留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高山松地上生物量遥感估算的不确定性分析

黄屹杰 张加龙 胡耀鹏 程滔

陈曦, 叶可陌, 李坤, 等. 资源型城市“三生空间”土地利用变化及其风险和价值研究[J]. 浙江农林大学学报, 2023, 40(5): 1111-1120. DOI: 10.11833/j.issn.2095-0756.20220666
引用本文: 黄屹杰, 张加龙, 胡耀鹏, 等. 高山松地上生物量遥感估算的不确定性分析[J]. 浙江农林大学学报, 2022, 39(3): 531-539. DOI: 10.11833/j.issn.2095-0756.20210473
CHEN Xi, YE Kemo, LI Kun, et al. Research on land use change and risk-value of “production-living-ecological space” in a resource-based city[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1111-1120. DOI: 10.11833/j.issn.2095-0756.20220666
Citation: HUANG Yijie, ZHANG Jialong, HU Yaopeng, et al. Uncertainty analysis of estimating aboveground biomass of Pinus densata by remote sensing[J]. Journal of Zhejiang A&F University, 2022, 39(3): 531-539. DOI: 10.11833/j.issn.2095-0756.20210473

高山松地上生物量遥感估算的不确定性分析

DOI: 10.11833/j.issn.2095-0756.20210473
基金项目: 国家自然科学基金资助项目(31860207);2020年云南省高层次人才培养支持计划“青年拔尖人才”专项(81210468);西南林业大学科研启动基金(111932)
详细信息
    作者简介: 黄屹杰(ORCID: 0000-0001-6922-1029),从事森林生物量遥感估测研究。E-mail: huangyijie@swfu.edu.cn
    通信作者: 张加龙(ORCID: 0000-0002-6969-3656),教授,博士,从事资源环境遥感研究。E-mail: jialongzhang@swfu.edu.cn
  • 中图分类号: S758.5

Uncertainty analysis of estimating aboveground biomass of Pinus densata by remote sensing

  • 摘要:   目的  采用遥感数据估算森林地上生物量仍存在一些不确定性问题,研究估算过程中的误差来源及其占比,对提高森林地上生物量的估测精度具有重要意义。  方法  从遥感影像提取因子,结合高山松Pinus densata外业调查数据,建立多元线性回归、梯度提升回归树、随机森林等3种地上生物量估测模型,对样地尺度与3种模型的不确定性进行分析和度量。  结果  ①高山松单株生物量模型不确定性为16.43%,样地尺度的不确定性为7.07%;②多元线性回归模型残差不确定性为34.86%,参数不确定性为21.30%,与样地不确定性合成后总不确定性为41.45%;③非参数模型中,梯度提升回归树估测高山松地上生物量的总不确定性为23.12%,随机森林为19.42%。  结论  3种遥感估算模型中,非参数模型的不确定性明显低于参数模型。相较于样地尺度,遥感估算模型的不确定性对地上生物量估算精度的影响较大。图3表3参26
  • 土地资源作为人类生存发展的基本要素和载体,根据功能可划分为生产空间、生活空间和生态空间(“三生空间”)[1]。资源型城市与其他类型城市相比,受到城镇化发展与资源开采的双重压力,生态空间被生活和生产空间挤压的时段更长,“三生空间”冲突更为强烈[2]。并且,由于土地功能不断变更,土地利用敏感度增加,景观格局剧烈变化,面临的生态安全问题也更为复杂与紧迫[3]。因此,科学提升资源型城市生态安全是促进土地可持续发展的关键。资源型城市边缘区作为城市建设中最富变化的区域,不仅涉及城乡之间的过渡,矿区与非矿区之间的矛盾也尤为突出[4],需给予重点关注。生态系统服务价值(ESV)和景观生态风险(ERI)作为评估区域生态环境的重要内容,与维护生态安全密切相关[5]。现阶段,多数学者将生态系统服务价值与景观生态风险作为2个独立的科学问题,分别从格局、过程、功能等方面开展大量研究[67]。但是,近期研究发现,生态系统服务价值的时空异质性可以体现景观格局与生态过程的最终结果,是修正景观生态风险的最佳指示指标[89]。因此,将生态系统服务价值与景观生态风险评价结合研究,有助于精确分析区域生态环境变化过程[1011],同时也可开展生态分区等相关研究[1213],为提升资源型城市边缘区生态安全提供新的切入点。

    本研究以典型的资源型城市大庆城市边缘区为例,运用地学信息图谱、时空立方体模型、空间自相关分析等方法研究1980—2020年“三生空间”土地利用、景观风险生态系统服务价值,深入探讨资源型城市人类活动对土地利用变化的影响、“三生空间”耦合协调发展趋势及未来发展路径。

    大庆市(45°23′~47°29′N,123°45′~125°47′E)地处黑龙江省西部,松嫩平原中部。东部与绥化市、哈尔滨市相接,南部与吉林省隔江(松花江)相望,西部、北部与齐齐哈尔市接壤。大庆市蕴含丰富的石油资源,大庆油田曾是中国最大的油田。本研究以大庆城市总体规划(2011—2020年)为依据,划定城市边缘区与油田生产区(简称矿区,图1)。

    图 1  研究区示意图
    Figure 1  Location of the study area

    1980、1990、2000、2010、2020年大庆城市边缘区土地利用现状数据来源于地理监测云平台,空间分辨率为30 m。行政区划数据源于国家基础地理信息中心(http://www.ngcc.cn/ngcc/)。粮食数据来自《中国农村统计年鉴 1981—2021年》和黑龙江省 2020 年国民经济和社会发展统计公报。本研究根据研究区土地利用特点,参考关于“三生空间”的相关文献[1415],将土地利用分类系统分为3个一级土地利用空间与8个二级土地利用空间(表1)。

    表 1  土地利用主导功能分类
    Table 1  Land use function classification
    一级地类二级地类类型赋分
    生产空间 农业生产空间 水田、旱地 6
    工业生产空间 工交建设用地 3
    生活空间 城市生活空间 城镇用地 1
    乡村生活空间 农村居民点 2
    生态空间 草地生态空间 高覆盖度草地、中覆盖度草地、低覆盖度草地 4
    水域生态空间 河流、湖泊、水库坑塘等 8
    林地生态空间 有林地、灌木林、疏林
     地、其他林地
    5
    其他生态空间 盐碱地、沙地、裸土地等
    7
    下载: 导出CSV 
    | 显示表格
    1.3.1   评价单元划分

    为了将研究数据进行可视化表达,从空间上更直观地分析研究区景观生态风险与生态系统服务价值的变化情况,借鉴已有研究和结合研究区实际情况,利用ArcGIS渔网工具,将研究区划分成1 km×1 km的单元网格(评价单元),共得到2 342个评价单元。

    1.3.2   土地利用转移矩阵

    以 1980、1990、2000、2010和2020年“三生空间”数据为基本地理单元,利用ArcGIS构建 1980—1990、1990—2000、2000—2010、2010—2020年2位数编码地学信息图谱。计算公式如下:Nc=Na×10+Nb。其中,NaNb分别表示研究初期a年和末期b年土地“三生空间”二级类型图谱单元编码;Nc为土地转移新生图谱编码。

    1.3.3   景观生态风险估算

    景观生态风险可以衡量生态系统受到的外界干扰强度和内部抵抗能力[16]。计算公式如下:

    $$ {E}_{\mathrm{R}\mathrm{I}k}=\sum\limits_{i = 1}^n \frac{{A}_{ki}}{{A}_{k}}\times {R}_{i}=\sum\limits _{i=1}^{n}\frac{{A}_{ki}}{{A}_{k}}\left({E}_{i}\times {F}_{i}\right)=\sum\limits _{i=1}^{n}\frac{{A}_{ki}}{{A}_{k}}\left\{\left({a_1}{C}_{i}+{b_1}{S}_{i}+{c_1}{D}_{i}\right)\times {F}_{i}\right\} 。 $$

    其中:ERIk为第k个评价单元土地利用景观生态风险;Aki为第k个评价单元土地利用类型i的面积;Ak为第k个评价单元的总面积;Ri为土地利用类型i的景观损失度指数;Ei为土地利用类型i的景观干扰度指数;CiSiDi分别为景观破碎度指数、景观分离度指数和景观优势度指数;a1b1c1 为各景观指数权重,且三者相加为1,根据参考文献[1718],将3个指数分别赋值为0.502、0.301、0.197;Fi为景观i类型的景观脆弱度指数,根据参考文献[1921]以及结合研究区土地利用类型的变化情况,对8个土地利用空间空间赋分(表1),并进行归一化处理。

    1.3.4   生态系统服务价值估算

    生态系统服务功能是人们从生态系统获取的效益,包含直接和间接的、有形和无形的效益[22]。计算公式为:${E}_{\mathrm{S}\mathrm{V}}=\displaystyle \sum\limits _{i=1}^{n}{E}_{\mathrm{S}\mathrm{V}k}=\displaystyle \sum\limits _{i=1}^{n}\left({V}_{\mathrm{C}i}\times {A}_{i}\right)$。其中,ESV为研究区生态系统服务功能总价值(元);ESVk为第k个评价单元生态系统服务功能价值(元);Ai为评价单元内第i类土地利用类型面积(hm2);n为土地利用类型数;VCi为单位面积土地利用类型i的生态系统服务价值(元·hm−2)。其中,生态系统服务价值以谢高地等[23]的中国陆地生态系统服务单位面积价值为基础,辅以文献[2425]所提供的比例关系确定。在确定农业生活空间生态系统服务价值时,从《大庆统计年鉴》中获取 1980、1990、2000、2010、2020年粮食作物种植面积(hm2)及粮食作物总产值(元)数据,得出大庆市农田提供食物生产服务的单价平均值为1 079.49 元·hm−2。按照自然断点法分类并采用相对指标[26],从景观生态风险与生态系统服务价值上划分为低、较低、中、较高、高共5类区域。

    1.3.5   时空热点分析

    以时空立方体模型为基础[27],计算每个立方体条柱的Getis-Ord Gi*统计量,探测某特征在时空尺度的热点或冷点,结合M-K检验法对时空尺度的热点分析结果进行趋势检验,从而识别数据聚集程度的时空趋势[28]

    1.3.6   空间自相关分析

    空间自相关分析可以探索某属性值是否具有空间集聚性和异质性[29]。运用GEODA空间分析工具,通过局部空间自相关分析[30]确定未来“三生空间”的管控区域与发展方向。

    2.1.1   “三生空间”分布特征

    研究区总面积为2342 km2,其中矿区面积为639.52 km2,占研究面积的23.86%。根据1980—2010年土地面积统计可知(表2),研究区生态空间面积较广,各类型面积从大到小依次为草地、其他、水域、林地。生产空间次之,各类型面积从大到小依次为农业、工业。生活空间最少,各类型面积从大到小依次为乡村、城市。根据矿区内外“三生空间”比例分布可知,农业生产空间、草地生态空间矿区内外分布较为均等;城市生活空间、水域生态空间、林地生态空间分布矿区外大于矿区内;乡村生活空间、工业生产空间、其他生态空间分布矿区外小于矿区内。

    表 2  1980—2020年研究区“三生空间”面积与分布比例统计
    Table 2  Statistics on the area and distribution ratio of the “production-living-ecological space” in the study area in 1980−2020
    一级
    地类
    二级
    地类
    1980年1990年2000年2010年2020年
    面积/km2矿内/%矿外/%面积/km2矿内/%矿外/%面积/km2矿内/%矿外/%面积/km2矿内/%矿外/%面积/km2矿内/%矿外/%
    生产
    空间
    农业673.8797.7999.10668.8397.4899.03766.0999.5899.17732.6597.5798.74726.1588.4495.72
    工业8.372.210.909.112.520.979.110.420.8311.172.431.2645.3111.314.28
    生活
    空间
    城市10.250.1215.1916.910.1222.3816.910.1123.0928.428.1830.7530.538.0429.73
    乡村80.1099.8872.3590.3999.8872.2493.8299.8976.9194.0491.8269.25102.5491.9670.27
    生态
    空间
    水域213.287.0312.28293.6514.0615.72272.9412.0217.09268.7811.4415.75272.563.6517.20
    草地1229.5753.7665.89925.6342.6050.06833.1042.1550.35855.3243.4947.83804.8540.3545.24
    林地19.240.311.2094.490.826.1711.750.987.1297.630.926.76121.251.058.54
    其他460.6738.9019.58600.9747.1126.70607.1248.4230.78606.8547.5128.57592.1549.7727.90
    下载: 导出CSV 
    | 显示表格
    2.1.2   “三生空间”土地利用转移

    表3可知:1980—2020年,生产空间与生态空间之间土地转移最为活跃,面积为418.44 km2,生活与生态空间之间转移次之,面积为88.11 km2,生产与生活之间转移最少,面积为25.56 km2。其中,1980—1990年,主要为矿外生态与生产空间之间相互转移;1990—2000年,主要为矿外生态空间转移为生产空间;2000—2010年,主要为矿区外生产与生态空间之间相互转移,及矿区内生活空间转移为生态空间;2010—2020年,主要为矿外生产与生态空间相互转移,及矿内生态空间转移为生活空间。

    表 3  1980—2020年研究区“三生空间”面积转移与分布比例统计
    Table 3  Statistics on the area transfer and distribution ratio of the “production-living-ecological space” in the study area in 1980−2020
    时段面积生产—生活生产—生态生活—生产生活—生态生态—生产生态—生活
    1980—1990年矿外面积比例/%62.5486.388.1759.3596.5348.81
    矿内面积比例/%37.4613.6291.8340.653.4751.19
    转移总面积/km212.0762.680.660.1179.481.18
    1990—2000年矿外面积比例/%1.6287.4633.33090.690.74
    矿内面积比例/%98.3812.5466.6709.3199.26
    转移总面积/km21.615.120097.380.12
    2000—2010年矿外面积比例/%69.2765.2959.704.4487.7099.37
    矿内面积比例/%30.7334.7140.3095.5612.300.63
    转移总面积/km25.1964.753.5436.1549.555.59
    2010—2020年矿外面积比例/%10098.590034.9114.87
    矿内面积比例/%01.410065.0985.13
    转移总面积/km22.4925.540033.9444.96
    下载: 导出CSV 
    | 显示表格
    2.2.1   风险-价值总体变化趋势

    研究区总体景观生态风险与生态系统服务价值指数呈波动上升态势(图2)。研究期初风险与价值指数较低,1980—1990年变化幅度最大,呈现大幅增长趋势。从“三生空间”角度分析可知,景观生态风险指数:生活空间与生产空间呈上升趋势,生态空间呈下降趋势。“三生空间”生态系统服务价值指数均呈上升趋势。

    图 2  1980—2020年研究区景观生态风险和生态系统服务价值变化趋势
    Figure 2  Changing trend of landscape ecological risk and ecosystem service value in 1980−2020
    2.2.2   风险和价值空间分布特征

    研究区1980—2020年景观生态风险的分布格局图(图3)与生态系统服务价值分布格局图(图4)显示:低风险区主要由生活与生态空间组成,较低风险区主要由生产与生态空间组成;高与较高风险区主要位于矿区内部,其中较高风险区主要由生产与生态空间组成,高风险区主要由生态空间组成。中价值区主要由矿区外生产用地组成,低与较低价值区主要由矿区内部生态空间与生产空间组成,高与较高价值区主要由矿区外部生态空间组成。

    图 3  1980—2020年研究区景观生态风险分布示意图
    Figure 3  Landscape ecological risk distribution map in 1980−2020
    图 4  1980—2020年研究区生态系统服务价值分布示意图
    Figure 4  Ecosystem service value distribution map in 1980−2020
    2.2.3   风险和价值时空热点分析

    研究区景观生态风险与生态系统服务价值时空热点分析图(图5)显示:冷、热点分别由连续、持续、加强、减弱、新增、分散共6个部分组成。根据研究区景观生态风险时空热点分析可知:持续与连续冷点主要为水域生产空间、城市生活空间与矿区内部工业生产空间组成。新增冷点主要为矿区外部其他生态空间向农村生活空间转移。分散冷点主要为生态用地与生产用地的过渡区,减弱冷点为矿区外生态空间向生产空间转移,加强冷点为矿区外生产空间向生活空间转移。持续与连续热点主要为其他生态空间中的盐碱地组成,新增热点为矿区外生态用地向生产用地转移,分散热点为生态用地与生产用地的过渡区,减弱热点为矿区外草地生态空间内部转移。

    图 5  景观生态风险和生态系统服务价值时空热点聚类示意图
    Figure 5  Spatial and temporal hotspot analysis of landscape ecological risk and ecosystem service

    根据生态系统服务价值时空热点分析可知:持续与连续热点主要为生态空间,由高覆盖度草地与水域组成。新增与加强的热点主要为矿区外部生态空间内部转移,体现为草地生态空间向水域生态空间转移。分散热点主要为生态用地与生产用地的过渡区,减弱热点为矿区外生态空间向生产空间转移。持续与连续冷点主要由其他生态用地中的盐碱地组成,新增冷点为矿区内生态用地向生产用地的转移,分散冷点为生态用地与生产用地的过渡区,加强冷点为矿区内生态空间内部转移体现为草地生态空间向其他生态空间转移。

    2.2.4   风险和价值关联分析

    利用局部空间自相关分析,将研究区空间关系分为高风险-高价值区、低风险-低价值区、低风险-高价值区、高风险-低价值区和不显著区共5种(图6),结果显示:低风险-高价值区域主要由矿区外水域生态空间组成,是未来生态保护的重点区域。高风险-低价值区域主要由矿区内其他生态空间(盐碱地)组成,是未来生态修复的重点区域。这2类空间是维护区域生态安全稳定的核心区域,需要重点管控。研究区空间关系主要变化年限为1980—1990年,其原因主要为矿区外草地生态空间向水域生态空间的转移,以及矿区内部草地生态空间向其他生态空间的转移。高风险-高价值区域与低风险-低价值区域主要为“三生空间”过渡区域,其中高风险-高价值区域主要位于矿区外,是水域生态空间与农业生产空间的过渡区域,低风险-低价值区域主要由矿区内部生产与生态过渡区域组成,这2类空间虽然占比较少,变化较为稳定,但是是影响区域未来生态安全的主要风险源。因此,未来应将生产空间作为主要风险源进行科学防范。

    图 6  1980—2020年景观生态风险与生态系统价值关系聚类示意图
    Figure 6  Cluster map of the relationship between landscape ecological risk and ecosystem value in 1980−2020

    资源型城市“三生空间”土地利用变化的影响机制与人类活动关系密切,通过探讨人类扰动因子对“三生空间”土地利用的影响,有助于未来土地利用的决策制定。

    研究区生产空间变化主要受到产业产值的影响。生活空间变化主要与人口因素相关,由于城市边缘区经济发展较为落后,与中心城区距离较近,使得农村人口多去城市务工,边缘区农村人口数量流失明显。生态空间变化主要与油田开采相关,油田开采破坏地表植被使得土地裸露,并且开采过程中消耗大量地下水资源,引起地表沉降形成多个湖泊的同时也加重土地盐碱程度。这与其他资源型城市研究结果相似[31]。相比之下,非资源型城市的生产空间变化主要受到经济发展水平的影响,生活空间变化主要与城市规划和管理相关,生态空间变化则主要与环境保护政策相关[32]

    景观生态风险与生态系统服务价值的耦合性能够间接反映出区域生态系统中“三生空间”的协调性,探讨生态、生产、生活空间之间的耦合协调关系对于维护资源型城市边缘区生态安全具有重要意义。

    资源型城市受到资源不可再生性影响,一般要经历兴起期、成长期、繁荣期、衰退期(再生期) 4个阶段。与非资源型城市相比,其“三生空间”耦合协调性不仅受到城市规划建设的影响[33],也受资源发展周期影响[34]。1980—2020年间,研究区“三生空间”呈由失调向协调转变的趋势,矿区内“三生空间”耦合协调程度低于矿区外,这与其他资源型城市研究结果[35]相似。2000年前,大庆市处于兴起期与成长期,这一时段大庆市进行大规模的城市建设与油田开采活动,使得“三生空间”呈现“高耦合、低协调”的极度失调特征。2000年后,大庆市进入繁荣期与衰退期,这一时期城市建设逐渐稳步,同时石油储备降低、开采活动减弱,“三生空间”呈现协调发展特征。

    1980—2020 年,研究区景观生态系统服务价值虽然有所改善,但景观生态风险处于上升趋势,说明生态安全仍面临一定压力。根据风险-价值的关系分析结果,结合大庆市国土空间总体规划(2021—2035年),从“三生空间”视域协调土地关系推动构建生态安全格局:①划定城市生态修复区,将矿区内其他生态空间(盐碱地)作为重点修复区域。要特别注重矿区内部生态环境保护,做到石油开采与环境建设兼顾,提高矿区生态环境质量。②保护城市水源地与湿地,将矿区外部水域生态空间作为核心保护区域,对于该区生态保护策略应侧重原有景观的维护,将其作为城市重要的生态斑块进行管理,助力构建“一核一区一带、多廊多点”的城市生态安全格局。③生产空间作为大庆城市边缘区主要的风险源,禁止农业生产空间侵占生态空间,防止工业生产空间无序扩张,建立风险预警机制,强化生态安全格局屏障。

    本研究基于 1980、1990、2000、2010 和 2020 年的土地利用现状分类图,从“三生空间”的视域,以大庆市边缘区为例,定量研究资源型城市景观生态风险指数及生态系统服务价值时空变化特征,并利用空间回归模型进一步分析两者之间的关系,主要结论如下:①根据“三生空间”土地分布与转移分析可知:研究区生态空间面积较广,生产空间次之,生活空间最少。矿区外土地转移活跃度大于矿区内,其中,生产空间与生态空间之间转移最为活跃;②根据风险与价值的时空特征分析可知,1980—2020年,研究区“三生空间”景观生态风险与生态系统服务价值呈上升趋势。根据时空热点分析可知,景观生态风险与生态系统服务价值的高低分布有明显的区域性特点且较为稳定。其中,矿区内风险高于矿区外,矿区内价值低于矿区外。③根据景观生态风险与生态系统服务价值关联分析可知:风险与价值之间存在显著相关性。其中,低风险高价值区域主要由矿区外水域生态空间组成,高风险低价值区域主要由矿区内其他生态空间组成。

    综上所述,未来大庆城市边缘区在生态环境建设过程中应以缩小矿区内外差异为首要任务,降低人为因素(特别是油田开采)对“三生空间”的扰动,加强各区政府与油田管理局之间的协作机制,共同统筹区域“三生空间”建设,重点保护矿区外水域生态空间,修复矿区内盐碱地,并防止生产空间进一步扩张。

  • 图  1  基于多元线性回归的地上生物量预测效果和残差不确定性

    Figure  1  Prediction effect and the residual uncertainty of aboveground biomass based on multiple linear regression

    图  2  基于梯度提升回归树的地上生物量预测效果和残差不确定性

    Figure  2  Prediction effect and the residual uncertainty of aboveground biomass based on gradient boost regression tree

    图  3  基于随机森林的地上生物量预测效果和残差不确定性

    Figure  3  Prediction effect and the residual uncertainty of aboveground biomass based on random forest

    表  1  外业调查样地统计

    Table  1.   Basic statistics of the sample plots of field surveys

    指标平均胸径/cm平均树高/m林分密度/(株·hm−2)
    最大值22.7614.183 100.00
    最小值6.854.48222.22
    平均值14.808.701 181.30
    标准差3.682.11714.14
    下载: 导出CSV

    表  2  建模和检验样本的地上生物量实测值

    Table  2.   Measured values of aboveground biomass of modeling and testing samples

    样本集样地数/个地上生物量/(t·hm−2)
    最大值最小值平均值标准差
    建模样本48169.7512.9556.5033.85
    检验样本1294.9715.4462.5626.48
    下载: 导出CSV

    表  3  3种地上生物量估测模型的不确定性

    Table  3.   Uncertainty results of the three aboveground biomass estimation models

    模型遥感估算地上生物量的不确定性样地尺度地上生物量的不确定性总不确定性/%
    模型残差
    变异/%
    模型参数
    变异/%
    遥感估测模型
    不确定性/%
    模型残差
    变异/%
    模型参数
    变异/%
    单株生物量模型
    不确定性/%
    样地尺度不
    确定性/%
    多元线性回归 34.8621.3040.8410.7612.4216.437.0741.45
    梯度提升回归树22.0122.0123.12
    随机森林   18.0918.0919.42
      说明:梯度提升回归树与随机森林为非参数模型,不考虑模型参数变异的不确定性
    下载: 导出CSV
  • [1] 唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000, 36(专刊1): 19 − 27.

    TANG Shouzheng, ZHANG Huiru, XU Hui. Study on establish and estimate method of compatible biomass model[J]. Sci Silv Sin, 2000, 36(spec 1): 19 − 27.
    [2] 王维枫, 雷渊才, 王雪峰, 等. 森林生物量模型综述[J]. 西北林学院学报, 2008, 23(2): 58 − 63.

    WANG Weifeng, LEI Yuancai, WANG Xuefeng, et al. A review of forest biomass models [J]. J Northwest For Univ, 2008, 23(2): 58 − 63.
    [3] 徐婷, 曹林, 佘光辉. 基于Landsat 8 OLI的特征变量优化提取及森林生物量反演[J]. 遥感技术与应用, 2015, 30(2): 226 − 234.

    XU Ting, CAO Lin, SHE Guanghui. Feature extraction and forest biomass estimation based on Landsat 8 OLI [J]. Remote Sensing Technol Appl, 2015, 30(2): 226 − 234.
    [4] MCROBERTS R E, WESTFALL J A. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates [J]. For Sci, 2014, 60(1): 34 − 42.
    [5] LU Dengsheng, CHEN Qi, WANG Guangxing, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems [J]. Int J Digital Earth, 2016, 9(1): 63 − 105.
    [6] BAO Rui, ZHANG Jialong, LU Chi, et al. Estimating above-ground biomass of Pinus densata Mast. using best slope temporal segmentation and Landsat time series[J/OL]. J Appl Remote Sensing, 2021, 15(2)[2021-03-25]. doi: 10.1117/1.JRS.15.024507.
    [7] ZHAO Panpan, LU Dengsheng, WANG Guangxing, et al. Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation [J]. Remote Sensing, 2016, 8(6): 469 − 495.
    [8] 张加龙, 胥辉, 陆驰. 应用Landsat 8 OLI和GBRT对高山松地上生物量的估测[J]. 东北林业大学学报, 2018, 46(8): 25 − 30.

    ZHANG Jialong, XU Hui, LU Chi. Estimating above ground biomass of Pinus densata based on Landsat 8 OLI and gradient boost regression [J]. J Northeast For Univ, 2018, 46(8): 25 − 30.
    [9] COHEN R, KAINO J, OKELLO J A, et al. Propagating uncertainty to estimates of above-ground biomass for Kenyan mangroves: a scaling procedure from tree to landscape level [J]. For Ecol Manage, 2013, 310: 968 − 982.
    [10] 秦立厚, 张茂震, 钟世红, 等. 森林生物量估算中模型不确定性分析[J]. 生态学报, 2017, 37(23): 7912 − 7919.

    QIN Lihou, ZHANG Maozhen, ZHONG Shihong, et al. Model uncertainty in forest biomass estimation [J]. Acta Ecol Sin, 2017, 37(23): 7912 − 7919.
    [11] SHETTLES M, TEMESGEN H, GRAY A N, et al. Comparison of uncertainty in per unit area estimates of aboveground biomass for two selected model sets [J]. For Ecol Manage, 2015, 354: 18 − 25.
    [12] CLARK D B, KELLNER J R. Tropical forest biomass estimation and the fallacy of misplaced concreteness [J]. J Veg Sci, 2012, 23(6): 1191 − 1196.
    [13] CHEN Qi, LAURIN G V, VALENTINI R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: propagating errors from trees to plots to pixels [J]. Remote Sensing Environ, 2015, 160: 134 − 143.
    [14] 秦立厚. 浙江省森林碳储量估算不确定性研究[D]. 杭州: 浙江农林大学, 2017.

    QIN Lihou. Uncertainty of Forest Carbon Storage Estimation in Zhejiang Province[D]. Hangzhou: Zhejiang A&F University, 2017.
    [15] 孙雪莲. 基于Landsat 8-OLI的香格里拉高山松林生物量遥感估测模型研究[D]. 昆明: 西南林业大学, 2016.

    SUN Xuelian. Biomass Estimation Model of Pinus densata Forests in Shangri-La City Based on Landsat 8-OLI by Remote Sensing[D]. Kunming: Southwest Forestry University, 2016.
    [16] NICHOL J, HANG L K, SING W M. Empirical correction of low sun angle images in steeply sloping terrain: a slope-matching technique [J]. Int J Remote Sensing, 2006, 27(3): 629 − 635.
    [17] 陆驰. 基于Landsat的香格里拉市高山松地上生物量及其动态变化建模研究[D]. 昆明: 西南林业大学, 2017.

    LU Chi. The Estimation and Dynamic Modeling on the Aboveground Biomass of Pinus densata in Shangri-La Based on Landsat[D]. Kunming: Southwest Forestry University, 2017.
    [18] HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification [J]. Stud Media Commun, 1973, 3(6): 610 − 621.
    [19] 岳彩荣. 香格里拉县森林生物量遥感估测研究[D]. 北京: 北京林业大学, 2011.

    YUE Cairong. Forest Biomass Estimation in Shangri-La County Based on Remote Sensing[D]. Beijing: Beijing Forestry University, 2011.
    [20] 张加龙, 胥辉. 基于遥感的高山松连清固定样地地上生物量估测模型构建[J]. 北京林业大学学报, 2020, 42(7): 1 − 11.

    ZHANG Jialong, XU Hui. Establishment of remote sensing based model to estimate the aboveground biomass of Pinus densata for permanent sample plots from national forestry inventory [J]. J Beijing For Univ, 2020, 42(7): 1 − 11.
    [21] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine [J]. Ann Stat, 2001, 29(5): 1189 − 1232.
    [22] OU Guanglong, LÜ Yanyu, XU Hui, et al. Improving forest aboveground biomass estimation of Pinus densata forest in Yunnan of southwest China by spatial regression using Landsat 8 images [J]. Remote Sensing, 2019, 11(23): 738 − 762.
    [23] HOSMER D W, LEMESHOW S. Applied Logistic Regression [M]. New York: John Wiley & Sons, 2000.
    [24] 李金海. 误差理论与测量不确定度评定[M]. 北京: 中国计量出版社, 2003.

    LI Jinhai. Error Theory and Measurement Uncertainty Assessment[M]. Beijing: China Metrology Publishing House, 2003.
    [25] 陈蜀蓉, 张超, 郑超超, 等. 公益林生物量估算方法研究——以浙江省缙云县公益林为例[J]. 浙江林业科技, 2015, 35(5): 20 − 28.

    CHEN Shurong, ZHANG Chao, ZHENG Chaochao, et al. Estimation methods for biomass of ecological forest in Jinyun [J]. J Zhejiang For Sci Technol, 2015, 35(5): 20 − 28.
    [26] CHAVE J, CONDIT R, AGUILAR S, et al. Error propagation and scaling for tropical forest biomass estimates [J]. Philos Trans R Soc Lond Series B Biol Sci, 2004, 359(1443): 409 − 420.
  • [1] 南国卫, 王静慧, 秦淑莹, 韩磊, 何馨雨.  不同恢复年限刺槐林林下草本层的物种多样性 . 浙江农林大学学报, 2024, 41(5): 978-985. doi: 10.11833/j.issn.2095-0756.20240128
    [2] 卢佶, 张国威, 吴昊.  基于多时相光学和雷达遥感的太平湖生态保护区森林地上生物量反演 . 浙江农林大学学报, 2023, 40(5): 1082-1092. doi: 10.11833/j.issn.2095-0756.20220682
    [3] 周东洋, 王晓雨, 朱向涛, 詹咪莎, 白尚斌.  亚热带常绿阔叶林5个优势树种的树干碳氮磷质量分数估算及其不确定性分析 . 浙江农林大学学报, 2022, 39(4): 727-733. doi: 10.11833/j.issn.2095-0756.20220171
    [4] 姬永杰, 杨丛瑞, 张王菲, 曾鹏, 张甫香, 屈亚妮.  基于机载P波段全极化SAR数据的森林地上生物量估测 . 浙江农林大学学报, 2022, 39(5): 971-980. doi: 10.11833/j.issn.2095-0756.20220111
    [5] 杨绍钦, 王翔, 许澄, 商天其.  基于MODIS时间序列数据的竹林地上生物量估算 . 浙江农林大学学报, 2022, 39(4): 734-741. doi: 10.11833/j.issn.2095-0756.20210431
    [6] 卢腾飞, 周律, 胡中岳, 欧光龙, 胥辉.  基于混合效应模型的迪庆云冷杉林地上生物量遥感估测 . 浙江农林大学学报, 2021, 38(3): 510-522. doi: 10.11833/j.issn.2095-0756.20200327
    [7] 兰洁, 肖中琪, 李吉玫, 张毓涛.  天山雪岭云杉生物量分配格局及异速生长模型 . 浙江农林大学学报, 2020, 37(3): 416-423. doi: 10.11833/j.issn.2095-0756.20190384
    [8] 申家朋, 陈东升, 孙晓梅, 张守攻.  基于似乎不相关回归和哑变量的日本落叶松单木生物量模型构建 . 浙江农林大学学报, 2019, 36(5): 877-885. doi: 10.11833/j.issn.2095-0756.2019.05.005
    [9] 谢福明, 字李, 舒清态.  基于优化k-NN模型的高山松地上生物量遥感估测 . 浙江农林大学学报, 2019, 36(3): 515-523. doi: 10.11833/j.issn.2095-0756.2019.03.012
    [10] 向安民, 刘凤伶, 于宝义, 李崇贵.  基于k-NN方法和GF遥感影像的森林蓄积量估测 . 浙江农林大学学报, 2017, 34(3): 406-412. doi: 10.11833/j.issn.2095-0756.2017.03.004
    [11] 吕常笑, 邓华锋, 王少杰, 陈振雄, 王雪军.  马尾松不同区域相容性立木材积和地上生物量模型 . 浙江农林大学学报, 2016, 33(5): 790-797. doi: 10.11833/j.issn.2095-0756.2016.05.010
    [12] 冉啟香, 邓华锋, 黄国胜, 王雪军, 陈振雄.  云南松地上生物量模型研究 . 浙江农林大学学报, 2016, 33(4): 605-611. doi: 10.11833/j.issn.2095-0756.2016.04.008
    [13] 俞淑红, 周国模, 施拥军, 吕玉龙, 沈振明.  毛竹碳汇造林初期净碳汇量监测与不确定性分析 . 浙江农林大学学报, 2016, 33(5): 807-815. doi: 10.11833/j.issn.2095-0756.2016.05.012
    [14] 王金亮, 程鹏飞, 徐申, 王小花, 程峰.  基于遥感信息模型的香格里拉森林生物量估算 . 浙江农林大学学报, 2013, 30(3): 325-329. doi: 10.11833/j.issn.2095-0756.2013.03.003
    [15] 商珍珍, 周国模, 杜华强.  毛竹林地上生物量与胸径的分形关系 . 浙江农林大学学报, 2013, 30(3): 319-324. doi: 10.11833/j.issn.2095-0756.2013.03.002
    [16] 玉宝, 张秋良, 王立明, 乌吉斯古楞.  不同结构落叶松天然林生物量及生产力特征 . 浙江农林大学学报, 2011, 28(1): 52-58. doi: 10.11833/j.issn.2095-0756.2011.01.009
    [17] 杨前宇, 谢锦忠, 张玮, 林振清.  椽竹各器官生物量模型 . 浙江农林大学学报, 2011, 28(3): 519-526. doi: 10.11833/j.issn.2095-0756.2011.03.027
    [18] 涂洁, 刘琪璟, 简敏菲.  千烟洲湿地松中幼林树冠生物量及生长量分析 . 浙江农林大学学报, 2008, 25(2): 206-210.
    [19] 林新春, 方伟, 俞建新, 余学军, 胡超宗, 周林.  苦竹各器官生物量模型 . 浙江农林大学学报, 2004, 21(2): 168-171.
    [20] 贺东北, 骆期邦, 曾伟生.  立木生物量线性联立模型研究 . 浙江农林大学学报, 1998, 15(3): 298-303.
  • 期刊类型引用(4)

    1. 于代松,谯思睿. 城市生态空间的理性建维、持久存续探讨——以成都市锦江绿道建设为例. 成都理工大学学报(社会科学版). 2024(01): 59-70 . 百度学术
    2. 陈清荷,焦华富,管晶. 煤炭资源型县域土地城镇化时空演变及驱动因素——以淮北市濉溪县为例. 资源科学. 2024(03): 583-596 . 百度学术
    3. 何锋,许戈洋,刘洪江. 城镇住宅用地基准地价的内涝灾害影响修正系数研究——昆明市主城区的案例. 云南地理环境研究. 2024(02): 12-20 . 百度学术
    4. 周玄德,邓祖涛,窦文章,梁滨,王婧怡. 快速城市化地区“三生空间”时空格局演变特征——以武汉市为例. 测绘科学. 2024(03): 137-147 . 百度学术

    其他类型引用(2)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210473

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/3/531

图(3) / 表(3)
计量
  • 文章访问数:  735
  • HTML全文浏览量:  170
  • PDF下载量:  57
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-12-24
  • 录用日期:  2022-03-04
  • 网络出版日期:  2022-05-23
  • 刊出日期:  2022-05-23

高山松地上生物量遥感估算的不确定性分析

doi: 10.11833/j.issn.2095-0756.20210473
    基金项目:  国家自然科学基金资助项目(31860207);2020年云南省高层次人才培养支持计划“青年拔尖人才”专项(81210468);西南林业大学科研启动基金(111932)
    作者简介:

    黄屹杰(ORCID: 0000-0001-6922-1029),从事森林生物量遥感估测研究。E-mail: huangyijie@swfu.edu.cn

    通信作者: 张加龙(ORCID: 0000-0002-6969-3656),教授,博士,从事资源环境遥感研究。E-mail: jialongzhang@swfu.edu.cn
  • 中图分类号: S758.5

摘要:   目的  采用遥感数据估算森林地上生物量仍存在一些不确定性问题,研究估算过程中的误差来源及其占比,对提高森林地上生物量的估测精度具有重要意义。  方法  从遥感影像提取因子,结合高山松Pinus densata外业调查数据,建立多元线性回归、梯度提升回归树、随机森林等3种地上生物量估测模型,对样地尺度与3种模型的不确定性进行分析和度量。  结果  ①高山松单株生物量模型不确定性为16.43%,样地尺度的不确定性为7.07%;②多元线性回归模型残差不确定性为34.86%,参数不确定性为21.30%,与样地不确定性合成后总不确定性为41.45%;③非参数模型中,梯度提升回归树估测高山松地上生物量的总不确定性为23.12%,随机森林为19.42%。  结论  3种遥感估算模型中,非参数模型的不确定性明显低于参数模型。相较于样地尺度,遥感估算模型的不确定性对地上生物量估算精度的影响较大。图3表3参26

English Abstract

陈曦, 叶可陌, 李坤, 等. 资源型城市“三生空间”土地利用变化及其风险和价值研究[J]. 浙江农林大学学报, 2023, 40(5): 1111-1120. DOI: 10.11833/j.issn.2095-0756.20220666
引用本文: 黄屹杰, 张加龙, 胡耀鹏, 等. 高山松地上生物量遥感估算的不确定性分析[J]. 浙江农林大学学报, 2022, 39(3): 531-539. DOI: 10.11833/j.issn.2095-0756.20210473
CHEN Xi, YE Kemo, LI Kun, et al. Research on land use change and risk-value of “production-living-ecological space” in a resource-based city[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1111-1120. DOI: 10.11833/j.issn.2095-0756.20220666
Citation: HUANG Yijie, ZHANG Jialong, HU Yaopeng, et al. Uncertainty analysis of estimating aboveground biomass of Pinus densata by remote sensing[J]. Journal of Zhejiang A&F University, 2022, 39(3): 531-539. DOI: 10.11833/j.issn.2095-0756.20210473
  • 森林生物量是森林生态系统的最基本数量特征,是研究林业和生态问题的基础[1]。地上生物量(aboveground biomass, AGB)是森林生态系统生产力的重要指标和质量的综合体现,对研究全球气候变化具有重要意义。目前,森林地上生物量的调查方法有地面调查和遥感监测2种。传统的地面调查法耗时长、成本高,而遥感监测方法快速、无损,具有在更大尺度上应用的优势,已成为地上生物量估测的主流[2-3]。在森林调查中,常使用统计模型来预测样地内个体树木的生物量,然后对同一树种的单株地上生物量进行汇总,来作为遥感估算生物量的训练数据和精度评估数据[4]。用于地上生物量估测的遥感数据源包括光学遥感、机载雷达、激光测量数据等[5]。与成本较高的机载雷达数据相比,光学影像穿透森林冠层获取树干信息的能力较差,但随着新算法的不断改进,使用光学遥感影像进行地上生物量估算的精度也在不断提高[6]

    目前,遥感估算地上生物量在因子选取、建模方法、数据饱和等方面存在较多不确定性问题[7-8]。区域尺度森林地上生物量遥感估算包含测量和抽样、单株生物量模型、遥感因子和地形因子等不确定性来源[9-10]。其中,与测量和抽样误差相比,模型的不确定性对地上生物量估算的影响较大,如SHETTLES等[11]利用激光雷达和地面数据估测地上生物量发现:模型不确定性占总不确定性的55%。同时,用于建模的生物量数据是使用该区域树种的异速生长方程计算得出的。因此,单株生物量模型的误差会传播到样地级的生物量估测,从而影响遥感估算生物量的不确定性[12-13]。现阶段不确定性的量化方法主要分为3种[14]:过程模型分析法、随机误差传递法和Monte Carlo模拟法。

    本研究基于云南省香格里拉市Landsat 8影像和外业调查数据,建立了生物量遥感估测模型,分析了遥感估算样地高山松Pinus densata地上生物量的总不确定性,以期为提高森林地上生物量估算精度提供参考。

    • 研究区位于云南省西北部的迪庆藏族自治州香格里拉市(26°52′~28°52′N,99°20′~100°19′E),该区总面积为11 613 km2,平均海拔为3 459 m。香格里拉市的森林覆盖率较高,达75%,主要植被类型为寒温性针叶林,优势树种有云杉Picea asperata、冷杉Abies fabri、高山松、云南松Pinus yunnanensis、高山栎Quercus semicarpifolia等。

    • 于2015年11月和2016年3月,在每个乡镇高山松纯林区域随机布设60块样地,大小为30 m×30 m,且每块样地间隔3 km以上。样地高山松林分的龄级主要为近熟林和成熟林。外业调查记录胸径大于5 cm样木的树高、胸径,同时对每块样地的林分密度进行了计算(表1)。

      表 1  外业调查样地统计

      Table 1.  Basic statistics of the sample plots of field surveys

      指标平均胸径/cm平均树高/m林分密度/(株·hm−2)
      最大值22.7614.183 100.00
      最小值6.854.48222.22
      平均值14.808.701 181.30
      标准差3.682.11714.14

      Landsat 8影像数据来源于美国地质调查局(http://glovis.usgs.gov/),3景数据为2015年11—12月的成像,云量均小于2%。

    • 采用每木检尺,通过胸径、树高和单株生物量模型[15]计算每株地上生物量,进而得出每块样地的地上生物量。单株生物量模型($ W $)如下:

      $$ W=0.073\times {D}^{1.739}\times {H}^{0.880} 。 $$ (1)

      式(1)中:$ D $为胸径,$ H $为树高,模型R2为0.992,均方根误差为30.778 kg。

    • 对影像数据进行辐射定标,采用FLAASH方法进行大气校正。以研究区SPOT-5影像为参考数据,选取100个地面控制点,采用二项式方法对影像进行几何校正,使用双线性内插法将影像重新采样为30 m×30 m,误差控制在1个像元内[8];接着,采用坡度匹配模型[16]进行地形校正。具体操作方法参考文献[17]。

      对预处理后的影像数据提取4类遥感因子:①原始波段因子,分别为C、B1、B2、B3、B4、B5、B7;②植被指数因子,分别为B43、B42、B53、B54、B57、B73、B74、B3Albedo、 B473、NDVI、ND32、ND53、ND54、ND57、ND452、DVI;③信息增强因子,分别为VIS123、Albedo、MID57;④纹理信息因子[18],分别为均值(ME)、方差(VA)、同质性(HO)、反差(CO)、相异(DI)、熵(EN)、角二阶矩(SM)、相关性(CR)、偏度(SK)。用R5和R9分别代表5×5和9×9窗口,如R9B5CR代表9窗口第5波段的相关性纹理。

      岳彩荣[19]提取了5×5、7×7、9×9、15×15的4种窗口纹理信息因子对香格里拉森林生物量进行了遥感估测;张加龙等[20]基于遥感影像和连续清查固定样地对高山松地上生物量进行估算时,使用了5×5、9×9的2种窗口纹理信息因子。以上研究表明:高山松地上生物量与5×5和9×9窗口的纹理信息因子相关性更强。因此,本研究的纹理信息因子选用5×5和9×9窗口。4类遥感因子的提取和计算参考文献[8, 17, 20]。

    • 基于SPSS软件对样地地上生物量与备选遥感因子进行相关性分析,结果按照Pearson系数进行排序。本研究因子入选的显著性水平为P≤0.05,因子剔除的水平为P≥0.10,得到相关性排前14个的遥感因子。为避免解释变量之间的多重共线性问题,将各个遥感因子之间相关性较高的因子剔除,最终筛选9个因子参与模型建立,分别为B74、9窗口第5波段相关性(R9B5CR)、9窗口第6波段方差(R9B6VA)、9窗口第3波段熵(R9B3EN)、5窗口第5波段角二阶矩(R5B5SM)、9窗口第6波段相关性(R9B6CR)、5窗口第3波段熵(R5B3EN)、5窗口第4波段熵(R5B4EN)、5窗口第4波段偏度(R5B4SK)。

    • 遥感估算高山松地上生物量的3种方法分别为多元线性回归(MLR)、梯度提升回归树(GBRT)以及随机森林(RF)。从60个样地调查数据中随机选取48个(80%)进行建模,剩余12个(20%)用来独立性检验。建模和检验样本的地上生物量统计结果见表2

      表 2  建模和检验样本的地上生物量实测值

      Table 2.  Measured values of aboveground biomass of modeling and testing samples

      样本集样地数/个地上生物量/(t·hm−2)
      最大值最小值平均值标准差
      建模样本48169.7512.9556.5033.85
      检验样本1294.9715.4462.5626.48
    • 多元线性回归模型可以同时对多个解释变量与1个因变量进行拟合,用回归方程来表示拟合关系。本研究多元线性回归建模在SPSS软件中实现。

    • 该方法通过构建多个弱分类器,经过多次迭代最终组合成1个强分类器[21]。本研究基于Python语言的Sklearn工具包提供的梯度提升回归树算法,对高山松地上生物量与遥感因子进行建模分析。在建模分析前需要对弱分类器的最大迭代次数(n_estimators)、学习速率(learning_rate)、最大深度(max_depth)等参数进行确定。参数确定往往需要遵循一定的经验,比如最大迭代次数通常在预测值收敛的情况下越小越好,学习速率通常小于0.10,最大深度通常不应大于15。依据这些经验设置上述参数的范围,比较参数值组合下模型学习的效果,以得到模型输出预测结果[8]。本研究根据拟合优度的最佳参数组合,选取最大迭代次数为60,子采样为0.5,学习速率为0.05,决策树最大深度为7,叶子节点最少样本数为3。

    • 随机森林适用于多数分类与回归的问题,由一系列决策树组成。基于Python语言的Sklearn工具包进行高山松地上生物量建模分析。程序使用bootstrap重采样方法从样本集中提取多个重采样样本进行建模,之后对多个模型值进行预测并组合,再通过投票得出最终值,一般会在随机产生的分类树中选出重叠次数最多的决策树作为最终模型[6]。本研究初步设置决策树数量为50,逐步增加决策树数量模拟建模过程,回归误差趋于稳定,最终确定决策树数量为300。

    • 采用的评价指标包括决定系数(R2)、均方根误差(RMSE)、预测精度(F)。各指标计算如下:

      $$ {R}^{2}=\frac{\displaystyle \sum \limits_{i=1}^{s}{\left(\hat{{y}_{i}}-\bar{y}\right)}^{2}}{\displaystyle \sum \limits_{i=1}^{s}{\left({y}_{i}-\bar{y}\right)}^{2}} \text{;} $$ (2)
      $$ {R}_{\mathrm{M}\mathrm{S}\mathrm{E}}=\sqrt{\frac{\displaystyle \sum _{i=1}^{s}{\left({y}_{i}-\hat{{y}_{i}}\right)}^{2}}{s}} \text{;} $$ (3)
      $$ F=\frac{1}{s}\sum _{i=1}^{s}\left(1-\left|\frac{{y}_{i}-\hat{{y}_{i}}}{\hat{{y}_{i}}}\right|\right)\times 100\% 。 $$ (4)

      式(2)~(4)中:$ {y}_{i} $表示第i个样本地上生物量的实测值;$\hat{{y}_{i}}$表示第i个样本地上生物量的预测值;$\bar{y} $表示所有样本地上生物量实测值的均值;$ s $表示样本总数量。

    • 样地尺度上单株生物量模型的残差不确定性($ {\sigma }_{\mathrm{w}} $)计算如下:

      $$ {\sigma }_{\mathrm{w}}=\frac{{R}_{{\mathrm{M}\mathrm{S}\mathrm{E}}_{\mathrm{W}}}}{\overline{M}}\times 100\% 。 $$ (5)

      式(5)中:$ {R}_{{\mathrm{M}\mathrm{S}\mathrm{E}}_{\mathrm{W}}} $为单株生物量模型的均方根误差;$ \overline{M} $为高山松地上生物量实测值的平均值[22]

      采用六步法[23]计算地上生物量遥感估算模型残差变异产生的误差:第1步升序排列样地地上生物量实测值(y);第2步利用生物量模型的预测值($ \hat y $)计算残差($ {M}_{\text{ε} } $),残差为样地地上生物量实测值与预测值的差值;第3步将60块样地进行分组,每6块地为1组,共10组;第4步计算每组样地地上生物量预测值的平均值($ \bar{\hat{y}}$)及残差标准差$ \left({\sigma }_{\text{ε} }\right) $。每组样地地上生物量预测值的平均值、残差、残差标准差计算如下:

      $$ {\bar{\hat{y}}}=\frac{1}{n}\sum _{j=1}^{n}{\hat y}_{{{j}}} \text{;} $$ (6)
      $$ {M}_{\text{ε}}=y-{\hat y} \text{;} $$ (7)
      $$ {\sigma _{\text{ε} }}=\sqrt{\frac{\displaystyle \sum _{j=1}^{n}{\left({M}_{\text{ε}j }-\overline{{M}}_{\text{ε} }\right)}^{2}}{n-1}} 。 $$ (8)

      式(6)~(8)中:$ \hat y_j $表示第$ j $块样地地上生物量预测值;${M}_{\text{ε}j }、\overline{{M}}_{\text{ε}} $分别表示第j块样地的残差和残差平均值;$ n $表示6块样本集样地数量。

      第5步对${\bar{\hat{y}}}$$ {\sigma }_{\text{ε} } $进行相关性拟合,自变量为地上生物量模型预测值,因变量为残差标准差。模型残差变异与样地分组地上生物量预测值的平均值关系可表达为:

      $$ {\sigma }_{\text{ε} }=f\left( {\bar{\hat{y}}} \right) 。 $$ (9)

      第6步将各块样地地上生物量预测值代入拟合后得出的公式,对所有样地的残差标准差求和,除以地上生物量实测值的和,从而得到模型残差的不确定性。

    • 对于单株生物量模型和多元线性回归模型的参数不确定性,可通过泰勒级数一阶展开式进行量化计算。生物量模型$ B=f\left(x,\;\hat{\alpha }\right) $经泰勒级数一阶展开如下:

      $$ B=f\left(x,\;\hat{\alpha }\right)\approx f\left(x,\;\alpha \right)+\frac{\partial f\left(x,\;\alpha \right)}{\partial {\alpha _{j}}}\left(\hat{\alpha }-\alpha \right) 。 $$ (10)

      式(10)中:$ f\left(x,\;\alpha \right) $为地上生物量预测值;$ x $为解释变量;$\hat{\alpha }$为参数模拟值;$ \alpha $表示参数真实值,$\dfrac{\partial f\left(x,\;\alpha \right)}{\partial {\alpha }_{j}}$为模型参数$ {\alpha }_{j} $的偏导数。$\dfrac{\partial f\left(x,\;\alpha \right)}{\partial {\alpha }_{j}}\left(\hat{\alpha }-\alpha \right)$为模型参数引起的误差(${\sigma }_{{\rm{p}}})$${\sigma }_{{\rm{p}}}$可近似表示为:

      $$ {{\boldsymbol{\sigma}} }_{{\rm{p}}}^{2}\approx {{\boldsymbol{Z}}}_{{\boldsymbol{jk}}}{\boldsymbol{var}}\left({\boldsymbol{\alpha}} \right){{\boldsymbol{Z}}}_{{\boldsymbol{jk}}}^{{\boldsymbol{T}}} 。 $$ (11)

      式(11)中:Zjk表示Z矩阵为j×k矩阵;$ {{\boldsymbol{Z}}}_{{\boldsymbol{jk}}}^{{\boldsymbol{T}}} $${{\boldsymbol{Z}}}_{{\boldsymbol{jk}}} $的转置矩阵;$ {\boldsymbol{var}}\left({\boldsymbol{\alpha}} \right) $为生物量方程中估计参数$ \alpha $的协方差矩阵。

    • 假设间接测量值与直接测量值之间存在某种函数关系,那么间接测量的不确定性可通过特定函数关系,用直接测量的不确定性表示为合成不确定性[24]。误差可以表示为:

      $$ {N}_{\mathrm{R}}=\sqrt{{N}_{{{\rm{U}}}_{1}}^{2}+{N}_{{{\rm{U}}}_{2}}^{2}+{N}_{{{\rm{U}}}_{3}}^{2}+\cdots +{N}_{{{\rm{U}}}_{i}}^{2}} 。 $$ (12)

      式(12)中:$ {N}_{\mathrm{R}} $表示总误差;$ {N}_{{\mathrm{U}}_{i}} $表示第$ i $个变量的误差。根据此式,计算单株生物量模型的不确定性($ {\sigma }_{\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{e}} $):

      $$ {\sigma }_{\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{e}}=\sqrt{{{\sigma }_{\mathrm{w}}^{2}}+{{\sigma }_{\mathrm{p}}^{2}}} 。 $$ (13)

      式(13)中:$ {\sigma }_{\mathrm{w}} $为单株生物量模型残差不确定性;$ {\sigma }_{\mathrm{p}} $为参数不确定性。

    • 单株生物量的误差传播到样地尺度的不确定性($ {\sigma }_{\mathrm{p}\mathrm{l}\mathrm{o}\mathrm{t}} $)由下式计算:

      $$ {\sigma }_{\mathrm{p}\mathrm{l}\mathrm{o}\mathrm{t}}=\sqrt{\sum_{i=1}^{N}{{\sigma }_{\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{e}i}^{2}}/S}。 $$ (14)

      式(14)中:N为单位样地内样木株数;$ {\sigma }_{\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{e}i} $为样地内第$ i $株样木的单株生物量不确定性;$ S $为样地面积。

      得到样地尺度不确定性和地上生物量遥感估测模型地上生物量的不确定性后,根据式(12),结合遥感信息数据,估测高山松地上生物量的总不确定性($ \sigma $):

      $$ \sigma =\sqrt{{{\sigma }_{\mathrm{p}\mathrm{l}\mathrm{o}\mathrm{t}}^{2}}+{{\sigma }_{\mathrm{R}}^{2}}}。 $$ (15)

      式(15)中:$ {\sigma }_{\mathrm{p}\mathrm{l}\mathrm{o}\mathrm{t}} $为样地尺度不确定性;$ {\sigma }_{\mathrm{R}} $为遥感估测模型不确定性。

    • 单株生物量模型参数的协方差矩阵为:

      $$ \left(\begin{array}{rrr}0.002\;700& -0.000\;760& 0.000\;089\\ -0.000\;450& 0.006\;100& -0.040\;000\\ 0.000\;089& -0.040\;000& 0.006\;200\end{array}\right) 。 $$

      将协方差矩阵带入式(11),得出单株生物量模型的参数不确定性为12.42%。

      由式(5)计算模型的残差不确定性为10.76%。对残差不确定性与参数不确定性合成,可得出单株生物量模型的不确定性为16.43%。当模型误差叠加到样地尺度时,通过式(14)得出样地尺度不确定性为7.07%。

    • 本研究建立了地上生物量与遥感因子的多元线性回归模型,根据拟合优度选出最佳模型为:

      $$ y=2\;820.989-520.296 {x}_{\mathrm{R}5\mathrm{B}4\mathrm{E}\mathrm{N}}+73.833 {x}_{\mathrm{R}9\mathrm{B}5\mathrm{C}\mathrm{R}}-259.225 {x}_{\mathrm{R}9\mathrm{B}3\mathrm{E}\mathrm{N}}\mathrm{。} $$

      其中:y表示地上生物量预测值,xR5B4EN为5窗口第4波段熵,xR9B5CR为9窗口第5波段相关性,xR9B3EN为9窗口第3波段熵。模型R2为0.326,RMSE为26.12,预测精度为64.91%(图1A)。

      图  1  基于多元线性回归的地上生物量预测效果和残差不确定性

      Figure 1.  Prediction effect and the residual uncertainty of aboveground biomass based on multiple linear regression

      对残差标准差(y)和样地地上生物量预测分组平均值(x)进行相关性拟合发现:拟合效果最佳的模型为$ y=91.345+0.029{x}^{2}-3.074x $R2= 0.836,计算后得出多元线性回归模型的残差不确定性为34.86%(图1B)。

      多元线性回归模型参数的协方差矩阵为:

      $$ \left(\begin{array}{rrr}0.038\;00& -0.004\;50& 0.000\;94\\ -0.007\;80& 0.068\;00& -0.800\;00\\ 0.000\;94& -0.800\;00& 0.044\;00\end{array}\right) 。 $$

      将协方差矩阵代入式(11)可得出参数变异不确定性为21.30%。对残差不确定性和参数不确定性合成,通过多元线性回归模型,估算出高山松地上生物量的不确定性为40.84%。

    • 图2A所示:梯度提升回归树模型的R2为0.815,RMSE为14.24,预测精度为74.72%。图2B所示:残差标准差(y)与样地地上生物量预测分组平均值(x)拟合的最佳模型为$ y=0.260\;1x-2.127\;3 $R2=0.670,得出残差不确定性为22.01%。非参数建模方法不考虑参数不确定性,基于梯度提升回归树模型估算得出高山松地上生物量的不确定性为22.01%。

      图  2  基于梯度提升回归树的地上生物量预测效果和残差不确定性

      Figure 2.  Prediction effect and the residual uncertainty of aboveground biomass based on gradient boost regression tree

    • 图3A所示:随机森林模型的R2为0.889,RMSE为11.02,预测精度为76.47%。图3B所示:残差标准差(y)与样地生物量预测分组平均值(x)拟合后的最佳模型为线性关系,模型为$ y=0.214\;3x-1.475\;7 $R2=0.863。与多元线性回归和梯度提升回归树模型的残差不确定性计算方法相同,在不考虑参数不确定性的情况下,得出随机森林估算高山松地上生物量的不确定性为18.09%。

      图  3  基于随机森林的地上生物量预测效果和残差不确定性

      Figure 3.  Prediction effect and the residual uncertainty of aboveground biomass based on random forest

    • 表3可见:在样地尺度上,单株生物量模型的不确定性为16.43%,总不确定性为7.07%;在3种遥感估算模型中,多元线性回归模型的不确定性为40.84%,梯度提升回归树模型的不确定性为22.01%,随机森林模型的不确定性为18.09%。基于多元线性回归、梯度提升回归树、随机森林模型,估算出高山松地上生物量的总不确定性分别为41.45%、23.12%和19.42%。

      表 3  3种地上生物量估测模型的不确定性

      Table 3.  Uncertainty results of the three aboveground biomass estimation models

      模型遥感估算地上生物量的不确定性样地尺度地上生物量的不确定性总不确定性/%
      模型残差
      变异/%
      模型参数
      变异/%
      遥感估测模型
      不确定性/%
      模型残差
      变异/%
      模型参数
      变异/%
      单株生物量模型
      不确定性/%
      样地尺度不
      确定性/%
      多元线性回归 34.8621.3040.8410.7612.4216.437.0741.45
      梯度提升回归树22.0122.0123.12
      随机森林   18.0918.0919.42
        说明:梯度提升回归树与随机森林为非参数模型,不考虑模型参数变异的不确定性
    • 本研究结合误差传递的方法,量化了3种生物量遥感估测模型与样地尺度单株生物量模型产生的误差,并将各个来源的不确定性合成,得出遥感估算高山松地上生物量的总不确定性。遥感估算地上生物量的不确定性主要来源于遥感估测模型的不确定性,其中多元线性回归为40.84%,梯度提升回归树为22.01%,随机森林为18.09%。样地尺度不确定性相对较小,为7.07%。从预测效果来看,非参数的随机森林和梯度提升回归树模型的不确定性要优于参数的多元线性回归模型,随机森林模型的不确定性低于梯度提升回归树模型。单株生物量模型参数变异为12.42%,残差不确定性为10.76%,模型的不确定性主要来源于参数变异,残差不确定性相对较低。

      3种遥感估算模型的不确定性研究表明:多元线性回归通过回归方程直观反映遥感因子和地上生物量的关系,但不能有效描述它们之间复杂的非线性关系,要提高参数模型的预测精度则需要大量样地观测数据。张加龙等[8]基于外业调查和Landsat 8 OLI影像,建立了多元线性回归、偏最小二乘、随机森林和梯度提升回归树4种模型,估测了香格里拉市高山松地上生物量,结果表明:随机森林和梯度提升回归树2种非参数模型的预估精度优于其他2种参数模型;陈蜀蓉等[25]运用4种模型对浙江缙云县公益林生物量进行建模估算的结果同样表明:随机森林和Erf-BP神经网络2种非参数模型优于参数模型。本研究建立的梯度提升回归树和随机森林2种非参数模型有较好的拟合优度和预测精度,不确定性优于参数的多元线性回归模型。遥感估测模型的不确定性对森林地上生物量的估算精度占主要的影响,因此,提升模型精度仍是今后生物量估算研究的重要方向。

      已有不少学者进行了单株生物量模型不确定性的研究。秦立厚等[10]分别用30、42、48株杉木Cunninghamia lanceolata进行单株生物量建模时发现:一元生物量模型的残差变异引起的不确定性分别为15.2%、12.3%、11.7%,二元生物量模型的不确定性为13.3%、9.4%、8.7%,表明二元单株生物量模型的不确定性要低于一元模型,且建模样本的增加可以显著降低模型残差变异不确定性。与其相比,本研究在对样地尺度生物量不确定性进行度量时,引用了基于幂函数形式的二元单株生物量估算模型[15]。由于缺少实际伐倒的样木生物量数据,运用模型预测精度和均方根误差间接计算模型不确定性,结果可能存在偏差。CHAVE等[26]计算的热带雨林地区生物量模型残差变异误差为31.3%,而本研究模型残差变异误差为10.76%。这可能是热带树种之间的特征差异大,导致产生的残差变异较大,而本研究建模对象仅为亚热带高山松单一树种,未对抽样、测量误差以及遥感影像坐标校正误差进行分析。这在后续研究中还需进一步完善。

参考文献 (26)

目录

/

返回文章
返回