留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高山松地上生物量遥感估算的不确定性分析

黄屹杰 张加龙 胡耀鹏 程滔

黄屹杰, 张加龙, 胡耀鹏, 程滔. 高山松地上生物量遥感估算的不确定性分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210473
引用本文: 黄屹杰, 张加龙, 胡耀鹏, 程滔. 高山松地上生物量遥感估算的不确定性分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210473
HUANG Yijie, ZHANG Jialong, HU Yaopeng, CHENG Tao. Uncertainty analysis of estimating aboveground biomass of Pinus densata by remote sensing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210473
Citation: HUANG Yijie, ZHANG Jialong, HU Yaopeng, CHENG Tao. Uncertainty analysis of estimating aboveground biomass of Pinus densata by remote sensing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210473

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

高山松地上生物量遥感估算的不确定性分析

doi: 10.11833/j.issn.2095-0756.20210473
基金项目: 国家自然科学基金资助项目(31860207);2020年云南省高层次人才培养支持计划“青年拔尖人才”专项(81210468);西南林业大学科研启动基金(111932)
详细信息
    作者简介: 黄屹杰(ORCID: 0000-0001-6922-1029),从事森林生物量遥感估测研究。E-mail: huangyijie@swfu.edu.cn
    通信作者: 张加龙(ORCID: 0000-0002-6969-3656),教授,博士,从事资源环境遥感研究。E-mail: jialongzhang@swfu.edu.cn
  • 中图分类号: S758.5

Uncertainty analysis of estimating aboveground biomass of Pinus densata by remote sensing

  • 摘要:   目的  采用遥感数据估算森林地上生物量仍存在一些不确定性问题,研究估算过程中的误差来源及其占比,对提高森林地上生物量的估测精度具有重要意义。  方法  从遥感影像提取因子,结合高山松Pinus densata外业调查数据,建立多元线性回归、梯度提升回归树、随机森林等3种地上生物量估测模型,对样地尺度与3种模型的不确定性进行分析和度量。  结果  ①高山松单株生物量模型不确定性为16.43%,样地尺度的不确定性为7.07%;②多元线性回归模型残差不确定性为34.86%,参数不确定性为21.30%,与样地不确定性合成后总不确定性为41.45%;③非参数模型中,梯度提升回归树估测高山松地上生物量的总不确定性为23.12%,随机森林为19.42%。  结论  3种遥感估算模型中,非参数模型的不确定性明显低于参数模型。相较于样地尺寸,遥感估算模型的不确定性对地上生物量估算精度的影响较大。图3表3参26
  • 图  1  基于多元线性回归的地上生物量预测效果和残差不确定性

    Figure  1  Prediction effect and the residual uncertainty of aboveground biomass based on multiple linear regression

    图  2  基于梯度提升回归树的地上生物量预测效果和残差不确定性

    Figure  2  Prediction effect and the residual uncertainty of aboveground biomass based on gradient boost regression tree

    图  3  基于随机森林的地上生物量预测效果和残差不确定性

    Figure  3  Prediction effect and the residual uncertainty of aboveground biomass based on random forest

    表  1  外业调查样地统计

    Table  1.   Basic statistics of the sample plots of field surveys

    指标平均胸径/cm平均树高/m林分密度/(株·hm−2)
    最大值22.7614.183 100.00
    最小值6.854.48222.22
    平均值14.808.701 181.30
    标准差3.682.11714.14
    下载: 导出CSV

    表  2  建模和检验样本的地上生物量实测值

    Table  2.   Measured values of aboveground biomass of modeling and testing samples

    样本集样地数/个地上生物量/(t·hm−2)
    最大值最小值平均值标准差
    建模样本48169.7512.9556.5033.85
    检验样本1294.9715.4462.5626.48
    下载: 导出CSV

    表  3  3种地上生物量估测模型的不确定性

    Table  3.   Uncertainty results of the three aboveground biomass estimation models

    模型遥感估算地上生物量的不确定性样地尺度地上生物量的不确定性总不确定性/%
    模型残差
    变异/%
    模型参数
    变异/%
    遥感估测模型
    不确定性/%
    模型残差
    变异/%
    模型参数
    变异/%
    单株生物量模型
    不确定性/%
    样地尺度不
    确定性/%
    多元线性回归 34.8621.3040.8410.7612.4216.437.0741.45
    梯度提升回归树22.0122.0123.12
    随机森林   18.0918.0919.42
      说明:梯度提升回归树与随机森林为非参数模型,不考虑模型参数变异的不确定性
    下载: 导出CSV
  • [1] 唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000, 36(专刊1): 19 − 27.

    TANG Shouzheng, ZHANG Huiru, XU Hui. Study on establish and estimate method of compatible biomass model[J]. Sci Silv Sin, 2000, 36(spec 1): 19 − 27.
    [2] 王维枫, 雷渊才, 王雪峰, 等. 森林生物量模型综述[J]. 西北林学院学报, 2008, 23(2): 58 − 63.

    WANG Weifeng, LEI Yuancai, WANG Xuefeng, et al. A review of forest biomass models [J]. J Northwest For Univ, 2008, 23(2): 58 − 63.
    [3] 徐婷, 曹林, 佘光辉. 基于Landsat 8 OLI的特征变量优化提取及森林生物量反演[J]. 遥感技术与应用, 2015, 30(2): 226 − 234.

    XU Ting, CAO Lin, SHE Guanghui. Feature extraction and forest biomass estimation based on Landsat 8 OLI [J]. Remote Sensing Technol Appl, 2015, 30(2): 226 − 234.
    [4] MCROBERTS R E, WESTFALL J A. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates [J]. For Sci, 2014, 60(1): 34 − 42. doi:  10.5849/forsci.12-141
    [5] LU Dengsheng, CHEN Qi, WANG Guangxing, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems [J]. Int J Digital Earth, 2016, 9(1): 63 − 105. doi:  10.1080/17538947.2014.990526
    [6] BAO Rui, ZHANG Jialong, LU Chi, et al. Estimating above-ground biomass of Pinus densata Mast. using best slope temporal segmentation and Landsat time series[J/OL]. J Appl Remote Sensing, 2021, 15(2)[2021-03-25]. doi:  10.1117/1.JRS.15.024507.
    [7] ZHAO Panpan, LU Dengsheng, WANG Guangxing, et al. Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation [J]. Remote Sensing, 2016, 8(6): 469 − 495. doi:  10.3390/rs8060469
    [8] 张加龙, 胥辉, 陆驰. 应用Landsat 8 OLI和GBRT对高山松地上生物量的估测[J]. 东北林业大学学报, 2018, 46(8): 25 − 30. doi:  10.3969/j.issn.1000-5382.2018.08.005

    ZHANG Jialong, XU Hui, LU Chi. Estimating above ground biomass of Pinus densata based on Landsat 8 OLI and gradient boost regression [J]. J Northeast For Univ, 2018, 46(8): 25 − 30. doi:  10.3969/j.issn.1000-5382.2018.08.005
    [9] COHEN R, KAINO J, OKELLO J A, et al. Propagating uncertainty to estimates of above-ground biomass for Kenyan mangroves: a scaling procedure from tree to landscape level [J]. For Ecol Manage, 2013, 310: 968 − 982. doi:  10.1016/j.foreco.2013.09.047
    [10] 秦立厚, 张茂震, 钟世红, 等. 森林生物量估算中模型不确定性分析[J]. 生态学报, 2017, 37(23): 7912 − 7919.

    QIN Lihou, ZHANG Maozhen, ZHONG Shihong, et al. Model uncertainty in forest biomass estimation [J]. Acta Ecol Sin, 2017, 37(23): 7912 − 7919.
    [11] SHETTLES M, TEMESGEN H, GRAY A N, et al. Comparison of uncertainty in per unit area estimates of aboveground biomass for two selected model sets [J]. For Ecol Manage, 2015, 354: 18 − 25. doi:  10.1016/j.foreco.2015.07.002
    [12] CLARK D B, KELLNER J R. Tropical forest biomass estimation and the fallacy of misplaced concreteness [J]. J Veg Sci, 2012, 23(6): 1191 − 1196. doi:  10.1111/j.1654-1103.2012.01471.x
    [13] CHEN Qi, LAURIN G V, VALENTINI R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: propagating errors from trees to plots to pixels [J]. Remote Sensing Environ, 2015, 160: 134 − 143. doi:  10.1016/j.rse.2015.01.009
    [14] 秦立厚. 浙江省森林碳储量估算不确定性研究[D]. 杭州: 浙江农林大学, 2017.

    QIN Lihou. Uncertainty of Forest Carbon Storage Estimation in Zhejiang Province[D]. Hangzhou: Zhejiang A&F University, 2017.
    [15] 孙雪莲. 基于Landsat 8-OLI的香格里拉高山松林生物量遥感估测模型研究[D]. 昆明: 西南林业大学, 2016.

    SUN Xuelian. Biomass Estimation Model of Pinus densata Forests in Shangri-La City Based on Landsat 8-OLI by Remote Sensing[D]. Kunming: Southwest Forestry University, 2016.
    [16] NICHOL J, HANG L K, SING W M. Empirical correction of low sun angle images in steeply sloping terrain: a slope-matching technique [J]. Int J Remote Sensing, 2006, 27(3): 629 − 635. doi:  10.1080/02781070500293414
    [17] 陆驰. 基于Landsat的香格里拉市高山松地上生物量及其动态变化建模研究[D]. 昆明: 西南林业大学, 2017.

    LU Chi. The Estimation and Dynamic Modeling on the Aboveground Biomass of Pinus densata in Shangri-La Based on Landsat[D]. Kunming: Southwest Forestry University, 2017.
    [18] HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification [J]. Stud Media Commun, 1973, 3(6): 610 − 621.
    [19] 岳彩荣. 香格里拉县森林生物量遥感估测研究[D]. 北京: 北京林业大学, 2011.

    YUE Cairong. Forest Biomass Estimation in Shangri-La County Based on Remote Sensing[D]. Beijing: Beijing Forestry University, 2011.
    [20] 张加龙, 胥辉. 基于遥感的高山松连清固定样地地上生物量估测模型构建[J]. 北京林业大学学报, 2020, 42(7): 1 − 11. doi:  10.12171/j.1000-1522.20190394

    ZHANG Jialong, XU Hui. Establishment of remote sensing based model to estimate the aboveground biomass of Pinus densata for permanent sample plots from national forestry inventory [J]. J Beijing For Univ, 2020, 42(7): 1 − 11. doi:  10.12171/j.1000-1522.20190394
    [21] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine [J]. Ann Stat, 2001, 29(5): 1189 − 1232. doi:  10.1214/aos/1013203450
    [22] OU Guanglong, LÜ Yanyu, XU Hui, et al. Improving forest aboveground biomass estimation of Pinus densata forest in Yunnan of southwest China by spatial regression using Landsat 8 images [J]. Remote Sensing, 2019, 11(23): 738 − 762.
    [23] HOSMER D W, LEMESHOW S. Applied Logistic Regression [M]. New York: John Wiley & Sons, 2000.
    [24] 李金海. 误差理论与测量不确定度评定[M]. 北京: 中国计量出版社, 2003.

    LI Jinhai. Error Theory and Measurement Uncertainty Assessment[M]. Beijing: China Metrology Publishing House, 2003.
    [25] 陈蜀蓉, 张超, 郑超超, 等. 公益林生物量估算方法研究——以浙江省缙云县公益林为例[J]. 浙江林业科技, 2015, 35(5): 20 − 28. doi:  10.3969/j.issn.1001-3776.2015.05.005

    CHEN Shurong, ZHANG Chao, ZHENG Chaochao, et al. Estimation methods for biomass of ecological forest in Jinyun [J]. J Zhejiang For Sci Technol, 2015, 35(5): 20 − 28. doi:  10.3969/j.issn.1001-3776.2015.05.005
    [26] CHAVE J, CONDIT R, AGUILAR S, et al. Error propagation and scaling for tropical forest biomass estimates [J]. Philos Trans R Soc Lond Series B Biol Sci, 2004, 359(1443): 409 − 420. doi:  10.1098/rstb.2003.1425
  • [1] 彭健健, 王增, 张勇, 刘海英, 顾光同, 彭欣怡, 吴家森, 叶子豪, 张申, 尚世宇.  杨梅人工林相容性单株生物量模型构建 . 浙江农林大学学报, 2022, 39(2): 272-279. doi: 10.11833/j.issn.2095-0756.20210272
    [2] 韩泽民, 李源, 王熊, 菅永峰, 周靖靖, 佃袁勇, 黄光体.  不同演替程度下马尾松人工林生物多样性对生物量的影响 . 浙江农林大学学报, 2021, 38(2): 246-252. doi: 10.11833/j.issn.2095-0756.20200334
    [3] 卢腾飞, 周律, 胡中岳, 欧光龙, 胥辉.  基于混合效应模型的迪庆云冷杉林地上生物量遥感估测 . 浙江农林大学学报, 2021, 38(3): 510-522. doi: 10.11833/j.issn.2095-0756.20200327
    [4] 兰洁, 肖中琪, 李吉玫, 张毓涛.  天山雪岭云杉生物量分配格局及异速生长模型 . 浙江农林大学学报, 2020, 37(3): 416-423. doi: 10.11833/j.issn.2095-0756.20190384
    [5] 曹梦, 潘萍, 欧阳勋志, 臧颢, 吴自荣, 单凯丽, 杨阳.  天然次生林中闽楠生物量分配特征及相容性模型 . 浙江农林大学学报, 2019, 36(4): 764-773. doi: 10.11833/j.issn.2095-0756.2019.04.017
    [6] 申家朋, 陈东升, 孙晓梅, 张守攻.  基于似乎不相关回归和哑变量的日本落叶松单木生物量模型构建 . 浙江农林大学学报, 2019, 36(5): 877-885. doi: 10.11833/j.issn.2095-0756.2019.05.005
    [7] 谢福明, 字李, 舒清态.  基于优化k-NN模型的高山松地上生物量遥感估测 . 浙江农林大学学报, 2019, 36(3): 515-523. doi: 10.11833/j.issn.2095-0756.2019.03.012
    [8] 向安民, 刘凤伶, 于宝义, 李崇贵.  基于k-NN方法和GF遥感影像的森林蓄积量估测 . 浙江农林大学学报, 2017, 34(3): 406-412. doi: 10.11833/j.issn.2095-0756.2017.03.004
    [9] 吕常笑, 邓华锋, 王少杰, 陈振雄, 王雪军.  马尾松不同区域相容性立木材积和地上生物量模型 . 浙江农林大学学报, 2016, 33(5): 790-797. doi: 10.11833/j.issn.2095-0756.2016.05.010
    [10] 冉啟香, 邓华锋, 黄国胜, 王雪军, 陈振雄.  云南松地上生物量模型研究 . 浙江农林大学学报, 2016, 33(4): 605-611. doi: 10.11833/j.issn.2095-0756.2016.04.008
    [11] 俞淑红, 周国模, 施拥军, 吕玉龙, 沈振明.  毛竹碳汇造林初期净碳汇量监测与不确定性分析 . 浙江农林大学学报, 2016, 33(5): 807-815. doi: 10.11833/j.issn.2095-0756.2016.05.012
    [12] 王金亮, 程鹏飞, 徐申, 王小花, 程峰.  基于遥感信息模型的香格里拉森林生物量估算 . 浙江农林大学学报, 2013, 30(3): 325-329. doi: 10.11833/j.issn.2095-0756.2013.03.003
    [13] 商珍珍, 周国模, 杜华强.  毛竹林地上生物量与胸径的分形关系 . 浙江农林大学学报, 2013, 30(3): 319-324. doi: 10.11833/j.issn.2095-0756.2013.03.002
    [14] 王晓宁, 徐天蜀, 李毅.  利用ALOS PALSAR双极化数据估测山区森林蓄积量模型 . 浙江农林大学学报, 2012, 29(5): 667-670. doi: 10.11833/j.issn.2095-0756.2012.05.005
    [15] 苏文会, 范少辉, 刘亚迪, 彭颖, 封焕英.  车筒竹地上生物量分配格局及秆形特征 . 浙江农林大学学报, 2011, 28(5): 735-740. doi: 10.11833/j.issn.2095-0756.2011.05.008
    [16] 玉宝, 张秋良, 王立明, 乌吉斯古楞.  不同结构落叶松天然林生物量及生产力特征 . 浙江农林大学学报, 2011, 28(1): 52-58. doi: 10.11833/j.issn.2095-0756.2011.01.009
    [17] 杨前宇, 谢锦忠, 张玮, 林振清.  椽竹各器官生物量模型 . 浙江农林大学学报, 2011, 28(3): 519-526. doi: 10.11833/j.issn.2095-0756.2011.03.027
    [18] 涂洁, 刘琪璟, 简敏菲.  千烟洲湿地松中幼林树冠生物量及生长量分析 . 浙江农林大学学报, 2008, 25(2): 206-210.
    [19] 林新春, 方伟, 俞建新, 余学军, 胡超宗, 周林.  苦竹各器官生物量模型 . 浙江农林大学学报, 2004, 21(2): 168-171.
    [20] 贺东北, 骆期邦, 曾伟生.  立木生物量线性联立模型研究 . 浙江农林大学学报, 1998, 15(3): 298-303.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210473

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022//1

计量
  • 文章访问数:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 录用日期:  2022-03-04
  • 修回日期:  2021-12-24

高山松地上生物量遥感估算的不确定性分析

doi: 10.11833/j.issn.2095-0756.20210473
    基金项目:  国家自然科学基金资助项目(31860207);2020年云南省高层次人才培养支持计划“青年拔尖人才”专项(81210468);西南林业大学科研启动基金(111932)
    作者简介:

    黄屹杰(ORCID: 0000-0001-6922-1029),从事森林生物量遥感估测研究。E-mail: huangyijie@swfu.edu.cn

    通信作者: 张加龙(ORCID: 0000-0002-6969-3656),教授,博士,从事资源环境遥感研究。E-mail: jialongzhang@swfu.edu.cn
  • 中图分类号: S758.5

摘要:   目的  采用遥感数据估算森林地上生物量仍存在一些不确定性问题,研究估算过程中的误差来源及其占比,对提高森林地上生物量的估测精度具有重要意义。  方法  从遥感影像提取因子,结合高山松Pinus densata外业调查数据,建立多元线性回归、梯度提升回归树、随机森林等3种地上生物量估测模型,对样地尺度与3种模型的不确定性进行分析和度量。  结果  ①高山松单株生物量模型不确定性为16.43%,样地尺度的不确定性为7.07%;②多元线性回归模型残差不确定性为34.86%,参数不确定性为21.30%,与样地不确定性合成后总不确定性为41.45%;③非参数模型中,梯度提升回归树估测高山松地上生物量的总不确定性为23.12%,随机森林为19.42%。  结论  3种遥感估算模型中,非参数模型的不确定性明显低于参数模型。相较于样地尺寸,遥感估算模型的不确定性对地上生物量估算精度的影响较大。图3表3参26

English Abstract

黄屹杰, 张加龙, 胡耀鹏, 程滔. 高山松地上生物量遥感估算的不确定性分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210473
引用本文: 黄屹杰, 张加龙, 胡耀鹏, 程滔. 高山松地上生物量遥感估算的不确定性分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210473
HUANG Yijie, ZHANG Jialong, HU Yaopeng, CHENG Tao. Uncertainty analysis of estimating aboveground biomass of Pinus densata by remote sensing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210473
Citation: HUANG Yijie, ZHANG Jialong, HU Yaopeng, CHENG Tao. Uncertainty analysis of estimating aboveground biomass of Pinus densata by remote sensing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210473

返回顶部

目录

    /

    返回文章
    返回