cosmochim Acta, 2009, 73(4): 877 − 888. doi:  10.1016/j.gca.2008.11.004
    [40] MATHIEU O, LÉVÊQUE J, HÉNAULT C, et al. Influence of 15N enrichment on the net isotopic fractionation factor during the reduction of nitrate to nitrous oxide in soil [J]. Rapid Commun Mass Spectrom RCM, 2010, 21(8): 1447 − 1451.
    [41] BRITISH INFECTION A. The epidemiology, prevention, investigation and treatment of Lyme borreliosis in United Kingdom patients: a position statement by the British Infection Association [J]. J Infect, 2011, 62(5): 329 − 338. doi:  10.1016/j.jinf.2011.03.006
    [42] TOYODA S, MUTOBE H, YAMAGISHI H, et al. Fractionation of N2O isotopomers during production by denitrifier [J]. Soil Biol Biochem, 2005, 37(8): 1535 − 1545. doi:  10.1016/j.soilbio.2005.01.009
    [43] TOYODA S, IWAI H, KOBA K, et al. Isotopomeric analysis of N2O dissolved in a river in the Tokyo metropolitan area [J]. Rapid Commun Mass Spectrom RCM, 2010, 23(6): 809 − 821.
    [44] KOBA K, OSAKA K, TOBARI Y, et al. Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements [J]. Geochim Cosmochim Acta, 2009, 73(11): 3115 − 3133. doi:  10.1016/j.gca.2009.03.022
    [45] DECOCK C, SIX J. How reliable is the intramolecular distribution of N-15 in N2O to source partition N2O emitted from soil? [J]. Soil Biol Biochem, 2013, 65: 114 − 127. doi:  10.1016/j.soilbio.2013.05.012
    [46] YU Longfei, HARRIS E, LEWICKA-SZCZEBAK D, et al. What can we learn from N2O isotope data? analytics, processes and modelling[J]. Rapid Commun Mass Spectrom RCM, 2020: 34. doi: 10.1002/rcm.8858.
    [47] LEWICKA-SZCZEBAK, WELL, KOSTER, et al. Experimental determinations of isotopic fractionation factors associated with N2O production and reduction during denitrification in soils [J]. Geochim Cosmochim Acta, 2014, 134: 55 − 73. doi:  10.1016/j.gca.2014.03.010
    [48] WELL R, FLESSA H. Isotope fractionation factors of N2O diffusion [J]. Rapid Commun Mass Spectrom RCM, 2010, 22(17): 2621 − 2628.
    [49] SUTKA R L, OSTROM N E, OSTROM P H, et al. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances [J]. Appl Environ Microbiol, 2006, 72(1): 638 − 644. doi:  10.1128/AEM.72.1.638-644.2006
    [50] TOYODA S, YOSHIDA N. Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer-Analytical Chemistry (ACS Publications) [J]. Anal Chem, 1999, 71(20): 4711 − 4718. doi:  10.1021/ac9904563
    [51] MOHN J, WOLF B, TOYODA S, et al. Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope ratio mass spectrometry and laser spectroscopy: current status and perspectives [J]. Rapid Commun Mass Spectrom RCM, 2014, 28(18): 1995 − 2007. doi:  10.1002/rcm.6982
    [52] OSTROM N E, OSTROM P H. Mining the isotopic complexity of nitrous oxide: a review of challenges and opportunities [J]. Biogeochemistry, 2017, 132(3): 359 − 372. doi:  10.1007/s10533-017-0301-5
    [53] JINUNTUYA-NORTMAN M, SUTKA R L, OSTROM P H, et al. Isotopologue fractionation during microbial reduction of N2O within soil mesocosms as a function of water-filled pore space [J]. Soil Biol Biochem, 2008, 40(9): 2273 − 2280. doi:  10.1016/j.soilbio.2008.05.016
    [54] WELL R, FLESSA H. Isotopologue enrichment factors of N(2)O reduction in soils [J]. Rapid Commun Mass Spectrom RCM, 2010, 23(18): 2996 − 3002.
    [55] HEIL J, WOLF B, BRUGGEMANN N, et al. Site-specific N-15 isotopic signatures of abiotically produced N2O [J]. Geochim Cosmochim Acta, 2014, 139: 72 − 82. doi:  10.1016/j.gca.2014.04.037
    [56] ALDOSSARI N, ISHII S. Fungal denitrification revisited-recent advancements and future opportunities[J]. Soil Biol Biochem, 2021, 157: 108250. doi: 10.1016/j.soilbio.2021.108250.
    [57] TOYODA S, YANO M, NISHIMURA S-I, et al. Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis[J]. Glob Biogeochem Cycles, 2011, 25(2): doi: 10.1029/2009GB003769.
    [58] YANO M, TOYODA S, TOKIDA T, et al. Isotopomer analysis of production, consumption and soil-to-atmosphere emission processes of N2O at the beginning of paddy field irrigation [J]. Soil Biol Biochem, 2014, 70: 66 − 78.
    [59] KOOL D, van GROENIGEN J W, WRAGE-MÖNNIG N. Source determination of nitrous oxide based on nitrogen and oxygen isotope tracing [J]. Methods Enzymol, 2011, 496: 139 − 160.
    [60] KATO T, TOYODA S, YOSHIDA N, et al. Isotopomer and isotopologue signatures of N2O produced in alpine ecosystems on the Qinghai-Tibetan Plateau [J]. Rapid Commun Mass Spectrom RCM, 2013, 27(13): 1517 − 1526. doi:  10.1002/rcm.6595
    [61] WOLF B, MERBOLD L, DECOCK C, et al. First on-line isotopic characterization of N2O emitted from intensively managed grassland [J]. Biogeosci Discuss, 2015, 12(2): 1573 − 1611.
    [62] ZOU Yun, HIRONO Y, YANAI Y, et al. Isotopomer analysis of nitrous oxide accumulated in soil cultivated with tea (Camellia sinensis) in Shizuoka, central Japan [J]. Soil Biol Biochem, 2014, 77: 276 − 291. doi:  10.1016/j.soilbio.2014.06.016
    [63] LEWICKA-SZCZEBAK D, AUGUSTIN J, GIESEMANN A, et al. Quantifying N2O reduction to N2 based on N2O isotopocules: validation with independent methods (helium incubation and 15N gas flux method) [J]. Biogeosciences, 2017, 14: 71 − 732.
    [64] BUCHEN-C, CAROLINE, LEWICKA-SZCZEBAK, et al. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules [J]. Rapid Commun Mass Spectrom RCM, 2018, 32(13): 1053 − 1067. doi:  10.1002/rcm.8132
    [65] IBRAIM E, WOLF B, HARRIS E, et al. Attribution of N2O sources in a grassland soil with laser spectroscopy based isotopocule analysis [J]. Biogeosciences, 2019, 16(16): 3247 − 3266. doi:  10.5194/bg-16-3247-2019
    [66] WU Di, WELL R, CÁRDENAS L M, et al. Quantifying N2O reduction to N2 during denitrification in soils via isotopic mapping approach: model evaluation and uncertainty analysis[J]. Environ Res, 2019, 179: 108806. doi: 10.1016/j.envres.2019.108806.
    [67] LEWICKA-SZCZEBAK D, LEWICKI M P, WELL R. N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction: validation with the N-15 gas-flux method in laboratory and field studies [J]. Biogeosciences, 2020, 17(22): 5513 − 5537. doi:  10.5194/bg-17-5513-2020
    [68] ZHANG Wei, LI Yuzhong, XU Chuunying, et al. Isotope signatures of N2O emitted from vegetable soil: ammonia oxidation drives N2O production in NH4 +-fertilized soil of north China[J]. Sci Rep, 2016, 6: 29257. doi: 10.1038/srep29257.
    [69] ROHE L, WELL R, LEWICKA-SZCZEBAK D. Use of oxygen isotopes to differentiate between nitrous oxide produced by fungi or bacteria during denitrification [J]. Rapid Commun Mass Spectrom RCM, 2017, 31(16): 1297 − 1312. doi:  10.1002/rcm.7909
    [70] ROHE L, ANDERSON T H, FLESSA H, et al. Comparing modified substrate induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions[J]. Biogeosci Discuss, 2020. doi: 10.5194/bg-2020-285.
    [71] ALDOSSARI N, ISHII S. Fungal denitrification revisited-recent advancements and future opportunities[J]. Soil Biol Biochem, 2021, 157: 108250. doi: 10.1016/j.soilbio.2021.108250.
    [72] TOYODA S, YOSHIDA N, KOBA K. Isotopocule analysis of biologically produced nitrous oxide in various environments [J]. Mass Spectrom Rev, 2017, 36: 135 − 160. doi:  10.1002/mas.21459
    [73] BOHLKE J K, MROCZKOWSKI S J, COPLEN T B. Oxygen isotopes in nitrate: new reference materials for: 180:170:160 mesurements and observations on nitrate-water equilibration [J]. Rapid Commun Mass Spectrom, 2003, 17(16): 1835 − 1846.
    [74] CHALK P M, INACIO C T, CHEN D L. An overview of contemporary advances in the usage of N-15 natural abundance (delta N-15) as a tracer of agro-ecosystem N cycle processes that impact the environment[J]. Agric Ecosyst Environ, 2019, 283: 106570. doi: 10.1016/j.agee.2019.106570.
    [75] OSTROM N, OSTROM P. The Isotopomers of Nitrous Oxide: Analytical Considerations and Application to Resolution of Microbial Production Pathways[M]. Heidelberg: Springer, 2012.
    [76] RICHARDSON D, FELGATE H, WATMOUGH N, et al. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle: could enzymic regulation hold the key? [J]. Trends Biotechnol, 2009, 27(7): 388 − 397. doi:  10.1016/j.tibtech.2009.03.009
    [77] SUN Lifei, SANG Changpeng, WANG Chao, et al. N2O production in the organic and mineral horizons of soil had different responses to increasing temperature [J]. J Soils Sediment, 2019, 19(10): 3499 − 3511. doi:  10.1007/s11368-019-02316-4
    [78] DESLOOVER J, VLAEMINCK S E, CLAUWAERT P, et al. Strategies to mitigate N2O emissions from biological nitrogen removal systems [J]. Curr Opin Biotechnol, 2012, 23(3): 474 − 482. doi:  10.1016/j.copbio.2011.12.030
    [79] 朱莹, 田浩, 王芸, 等. 环境因子对土壤微生物产生和还原N2O过程的影响[J]. 基因组学与应用生物学, 2017, 36(12): 5191 − 5198.

    ZHU Ying, TIAN Hao, WANG Yun, et al. The effects of environmental factors on N2O production and reduction process of soil microorganisms [J]. Genom Appl Biol, 2017, 36(12): 5191 − 5198.
    [80] YEUNG L Y. Combinatorial effects on clumped isotopes and their significance in biogeochemistry [J]. Geochim Cosmochim Acta, 2016, 172: 22 − 38. doi:  10.1016/j.gca.2015.09.020
  • [1] 屈田华, 李永夫, 张少博, 郦琳琳, 李永春, 刘娟.  生物质炭输入影响土壤氮素转化与氧化亚氮排放的研究进展 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200549
    [2] 朱丹苗, 陈俊辉, 姜培坤.  杉木人工林土壤有机碳和微生物特征及其影响因素的研究进展 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200598
    [3] 高宇, 王佰慧, 邹瑜, 王书丽, 向蒗, 付艳秋, 胡冬南, 郭晓敏, 张令.  氮磷添加下施用保水剂对油茶林土壤氧化亚氮排放的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20210411
    [4] 王鹏飞, 沈娟章, 谭卫红.  稳定同位素技术在林产品产地溯源和掺假鉴别中的应用研究进展 . 浙江农林大学学报, 2018, 35(5): 968-974. doi: 10.11833/j.issn.2095-0756.2018.05.023
    [5] 赖政钢, 褚淑祎, 崔灵周, 肖继波.  限制自养硝化反硝化工艺脱氮机制及强化研究进展 . 浙江农林大学学报, 2017, 34(5): 934-941. doi: 10.11833/j.issn.2095-0756.2017.05.022
    [6] 臧晓琳, 张洪芹, 王鑫朝, 马元丹, 宝音陶格涛, 高岩, 张汝民.  放牧对冷蒿根际土壤微生物数量和群落功能多样性的影响 . 浙江农林大学学报, 2017, 34(1): 86-95. doi: 10.11833/j.issn.2095-0756.2017.01.013
    [7] 王帆, 江洪, 牛晓栋.  大气水汽稳定同位素组成在生态系统水循环中的应用 . 浙江农林大学学报, 2016, 33(1): 156-165. doi: 10.11833/j.issn.2095-0756.2016.01.021
    [8] 牛晓栋, 江洪, 王帆.  天目山森林生态系统大气水汽稳定同位素组成的影响因素 . 浙江农林大学学报, 2015, 32(3): 327-334. doi: 10.11833/j.issn.2095-0756.2015.03.001
    [9] 王丹, 马元丹, 郭慧媛, 高岩, 张汝民, 侯平.  模拟酸雨胁迫与柳杉凋落物对土壤养分及微生物的影响 . 浙江农林大学学报, 2015, 32(2): 195-203. doi: 10.11833/j.issn.2095-0756.2015.02.005
    [10] 朱秀勤, 范弢, 官威, 覃娜.  滇中岩溶高原滇青冈原生林植物水分利用来源的稳定同位素分析 . 浙江农林大学学报, 2014, 31(5): 690-696. doi: 10.11833/j.issn.2095-0756.2014.05.005
    [11] 李波成, 邬奇峰, 张金林, 钱马, 秦华, 徐秋芳.  真菌及细菌对毛竹及阔叶林土壤氧化亚氮排放的贡献 . 浙江农林大学学报, 2014, 31(6): 919-925. doi: 10.11833/j.issn.2095-0756.2014.06.014
    [12] 彭永红, 陈永根, 宋照亮, 单胜道, 宋哲岳.  沼液施用对潮土氧化亚氮排放通量的影响 . 浙江农林大学学报, 2012, 29(6): 954-959. doi: 10.11833/j.issn.2095-0756.2012.06.022
    [13] 李海防, 段文军.  华南地区典型人工林土壤二氧化碳和氧化亚氮通量研究 . 浙江农林大学学报, 2011, 28(1): 26-32. doi: 10.11833/j.issn.2095-0756.2011.01.005
    [14] 姜海燕, 闫伟.  大兴安岭兴安落叶松林土壤微生物分布特征 . 浙江农林大学学报, 2010, 27(2): 228-232. doi: 10.11833/j.issn.2095-0756.2010.02.011
    [15] 魏媛, 张金池, 俞元春, 喻理飞.  贵州高原退化喀斯特植被恢复过程中土壤微生物数量的变化特征 . 浙江农林大学学报, 2009, 26(6): 842-848.
    [16] 徐秋芳, 姜培坤.  有机肥对毛竹林间及根区土壤生物化学性质的影响 . 浙江农林大学学报, 2000, 17(4): 364-368.
    [17] 董林根, 姜小娟, 方茂盛.  雷竹覆盖栽培林地土壤微生物的初步研究 . 浙江农林大学学报, 1998, 15(3): 236-239.
    [18] 姜培坤, 徐秋芳, 钱新标, 沈锡康, 俞欢群.  矿质肥料对杉木苗根区土壤生化性的影响 . 浙江农林大学学报, 1996, 13(1): 10-14.
    [19] 何光训.  杉木连栽林地土壤酚类物质降解受阻的内外因 . 浙江农林大学学报, 1995, 12(4): 434-439.
    [20] 杜国坚, 黄天平, 张庆荣, 张浦山, 程荣亮.  杉木混交林土壤微生物及生化特征和肥力* . 浙江农林大学学报, 1995, 12(4): 347-352.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210458

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/5/1

计量
  • 文章访问数:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-08-11
  • 网络出版日期:  2021-09-14

基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展

doi: 10.11833/j.issn.2095-0756.20210458
    基金项目:  国家自然科学基金资助项目(41771266,41401243);土壤与农业可持续发展国家重点实验室开放基金项目(Y812000005);中国科学院西部青年学者项目(202082)
    作者简介:

    黄瑾(ORCID: 0000-0002-1575-816X),从事生源物质生物地球化学循环研究。E-mail: huangjin@cigit.ac.cn

    通信作者: 黄平(ORCID: 0000-0002-3320-1672),研究员,博士,从事土壤结构演变与界面物质循环研究。E-mail: huangping@cigit.ac.cn
  • 中图分类号: S153

摘要: 氧化亚氮(N2O)是主要的温室气体之一,并且对平流层臭氧层分解起到重要作用。土壤中N2O的产生和排放过程复杂多样,对其进行精准溯源与过程区分有助于制定减排策略。稳定同位素自然丰度技术利用N2O的同位素值δ15Nbulk(N2O中15N在整体水平上的同位素特征值)、δ18O(N2O中18O在整体水平上的同位素特征值)以及δ15Nsp(N2O分子内15N的位点特异性同位素值),可以示踪N2O来源、指示N2O产生的微生物作用途径,在N2O转化过程溯源中已取得重要进展。而同位素分馏效应是稳定同位素自然丰度技术应用的理论基础,其中微生物过程及其导致的同位素分馏是需要重点关注的问题。本研究概述了同位素分馏效应在N2O的产生、排放过程中的研究进展及其主要影响因素,梳理了同位素特征值δ15Nbulk、δ18O和δ15Nsp在分析N2O来源的研究进展,并且提出了影响准确区分过程的因素。因素包括单一产生路径的同位素特征值范围广、不同产生路径的同位素特征值范围的重叠、反应底物同位素组成的变化、以及与N2O还原相关的分馏因子的可变性等问题。明确了今后需加强δ15Nsp等N2O同位素特征值分馏效应的测定、利用组合同位素特征值及先进手段进行全面的N2O溯源研究。图2参80

English Abstract

黄瑾, 余龙飞, 李文娟, 黄平. 基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210458
引用本文: 黄瑾, 余龙飞, 李文娟, 黄平. 基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210458
HUANG Jin, YU Longfei, LI Wenjuan, HUANG Ping. Stable isotope natural abundance techniques in the studies on nitrous oxide production and emission processes: a review[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210458
Citation: HUANG Jin, YU Longfei, LI Wenjuan, HUANG Ping. Stable isotope natural abundance techniques in the studies on nitrous oxide production and emission processes: a review[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210458

返回顶部

目录

    /

    返回文章
    返回