留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑翅土白蚁菌圃微生物对蚁巢伞生长的影响

朱娅宁 羊桂英 周琪欢 谢晓俊 漆梦雯 沈毅 莫建初

朱娅宁, 羊桂英, 周琪欢, 等. 黑翅土白蚁菌圃微生物对蚁巢伞生长的影响[J]. 浙江农林大学学报, 2022, 39(3): 598-606. DOI: 10.11833/j.issn.2095-0756.20210478
引用本文: 朱娅宁, 羊桂英, 周琪欢, 等. 黑翅土白蚁菌圃微生物对蚁巢伞生长的影响[J]. 浙江农林大学学报, 2022, 39(3): 598-606. DOI: 10.11833/j.issn.2095-0756.20210478
CHEN Wei, GU Lei, FENG Yiyong, et al. Impact of risk attitude and risk perception on farmers’ willingness to transfer carbon sequestration forests[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1270-1278. DOI: 10.11833/j.issn.2095-0756.20210216
Citation: ZHU Yaning, YANG Guiying, ZHOU Qihuan, et al. Impact of microorganisms of Odontotermes formosanus fungus-combs on the growth of Termitomyces heimii[J]. Journal of Zhejiang A&F University, 2022, 39(3): 598-606. DOI: 10.11833/j.issn.2095-0756.20210478

黑翅土白蚁菌圃微生物对蚁巢伞生长的影响

DOI: 10.11833/j.issn.2095-0756.20210478
基金项目: 国家自然科学基金资助项目(31770686)
详细信息
    作者简介: 朱娅宁(ORCID: 0000-0001-8853-8953),从事白蚁菌圃微生物应用研究。E-mail: 542770586@qq.com
    通信作者: 莫建初(ORCID: 0000-0001-5066-0734),教授,博士生导师,从事白蚁防治等研究。E-mail: mojianchu@zju.edu.cn
  • 中图分类号: S718.8

Impact of microorganisms of Odontotermes formosanus fungus-combs on the growth of Termitomyces heimii

  • 摘要:   目的  探明黑翅土白蚁Odontotermes formosanus菌圃微生物对优势真菌蚁巢伞Termitomyces heimii生长的影响,可为深入研究白蚁菌圃微生态提供实验参考,对人工栽培蚁巢伞也具有重要参考意义。  方法  使用寡营养培养基分离菌圃微生物。细菌方面,通过探究细菌发酵液对蚁巢伞生长的影响,采用高效液相色谱法测定发酵菌液中新生成的可溶性糖类物质,初步明确菌圃细菌对蚁巢伞生长的影响;真菌方面,采用对峙培养手段探明蚁巢伞与其他菌圃真菌的互作情况。  结果  从黑翅土白蚁菌圃中共分离8种细菌及12种真菌杂菌,发现菌圃内存在大量蚁巢伞孢子。菌圃厚壁菌门Firmicutes细菌促进蚁巢伞生长,在其影响下蚁巢伞菌丝呈现纽结凸起,菌丝生长速率相比对照组极显著提高,最高提升0.033 cm·d−1(P<0.01)。而菌圃变形菌门Proteobacteria细菌抑制蚁巢伞生长,Burkholderia sp. (待定)抑制效果最为显著,使得蚁巢伞几乎无法生长。通过高效液相色谱分析发现:菌圃细菌发酵液新生成大量可溶性糖类物质,表明菌圃细菌具备降解木质纤维素并将其转化为寡糖的能力。蚁巢伞与菌圃真菌杂菌的对峙培养表明:菌圃内真菌杂菌抑制蚁巢伞生长,一旦菌圃开始消亡,真菌杂菌(如多种霉菌)将快速占领菌圃。  结论  分离的78.9%菌圃细菌可促进蚁巢伞生长,而分离的所有真菌杂菌均抑制蚁巢伞生长,可见,菌圃微生物对蚁巢伞存在明显调控作用。图5表2参18
  • 当前,树体高大、通风透光性差和管理粗放是导致针叶树种种子园采种难和雌球花花量不足的重要原因,制约着林木种子园的精细化经营和管理[1]。截顶影响营养物质流向和分配,促进结实母枝更新,是植株达到矮化效应的重要方法,对实现“果园式”林木种子园具有重要指导意义[23]。国外学者对花旗松Pseudotsuga menziesii进行夏季截顶和修枝后发现:虽然树冠体积减少了,但是枝条上雌雄球花密度显著增加,通过调控栽植间距,提高了单位面积球果产量[4];国内学者研究表明:截冠可提高樟子松Pinus sylvestris var. mongholica壮龄母树的产量和种子质量[3];对马尾Pinus massoniana截顶处理后发现:中产和高产无性系的雌球花量能提高20%以上[1]

    赤霉素(GAs)被认为是一种重要的双萜类植物生长调节剂,参与松树球花分化与茎伸长等许多重要的生长发育过程[56]。FERNÁNDEZ等[7]对辐射松Pinus radiata不同组织中内源GAs测定后发现:GA3在营养芽和雄球花中质量分数较高但比较稳定,而GA4则差异明显,推测GA4可能与它们的发育调节有关。赤霉素等激素比值的变化可表征树体内激素的不同吸收或运转规律。较高水平的Z型细胞分裂素和较低水平的脱落酸(ABA)及其代谢产物可能与雌球花的形成有关,在顶芽发育过程中GA和ABA往往表现出拮抗作用,外源注射GA4/7使顶梢ABA合成减少或通过其他途径加速了ABA代谢产物的分解,进而降低顶芽内源ABA及ABA分解代谢的主导产物ABA葡萄糖酯(ABA-ge)的质量分数,改变了它们的比值,进而提高雌球花的分化能力,增加雌球花的数量,但其机制尚不清楚[89]

    研究表明:外界因素首先通过植株内源激素质量分数及其比值的变化对生长和成花起作用[10]。营养芽转变为生殖芽也是植株体内各种激素在时间和空间上相互作用产生的综合结果,取决于促进和抑制开花这2类激素的平衡[11]。植物顶芽会抑制侧芽的发生,去除顶芽或抑制顶端优势则会促进侧芽的产生。截顶可通过抑制植株顶端优势形成,影响植株体内生长素和细胞分裂素的合成与再分配。在生产上,许多针叶树正是利用截顶与修枝、植物生长调节剂诱导等措施控制树体的生殖与营养生长平衡[1213]。马尾松是中国南方主要的速生丰产优质用材树种和最重要的脂用树种[14],其雌球花多分布于主枝或侧枝顶端,生殖芽和营养芽都由新生枝梢产生,其生理状态与花芽分化密切相关[1520]。因此,本研究采用盆栽控制试验,以高产的马尾松无性系为试材,在花原基形成前期设置生产上常用的截顶和赤霉素诱导试验,研究树体内源激素质量分数及其比值的变化和平衡,以期为马尾松结实母树的树体管理提供理论指导和技术支持。

    试验地点位于浙江省淳安县林业总场有限公司姥山分场国家马尾松良种基地(29°32′34″N, 119°04′04″E)。供试材料选用马尾松第2代无性系种子园中结实能力强的209号无性系,于2017年选取无性系同一个母株上生长基本一致的穗条进行嫁接。2018年3月,将生长势相对一致、侧枝数量相近的无性系嫁接苗移栽至无纺布容器内。容器规格为直径70 cm,高度60 cm,每个容器内放入50 kg马尾松第2代无性系种子园内0~40 cm土层的酸性红壤,土壤pH 4.71、全氮3.59 g·kg−1、全磷0.34 g·kg−1、全钾16.90 g·kg−1、碱解氮248.00 mg·kg−1、速效磷5.48 mg·kg−1、速效钾228.00 mg·kg−1、有机质67.60 g·kg−1、交换性钙3.10 cmol·kg−1、交换性镁0.34 cmol·kg−1。每盆栽植1株,栽植后立即浇水,无性系植株按照完全随机配置,放置在铺设有地布的苗圃地内,株行距为1.5 m×1.5 m。苗木栽培常规管理。苗木培育期间,为保证生长条件和栽培管理一致,不施肥,干旱时滴灌,及时除草。

    在处理前,对供试幼树的树高、地径、枝长、枝粗和轮枝数进行本底调查,树高为189.3~204.2 cm,地径为35.63~40.12 mm,枝长为45.5~96.5 cm,枝粗为17.89~21.68 mm,每株树均为3层轮枝。

    1.2.1   截顶和赤霉素诱导试验处理

    设置未截顶、截顶后保留1层轮枝、截顶后保留2层轮枝、未截顶+100 mg·L−1赤霉素(GA4/7)、未截顶+200 mg·L−1 GA4/7和未截顶+400 mg·L−1 GA4/7共6个处理,分别记为NT、T1、T2、NT+G100、NT+G200和NT+G400。每个处理设置3个重复,每个重复3个分株。在2021年6月15日,T1和T2截顶处理采用修枝剪自下而上分别一次性截除第1层和第2层轮枝处以上的顶梢,NT+G100、NT+G200和NT+G400处理在植株叶面分别均匀喷施100、200和400 mg·L−1的GA4/7混合液,喷施至针叶湿润且叶尖有液体下滴时为止,NT处理以喷施去离子水作为对照。

    1.2.2   观测和取样

    各处理在每株自下而上的第1层轮枝处(H1)和第2层轮枝处(H2)选择东、西、南、北4个方位的一级侧枝及顶梢(H3)作为固定观测对象。分别于2021年花原基形成前期(S1,6月20日)、花原基形成期(S2,7月20日)和花原基形成后期(S3,8月20日)测定枝长和枝粗。同时,于S1、S2和S3时期,分别在H1处4个方位的一级侧枝顶端选取1.0 g以上针叶,置于液氮中速冻,带回实验室,保存于−80 ℃超低温冰箱中,用于内源激素质量分数测定,研究截顶和GA4/7诱导对花原基形成期前后的针叶主要激素质量分数及其比值影响。2022年4月25日调查每株观测枝的雌球花数量。

    此外,还针对T1、T2和NT处理,分别在截顶处理(2021年6月15日)后1、4、7、10、13、16和19 d取样。每次取样选取第1层轮枝处(H1)、第2层轮枝处(H2)一级分枝顶端和顶梢处(H3)的针叶,每个部位取样1.0 g以上,带回实验室,保存于−80 ℃超低温冰箱中,研究截除顶梢后短期内内源激素质量分数在时间和空间上的变化特征。每个处理设置3个重复,每个重复3个分株。

    委托南京瑞源生物技术有限公司采用安捷伦1290高效液相色谱仪串联Qtrap 6500质谱仪(AB公司)测定内源激素。测定的内源激素包括:吲哚乙酸(IAA)、脱落酸(ABA)、赤霉素(GA4和GA7)、水杨酸(SA)和玉米素核苷(ZR)。。

    采用SPSS 20.0软件对不同截顶强度和赤霉素诱导处理的结果进行差异性分析。试验数据经Levene检验满足方差齐性后,采用单因素和Duncan差异性检验(P<0.05)进行方差分析和多重比较。图和表中数据均为平均值±标准误。

    与S1时期相比,到S3时期时,T1和T2处理后H1处的枝长增长量分别比NT高181.55%和119.31% (P<0.05),枝粗增长量分别高出NT的35.78%和9.17% (P<0.05);H2处的枝长和枝粗增长量分别比NT高的150.45%和111.49% (P<0.05)。T1处理下的枝长和枝粗增长量略高于T2处理,但差异不显著(表1)。截顶后第2年,T1与T2处理的标准枝雌球花密度均显著高于NT,其中,T1处理H1处的雌球花密度较NT增加126.00%,T2处理H1和H2处的雌球花密度较NT分别增加82.67%和 66.52%。说明截顶削弱了顶端优势,促进下层结实母枝的生长和结实层下移,雌球花密度增加。

    表 1  截顶和赤霉素诱导处理对雌球花密度和枝生长的影响
    Table 1  Effect of top pruning and gibberellin induction on female cones density and branch growth
    处理H1H2H3
    枝长净增
    长量/cm
    枝粗净增
    长量/cm
    雌球花密度/
    (个·枝−1)
    枝长净增
    长量/cm
    枝粗净增
    长量/cm
    雌球花密度/
    (个·枝−1)
    枝长净增
    长量/cm
    枝粗净增
    长量/cm
    雌球花密度/
    (个·枝−1)
    NT 2.33±0.11 d 1.09±0.08 b 1.50±0.06 c 2.22±0.10 c 0.87±0.03 c 2.33±0.09 c 9.33±0.26 ab 1.66±0.09 a 2.94±0.13 b
    NT+G100 5.26±0.16 bc 1.03±0.06 b 2.93±0.12 ab 3.89±0.13 b 1.76±0.09 ab 3.17±0.15 ab 11.80±0.31 a 1.69±0.09 a 4.50±0.19 a
    NT+G200 8.42±0.25 a 1.18±0.09 ab 3.27±0.16 a 6.22±0.18 a 1.76±0.10 ab 3.39±0.16 ab 9.67±0.28 ab 1.06±0.04 ab 4.67±0.21 a
    NT+G400 6.14±0.17 b 1.56±0.11 a 2.67±0.10 ab 5.22±0.14 ab 2.01±0.12 a 3.33±0.16 ab 12.33±0.33 a 1.04±0.03 ab 3.33±0.15 b
    T1 6.56±0.18 b 1.48±0.09 a 3.39±0.16 a
    T2 5.11±0.14 bc 1.19±0.07 ab 2.74±0.11 ab 5.56±0.15 ab 1.84±0.11 ab 3.88±0.18 a
      说明:同列不同小写字母表示处理间差异显著(P<0.05);-表示无此项。
    下载: 导出CSV 
    | 显示表格

    在S3时期,截顶与赤霉素处理相比,除T1和T2处理H1处的枝长增长量显著(P<0.05)低于NT+G200处理外,T1与T2处理的雌球花密度与NT+G100、NT+G200、NT+G400处理结果差异均不显著;T1和T2处理其他轮枝处的枝长和枝粗增长量与GA4/7各处理间差异不显著。说明截顶和赤霉素处理均促进了马尾松结实母枝生长和雌球花形成。

    2.2.1   截顶的影响

    在S1时期,与NT相比,T1和T2处理的针叶IAA质量分数分别下降11.24%和9.62%,T2处理的IAA质量分数高于T1处理,但随着截顶程度的加重而降低(图1A);T1和T2处理的GA7质量分数分别下降0.27%和1.26% (图1B),GA4分别下降9.36%和12.62% (图1C),ZR分别下降23.38%和18.77% (图1D),而ABA分别增加15.09%和8.15%,T1处理的ABA质量分数高于T2处理(图1E),但T1和T2处理两者间差异不显著。

    图 1  截顶及GA4/7诱导对不同时期主要激素质量分数及其比值变化的影响
    Figure 1  Effect of top pruning and GA4/7 induction on changes in the content of major hormones and their ratios at different periods

    在S2时期,无论截顶与否,针叶IAA、GA7、GA4和ZR质量分数均较S1时期增加,其中,T1处理的IAA、GA7、GA4和ZR质量分数分别增加了1.21、1.21、0.92和0.80 ng·g−1,T2处理分别增加了1.45、0.77、0.86和0.76 ng·g−1,显著高于NT处理的增加量(0.30、24.67、0.04和0.11 ng·g−1P<0.05),截顶处理后ABA质量分数较S1时期降低,其中,T1和T2处理分别降低52.97和48.06 ng·g−1。说明受截顶影响,在之后1个月时间,IAA、GA7、GA4和ZR质量分数呈恢复增长变化,其质量分数在S2时期并未受截顶强度加重显著降低。

    在S3时期,与S2时期相比,T1和T2处理下针叶IAA、GA7、GA4和ZR质量分数下降,其中,T1处理分别下降6.32%、7.21%、46.03%和30.04%,T2处理分别下降6.52%、5.52%、42.16%和28.03%;与S1时期相比,T1处理的针叶IAA、GA7、GA4和ZR质量分数分别增加7.34%、2.08%、2.65%和1.58%,T2处理分别增加9.30%、0.55%、4.32%和0.76%;而T1和T2处理的针叶ABA质量分数较S1和S2时期持续降低。

    图1F看出:在S1时期,T1和T2处理的(IAA+GA7+GA4+ZR)/ABA比值较低,分别为7.22和7.61,均低于NT (8.33),而在S2时期,T1和T2处理的(IAA+GA7+GA4+ZR)/ABA比值迅速增加,分别为11.32和11.23,均高于NT (10.21),进一步印证了在花原基形成前期实施截顶,内源激素的比值显著下降,在花原基形成期间,生长促进型激素恢复增长,抑制型激素下降,内源激素的比值显著增加。

    2.2.2   截顶与GA4/7诱导的对比分析

    图1A~D可知:在S1时期,T1和T2处理的针叶IAA、GA7、GA4和ZR质量分数显著低于NT+G100、NT+G200和NT+G400处理,而ABA质量分数显著增加 (P<0.05),其中,T1处理下的IAA、GA7、GA4和ZR质量分数分别比GA4/7处理低38.25%~56.39%、24.05%~27.06%、73.91%~101.09%和47.39%~76.31%,ABA质量分数比GA4/7处理高15.92%~27.52%;T2处理下的IAA、GA7、GA4和ZR质量分数分别比GA4/7处理低35.77%~53.59%、25.30%~29.17%、80.79%~109.04%和40.08%~67.56%,ABA质量分数则比GA4/7处理高10.53%~22.88%。

    在S1~S3期间,NT+G100、NT+G200和NT+G400处理的IAA质量分数逐渐降低,马尾松针叶GA7、GA4和ZR质量分数均先增加后降低,S3时期的激素质量分数低于S1时期,ABA则先降低后增加;截顶与GA4/7诱导后主要激素质量分数的变化趋势不同,T1和T2处理的马尾松针叶IAA、GA7、GA4和ZR质量分数均为先增加后降低,但是,S3时期的激素高于S1时期,ABA则为持续降低。从图1F可看出:在S2时期,NT+G400处理的(IAA+GA7+GA4+ZR)/ABA比值最高,比NT+G200、NT+G100、T2和T1处理依次高5.97%、12.34%、20.67%和21.64%。

    2.3.1   短期内的动态变化

    图2A可知:在花原基形成前期截除顶梢,T1和T2处理的马尾松针叶IAA质量分数呈先降低后增加的趋势,到第16天时比NT高33.33%~45.45%。截顶后针叶的GA7质量分数趋势变化不显著,T1处理和T2处理的针叶GA7质量分数也均无显著性差异(图2B)。截顶后马尾松针叶的GA4质量分数呈显著下降 (P<0.05),在第10天达到最低,并比NT处理显著低24.26%~35.32% (P<0.05),之后逐渐增加(图2C)。T1和T2处理的马尾松针叶ZR质量分数均比NT处理显著低4.39%~57.65% (P<0.05),而T1和T2处理间差异不显著(图2D)。说明截顶处理打破了马尾松原有的激素平衡,使针叶中的IAA和GA4生长促进型激素出现短期内先下降后升高的现象。T1和T2处理的ABA质量分数呈降低趋势,但始终高于NT处理(图2E)。在第1~4天时,T1和T2处理马尾松针叶的SA质量分数急剧上升,之后逐渐下降,至第16天时,与NT处理差异不显著(图2F)。

    图 2  不同截顶程度对马尾松针叶内源激素质量分数动态变化的影响
    Figure 2  Effect of different levels of topping on the dynamic changes of endogenous hormone contents in the needles of P. massoniana
    2.3.2   不同高度处的空间变化

    在不同高度处,未截顶的马尾松针叶IAA质量分数从高到低依次为H3、H2、H1,T2处理IAA质量分数为H2大于H1;在第10天之后,T1处理H1处的针叶IAA质量分数显著高于T2处理(图2AP<0.05)。在第13天之后,未截顶H3处的马尾松针叶GA7质量分数与H2和H1处相比差异不显著(图2B),T2处理H1处针叶GA7质量分数和H1处差异不显著,未截顶的针叶GA4质量分数从高到低依次为 H3、H2、H1,T2处理GA4质量分数为H2大于H1,T1处理H1处针叶的GA4质量分数在截顶后第10天低于T2处理,之后逐渐高于T2处理(图2C)。未截顶的ZR质量分数从高到低依次为 H3、H2、H1,T2处理针叶的ZR质量分数在H2处最高,T1处理H1处的ZR质量分数始终最低(图2D)。说明截顶强度影响着不同轮枝处针叶的IAA、GA4和ZR激素质量分数。未截顶的ABA质量分数从高到低依次为H1、H2、H3,T2处理ABA质量分数为H1大于H2,T1处理H1处的针叶ABA质量分数比T2处理高2.85%~7.84% (图2E)。未截顶时,SA质量分数在H1、H2和H3处差异不显著,随截顶程度的加重,在第1~13天,T1处理H1处的SA质量分数比T2处理H1处显著高1.88%~90.88% (P<0.05,图2F)。

    已有研究表明:通过截顶可以增加母树对光能的有效利用,影响叶面积与营养储藏水平,也对侧枝的生长具有重要影响[3, 21]。本研究发现:马尾松树体截顶后不仅促进了枝梢的生长,而且显著增加了雌球花密度。这与KOLPAK等[4]在夏季对花旗松进行截顶和修枝的研究结果相类似。截顶和修枝后花旗松枝条上的雌雄球花量增加,提高了单位面积球果产量。王福森等[2]研究也表明:樟子松截顶后促使母树结实层下移,平均单株球果数增加。截顶处理可以控制树体顶端优势,促使结实母枝更新。通过与赤霉素处理对比发现:截顶处理的雌球花密度与其差异不显著,说明截顶不仅可作为种子园树体管理的有效措施,而且也可促进雌球花形成。郑一等[1]研究马尾松不同结实能力无性系同样发现:截顶可提高中产和高产无性系的雌球花量20%以上。陈虎等[22]对16年生马尾松无性系截顶处理发现:随着截顶强度的增加,母树生长和结实能力增强,在保留1轮枝的情况下结实最多;HAN等[23]对红松P. koraiensis截干后同样得出结果枝数量增加,结实量提高的结果。因此,截顶处理可以控制马尾松树体顶端优势,促使结实母枝更新。植物激素,尤其赤霉素通过其自身前馈和反馈调节参与松树花器官发育并在调节植株生长、控制树势或适应逆境过程中发挥重要作用[7, 24]。马尾松顶端优势强,雌球花多分布在主枝或侧枝的顶端,植株顶芽会抑制侧芽的发生,去除顶芽或抑制顶端优势则会促进侧芽的产生。已有研究表明:树木木质部汁液中细胞分裂素和ABA质量分数与比值在胁迫信号传递中起着重要作用,较高质量分数的Z型细胞分裂素和较低水平的ABA及其代谢产物可能与雌球花的形成有关[2526]。通过分析花原基形成期间3个阶段的主要激素质量分数与标准枝雌球花量相关性,均发现在花原基形成期,截顶处理后GA4、IAA、GA7和ZR质量分数与雌球花量相关性最高,与ABA质量分数呈显著负相关。研究表明:未截顶时,不同高度处的IAA、GAs和ZR质量分数从高到低依次为H3、H2、H1。在花原基形成前期截顶,受胁迫的影响,促进生长型激素IAA和GA4质量分数呈先降低后增加的动态变化,T2处理依然表现为H2大于H1,截顶后20 d左右,主要激素水平可恢复稳定;在花原基形成期,下部枝条的IAA、GAs和ZR质量分数较花原基形成前期显著增加,(IAA+GA+ZR)/ABA比值大幅提升,说明截顶削弱了顶端优势,促使下部侧枝的激素质量分数在空间上随高度的降低和截顶程度的加重而变化,打破了树体原有的养分平衡,可能通过内源激素的合成、极性运输和信号转导等途径,调节着营养生长与生殖生长之间的平衡。这可能是促进侧芽更快地生长和雌球花形成的主要原因之一[9, 20, 27]

    在顶芽发育过程中,GA和ABA往往表现出拮抗作用,外源注射GA4/7使顶梢ABA合成减少或通过其他途径加速了ABA代谢产物的分解,进而降低顶芽内源ABA及ABA分解代谢的主导产物ABA葡萄糖酯(ABA-ge)的质量分数。GA4/7的使用也可增加反式玉米素核苷(t-ZR)水平和降低异戊烯基腺嘌呤(IP型)细胞分裂素,改变了它们的比值,进而提高雌球花的分化能力,增加雌球花的数量[2830]。本研究通过截顶处理和GA4/7诱导的对比试验同样得出:在花原基形成期,截顶和GA4/7诱导处理可显著降低ABA质量分数,增加ZR质量分数。国内外育种工作者已经利用GA4、GA7等极性较小的赤霉素可促进多种松树开花和诱导雌雄球花分化的能力,在生产上积累了丰富的经验[3132]。虽然截顶处理与赤霉素诱导马尾松针叶的内源激素质量分数变化趋势有所不同,但均表明通过树体内主要激素质量分数及其比值平衡的变化,可以调控树体的生长发育,进而指导生产。此外,持续截顶或修枝措施,也是控制顶端优势的方式,对激素变化也有影响。但NEILSEN等[32]对辐射松修枝研究发现:持续修剪对枝条生长有长期影响,造成枝粗增长缓慢。

    在花原基形成前期实施截顶和赤霉素处理均可促进马尾松结实母枝更新和雌球花形成,与针叶内源激素质量分数的变化密切相关。截除顶梢后,马尾松针叶的IAA、GA7、GA4和ZR质量分数显著下降,而ABA质量分数显著增加。截顶影响着内源激素重新分配,(IAA+GA7+GA4+ZR)/ABA比值在花原基形成期显著升高。截顶与GA4/7诱导后主要激素质量分数的变化趋势不同,在S1至S3时期,赤霉素诱导后的IAA质量分数逐渐降低,GA7、GA4和ZR质量分数先增加后降低,ABA质量分数则先降低后增加。研究结果表明:生产上通过持续截顶,优化截干技术和控制树势,配合激素诱导,可促进结实母树更新和调控雌球花形成。

  • 图  1  黑翅土白蚁菌圃内真菌的分离

    Figure  1  Fungi separated from the fungus-combs of O. formosanu

    图  2  不同菌液处理下蚁巢伞形态变化

    Figure  2  Morphological changes of T. heimii under fungus-combs bacterial fermented broths treatment

    图  3  菌圃细菌菌液高效液相色谱分析图

    Figure  3  High performance liquid chromatography (HPLC) analysis of bacterial fermentation broths in the termite fungus-combs

    图  4  蚁巢伞与黑翅土白蚁菌圃内其他真菌对峙培养试验

    Figure  4  Antagonistic culture of T. heimii with other fungi separated from the fungus-combs

    图  5  菌圃消亡后5 d内菌圃中真菌类杂菌生长情况

    Figure  5  Fungi growth in 5 days after deaid termite fungus-combs

    表  1  不同菌圃细菌处理对蚁巢伞菌丝体生长的影响

    Table  1.   Effects of different bacterium treatments on the mycelium growth of T. heimii

    菌圃细菌处理组蚁巢伞菌落直径/cm菌丝生长速率/(cm·d−1)菌圃细菌处理组蚁巢伞菌落直径/cm菌丝生长速率/(cm·d−1)
    巨大芽孢杆菌 2.50±0.18 0.167±0.012Burkholderia sp. (待定) 2.13±0.02 0.142±0.002
    阿氏芽孢杆菌 2.57±0.02* 0.171±0.002*Burkholderia sp. 2.08±0.16 0.139±0.011
    蜡样芽孢杆菌 2.62±0.09** 0.174±0.006**Cupriavidus sp. 2.57±0.02** 0.171±0.002**
    蕈状芽孢杆菌 2.68±0.12** 0.179±0.008**对照组 2.18±0.09 0.146±0.006
    土杨芽孢杆菌 2.68±0.12** 0.179±0.008**
      说明:*表示与对照相比差异显著(P<0.05);**表示与对照相比差异极显著(P<0.01)
    下载: 导出CSV

    表  2  6种常见的简单糖类物质高效液相色谱出峰时间

    Table  2.   Retention time of six simple carbohydrates by high performance liquid chromatography (HPLC)

    糖种类出峰时间/min糖类别糖种类出峰时间/min糖类别
    甘露醇7.871单糖乳糖 7.585单糖
    果糖 7.958单糖蔗糖 6.818双糖
    葡萄糖7.593单糖麦芽糖6.864双糖
    下载: 导出CSV
  • [1] ROBERTS E M, TODD C N, AANEN D K, et al. Oligocene termite nests with in situ fungus gardens from the Rukwa rift basin, Tanzania, support a paleogene African origin for insect agriculture[J/OL]. PLoS One, 2016, 11(6): e0156847[2021-06-03]. doi: 10.1371/journal.pone.0156847.
    [2] LIANG Shiyou, WANG Chengpan, AHMAD F, et al. Exploring the effect of plant substrates on bacterial community structure in termite fungus-combs[J/OL]. PLoS One, 2020, 15(5): e0232329[2021-06-18]. doi: 10.1371/journal.pone.0232329.
    [3] LI Hongjie, YELLE D J, LI Chang, et al. Lignocellulose pretreatment in a fungus-cultivating termite [J]. Proc Nat Acad Sci, 2017, 114(18): 4709 − 4714.
    [4] da COSTA R R, HU Haofu, PILGAARD B, et al. Enzyme activities at different stages of plant biomass decomposition in three species of fungus-growing termites[J/OL]. Appl Environ Microbiol, 2018, 84(5): e01815-17[2021-06-04]. doi: 10.1128/AEM.01815-17.
    [5] PAULY M, KEEGASTRA K. Cell-wall carbohydrates and their modification as a resource for biofuels [J]. Plant J, 2014, 54: 559 − 568.
    [6] BRUNE A. Symbiotic digestion of lignocellulose in termite guts [J]. Nat Rev Microbiol, 2014, 12: 168 − 180.
    [7] OTANI S, CHALLINOR V L, KREUZENBECK N B, et al. Disease-free monoculture farming by fungus-growing termites[J/OL]. Sci Rep, 2019, 9: 8819[2021-06-18]. doi: 10.1038/s41598-019-45364-z.
    [8] VISSER A A, NOBRE T, CURRIE C R, et al. Exploring the potential for Actinobacteria as defensive symbionts in fungus-growing termites [J]. Microb Ecol, 2012, 63(4): 975 − 985.
    [9] SAWHASAN P, WORAPONG J, FLEGEL T W, et al. Fungal partnerships stimulate growth of Termitomyces clypeatus stalk mycelium in vitro [J]. World J Microbiol Biotechnol, 2012, 28(6): 2311 − 2318.
    [10] BAJYA D R, ARYA D, RANJITH M, et al. Isolation and identification of cellulose demoting symbionts from gut of subterranean termite, Odontotermes obesus [J]. Indian J Agric Sci, 2015, 85(7): 970 − 972.
    [11] YANG Guiying, AHMAD F, LIANG Shiyou, et al. Termitomyces heimii associated with fungus-growing termite produces volatile organic compounds (VOCs) and lignocellulose-degrading enzymes [J]. Appl Biochem Biotechnol, 2020, 192: 1270 − 1283.
    [12] OTANI S, HANSEN L H, SORENSEN S J, et al. Bacterial communities in termite fungus-combs are comprised of consistent gut deposits and contributions from the environment [J]. Microb Ecol, 2016, 71(1): 207 − 220.
    [13] YANG Guiying, AHMAD F, ZHOU Qihuan, et al. Investigation of physicochemical indices and microbial communities in termite fungus-combs[J/OL]. Front Microbiol, 2021, 11: 581219[2021-05-20]. doi: 10.3389/FMICB.2020.581219.
    [14] da COSTA R R, HU Haofu, LI Hongjie, et al. Symbiotic plant biomass decomposition in fungus-growing termites[J/OL]. Insects, 2019, 10(4): 87[2021-06-15]. doi: 10.3390/insects10040087.
    [15] KORB J, AANEN D K. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae) [J]. Behav Ecol Sociobiol, 2003, 53(2): 65 − 71.
    [16] ZHOU Yun, DENG Tianfu, PAN Chengyuan, et al. Purification of a laccase from fungus-combs in the nest of Odontotermes formosanus [J]. Process Biochem, 2010, 45: 1052 − 1056.
    [17] da COSTA R R, HU Haofu, LI Hongjie, et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite [J]. Proc Natl Acad Sci, 2014, 111: 14500 − 14505.
    [18] KATARIYA L, RAMESH P B, GOPALAPPA T, et al. Fungus-farming termites selectively bury weedy fungi that smell different from crop fungi [J]. J Chem Ecol, 2017, 43: 986 − 995.
  • [1] 张景朋, 蒋明亮, 张斌.  嘧菌酯高效液相色谱分析方法及防腐材抗流失性能研究 . 浙江农林大学学报, 2025, 42(1): 185-192. doi: 10.11833/j.issn.2095-0756.20240339
    [2] 郭畅健, 余克非, 郑展望.  源自蚯蚓堆肥的吲哚乙酸高产菌株筛选、代谢途径 解析及发酵条件优化 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240426
    [3] 胡晓飘, 韩佳琳, 夏宏蕾, 王蕾, 方朝储, 王敏艳, 张进, 单胜道.  不同生物质炭浸提液对萝卜种子萌发与幼苗生长的毒害效应 . 浙江农林大学学报, 2024, 41(1): 145-153. doi: 10.11833/j.issn.2095-0756.20230227
    [4] 高宁, 邢意警, 熊瑞, 史文辉.  丛枝菌根真菌和溶磷细菌协调植物获取磷素的机制 . 浙江农林大学学报, 2023, 40(6): 1167-1180. doi: 10.11833/j.issn.2095-0756.20220765
    [5] 李兴鹏, 张杨, 王瑞珍, 董雷鸣.  碳氮培养条件下伊氏杀线虫真菌的代谢组研究 . 浙江农林大学学报, 2022, 39(6): 1313-1320. doi: 10.11833/j.issn.2095-0756.20210828
    [6] 韦菊娴, 王聪, 何斌, 尤业明, 黄雪蔓.  世界桉树林土壤微生物研究综述 . 浙江农林大学学报, 2022, 39(5): 1144-1154. doi: 10.11833/j.issn.2095-0756.20210701
    [7] 李雅琳, 李素艳, 孙向阳, 郝丹, 蔡琳琳, 常晓彤.  1株木质素降解菌的筛选、鉴定及液态发酵条件优化 . 浙江农林大学学报, 2021, 38(6): 1297-1304. doi: 10.11833/j.issn.2095-0756.20200814
    [8] 林劲草, 肖莉, 吴酬飞, 张绍勇, 杨惠宁, 张立钦.  基于响应面法的马比木中喜树碱提取工艺的优化 . 浙江农林大学学报, 2020, 37(5): 1014-1019. doi: 10.11833/j.issn.2095-0756.20190533
    [9] 白嫆嫆, 高艳明, 李建设, 王兰, 张雪, 刘军丽.  不同营养液配比对营养液膜栽培番茄生长及品质的影响 . 浙江农林大学学报, 2019, 36(6): 1217-1224. doi: 10.11833/j.issn.2095-0756.2019.06.020
    [10] 彭鑫怡, 李永春, 王秀玲, 李永夫, 陈志豪, 徐秋芳.  植物入侵对土壤微生物的影响 . 浙江农林大学学报, 2019, 36(5): 1019-1027. doi: 10.11833/j.issn.2095-0756.2019.05.023
    [11] 李波成, 邬奇峰, 张金林, 钱马, 秦华, 徐秋芳.  真菌及细菌对毛竹及阔叶林土壤氧化亚氮排放的贡献 . 浙江农林大学学报, 2014, 31(6): 919-925. doi: 10.11833/j.issn.2095-0756.2014.06.014
    [12] 叶晶晶, 曹宁宁, 刘刚, 吴建梅, 殷浩, 胡祚忠, 张剑飞.  蛹虫草液体发酵培养基的优化 . 浙江农林大学学报, 2014, 31(3): 465-472. doi: 10.11833/j.issn.2095-0756.2014.03.021
    [13] 刘庆, 童森淼, 马建义.  顶空固相微萃取-气相色谱-质谱联用法分析竹醋液挥发性化合物 . 浙江农林大学学报, 2014, 31(2): 308-314. doi: 10.11833/j.issn.2095-0756.2014.02.022
    [14] 刘颖坤, 李国栋, 桂仁意, 张慧, 胡骁伟.  毛竹根系中5-脱氧独角金醇的超高效液相色谱分析 . 浙江农林大学学报, 2013, 30(4): 607-610. doi: 10.11833/j.issn.2095-0756.2013.04.021
    [15] 刘颖坤, 蔡莎艺, 喻卫武, 冷华南, 桂仁意.  超高效液相色谱测定铝胁迫下水培毛竹根系分泌物中有机酸 . 浙江农林大学学报, 2011, 28(4): 533-537. doi: 10.11833/j.issn.2095-0756.2011.04.002
    [16] 沈哲红, 方群, 鲍滨福, 张齐生, 叶良明, 张遐耘.  竹醋液及竹醋液复配制剂对木材霉菌的抑菌性 . 浙江农林大学学报, 2010, 27(1): 99-104. doi: 10.11833/j.issn.2095-0756.2010.01.016
    [17] 周建钟, 李兵.  气相色谱法测定4 种中成药中2-莰醇的质量分数 . 浙江农林大学学报, 2005, 22(3): 355-358.
    [18] 梁锦锋, 陈欣, 唐建军.  1 株磷细菌基本培养条件的研究 . 浙江农林大学学报, 2002, 19(4): 342-345.
    [19] 毛日耀, 吕文柳, 陆龙根.  毛竹液的采集及保鲜方法` . 浙江农林大学学报, 1996, 13(3): 367-369.
    [20] 杜国坚, 黄天平, 张庆荣, 张浦山, 程荣亮.  杉木混交林土壤微生物及生化特征和肥力* . 浙江农林大学学报, 1995, 12(4): 347-352.
  • 期刊类型引用(4)

    1. 孙丽娟. 针叶树种子园营建和管理技术研究进展. 辽宁林业科技. 2025(01): 78-81 . 百度学术
    2. 张永明,刘红位,李甜江,陈璐. 植物生长调节剂对‘小米’红花油茶苗木生长的影响. 西部林业科学. 2024(02): 72-80 . 百度学术
    3. 郭宇锋,程广有,侯杰,刘逸夫,谭灿灿,袁艳超,王军辉,贾子瑞. 松科植物截顶矮化与喷施激素促进开花结实研究进展. 林业科技通讯. 2024(11): 41-44 . 百度学术
    4. 李虹谕,杨会侠,刘晴,孙佳彤,任如月. 林木营养生长与生殖生长调控研究进展. 辽宁林业科技. 2024(05): 58-61 . 百度学术

    其他类型引用(1)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210478

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/3/598

图(5) / 表(2)
计量
  • 文章访问数:  1141
  • HTML全文浏览量:  214
  • PDF下载量:  39
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2022-03-12
  • 录用日期:  2022-03-27
  • 网络出版日期:  2022-05-23
  • 刊出日期:  2022-05-23

黑翅土白蚁菌圃微生物对蚁巢伞生长的影响

doi: 10.11833/j.issn.2095-0756.20210478
    基金项目:  国家自然科学基金资助项目(31770686)
    作者简介:

    朱娅宁(ORCID: 0000-0001-8853-8953),从事白蚁菌圃微生物应用研究。E-mail: 542770586@qq.com

    通信作者: 莫建初(ORCID: 0000-0001-5066-0734),教授,博士生导师,从事白蚁防治等研究。E-mail: mojianchu@zju.edu.cn
  • 中图分类号: S718.8

摘要:   目的  探明黑翅土白蚁Odontotermes formosanus菌圃微生物对优势真菌蚁巢伞Termitomyces heimii生长的影响,可为深入研究白蚁菌圃微生态提供实验参考,对人工栽培蚁巢伞也具有重要参考意义。  方法  使用寡营养培养基分离菌圃微生物。细菌方面,通过探究细菌发酵液对蚁巢伞生长的影响,采用高效液相色谱法测定发酵菌液中新生成的可溶性糖类物质,初步明确菌圃细菌对蚁巢伞生长的影响;真菌方面,采用对峙培养手段探明蚁巢伞与其他菌圃真菌的互作情况。  结果  从黑翅土白蚁菌圃中共分离8种细菌及12种真菌杂菌,发现菌圃内存在大量蚁巢伞孢子。菌圃厚壁菌门Firmicutes细菌促进蚁巢伞生长,在其影响下蚁巢伞菌丝呈现纽结凸起,菌丝生长速率相比对照组极显著提高,最高提升0.033 cm·d−1(P<0.01)。而菌圃变形菌门Proteobacteria细菌抑制蚁巢伞生长,Burkholderia sp. (待定)抑制效果最为显著,使得蚁巢伞几乎无法生长。通过高效液相色谱分析发现:菌圃细菌发酵液新生成大量可溶性糖类物质,表明菌圃细菌具备降解木质纤维素并将其转化为寡糖的能力。蚁巢伞与菌圃真菌杂菌的对峙培养表明:菌圃内真菌杂菌抑制蚁巢伞生长,一旦菌圃开始消亡,真菌杂菌(如多种霉菌)将快速占领菌圃。  结论  分离的78.9%菌圃细菌可促进蚁巢伞生长,而分离的所有真菌杂菌均抑制蚁巢伞生长,可见,菌圃微生物对蚁巢伞存在明显调控作用。图5表2参18

English Abstract

朱娅宁, 羊桂英, 周琪欢, 等. 黑翅土白蚁菌圃微生物对蚁巢伞生长的影响[J]. 浙江农林大学学报, 2022, 39(3): 598-606. DOI: 10.11833/j.issn.2095-0756.20210478
引用本文: 朱娅宁, 羊桂英, 周琪欢, 等. 黑翅土白蚁菌圃微生物对蚁巢伞生长的影响[J]. 浙江农林大学学报, 2022, 39(3): 598-606. DOI: 10.11833/j.issn.2095-0756.20210478
CHEN Wei, GU Lei, FENG Yiyong, et al. Impact of risk attitude and risk perception on farmers’ willingness to transfer carbon sequestration forests[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1270-1278. DOI: 10.11833/j.issn.2095-0756.20210216
Citation: ZHU Yaning, YANG Guiying, ZHOU Qihuan, et al. Impact of microorganisms of Odontotermes formosanus fungus-combs on the growth of Termitomyces heimii[J]. Journal of Zhejiang A&F University, 2022, 39(3): 598-606. DOI: 10.11833/j.issn.2095-0756.20210478
  • 蚁巢伞属Termitomyces是一类与白蚁共生的真菌,隶属担子菌门Basidiomycota伞菌亚纲Agaricomycetidae离褶伞科Lyophyllaceae[1],常于雨季自白蚁菌圃内破土而出,俗称鸡枞菌,其味道鲜美、经济价值高,但目前尚未开发出可行的人工栽培模式。白蚁菌圃内细菌种类相对丰富,主要有拟杆菌门Bacteroidetes、厚壁菌门Firmicute、放线菌门Actinobacteria、变形菌门Proteobacteria、螺旋体门Spirochaetes等,这些细菌在菌圃中超过85%[2]。白蚁菌圃由上层至中层,纤维素及半纤维素的相对含量保持稳定,自下层起,约69%不溶碳水化合物消失,并伴随可溶性单糖及寡糖增加[3-4]。PAULY等[5]研究表明:仅依靠白蚁自身难以完全降解木质纤维素,推测菌圃微生物也参与了木质纤维素的降解[6]

    蚁巢伞是白蚁菌圃内优势共生真菌,通过高通量测序手段证实菌圃内其他杂菌占比仅0.03%,杂菌中常见的有枝孢属Cladosporium、木霉属Trichoderma和伞状霉属Umbelopsis[7]。菌圃开始消亡后,炭角菌属Xylaria及其他真菌会快速取代蚁巢伞占领整个菌圃[8]。但也有研究证实:菌圃中存在助益蚁巢伞的真菌,如云南地白蚁Hypotermes makhamensis菌圃中的真菌Gigantropanus sp.[9]、胖身土白蚁Odontoterme obesus后肠中的构巢曲霉Aspergillus nidulans[10]两者均能与蚁巢伞协同降解木质纤维素。本研究参考SAWHASAN等[9]的对峙培养手段,探讨了菌圃细菌与蚁巢伞的互作关系,并使用高效液相色谱法分析了菌圃细菌降解木质纤维素能力与相应生成产物,旨在用“以菌促菌”的新思路探索蚁巢伞生长出菇的奥秘。

    • 供试黑翅土白蚁Odontotermes formosanus蚁巢采自福建省三明市大田县,室内26 ℃避光饲养。供试蚁巢伞分自黑翅土白蚁蚁巢,为实验室留存蚁巢伞菌株,经分子鉴定为Termitomyces heimii,GenBank登录号为KF302100[11]。菌圃外源细菌分离自铁皮石斛Dendrobium officinal,为贝莱斯芽孢杆菌Bacillus velezensis

    • 1/5 LB固体培养基:胰蛋白胨2.000 g、酵母提取物1.000 g、氯化钠2.000 g、琼脂粉14.000 g、蒸馏水1 L,pH 5;1/10 LB固体培养基:除琼脂粉外,其余依照1/5 LB培养基,配方减半,pH 5。

    • 1/5 马铃薯葡萄糖琼脂培养基(PDA):马铃薯40.000 g、葡萄糖4.000 g、琼脂粉14.000 g、蒸馏水1 L,pH 5;1/10 PDA:除琼脂粉外,其余物质依照1/5 PDA培养基,配方减半,pH 5;1/5 改良马丁固体培养基:蛋白胨1.000 g、酵母提取物0.400 g、葡萄糖4.000 g、磷酸氢二钾0.250 g、七水硫酸镁0.125 g、琼脂粉14.000 g、蒸馏水1 L,pH 5;1/10改良马丁固体培养基:除琼脂粉外,其余物质依照1/5 改良马丁固体培养基,配方减半,pH 5。倒平板时,向上述培养基中添加无菌水稀释后的氨苄青霉素和卡那霉素,至两者在培养基中终质量浓度分别为20.000和50.000 mg·L−1

    • 玉米麸皮纤维素液体培养基:玉米粉20.000 g、麸皮10.000 g (玉米粉及麸皮煮熟后过4层纱布过滤)、磷酸氢二钾1.000 g、七水硫酸镁0.500 g、纤维素粉末5.000 g、蒸馏水1 L,pH 5;玉米麸皮双倍琼脂固体培养基同上述配方配制,不加纤维素粉末、琼脂粉28.000 g,pH 5。

    • 取上、中、下层菌圃各0.050 g混合。制备菌圃悬液:取0.010 g混合菌圃于2 mL离心管,加入1 mL无菌水,涡旋3次,每次30 s,静置5 min,取上清液。同时,将菌圃悬液系列梯度稀释为100、10−1、10−2、10−3用于后续试验。

    • 取300 μL稀释梯度为10−1、10−2、10−3的菌圃悬液,加入1/5 LB固体培养基与1/10 LB固体培养基后涂布均匀,设3组重复,28 ℃避光普通环境下培养2~3 d,并统计该培养条件下菌圃细菌的数量,菌株纯化2次后4 ℃保存。

    • 取小块菌圃,于1/5 PDA培养基、1/10 PDA培养基、1/5 改良马丁培养基和1/10 改良马丁培养基上,菌圃块间距为2 cm,设3组重复。取300 μL稀释梯度为100、10−1、10−2的菌圃悬液,分别加入上述培养基后均匀涂布,设3组重复,培养条件同1.2.2的细菌,同时统计该培养条件下菌圃真菌的数量。

    • 提取菌株DNA,选取通用引物27F和1492R扩增细菌16S rRNA基因片段,扩增条件:94 ℃ 5 min;94 ℃ 30 s,55 ℃ 30 s,72 ℃ 1 min,30次循环;72 ℃ 5 min。聚合酶链式反应(PCR)产物送浙江尚亚生物技术有限公司测序,测序结果通过BLAST (http://www.ncbi.nlm.nih.gov)在线比对、鉴定菌株。

    • 纯化后真菌培养5 d后送浙江尚亚生物技术有限公司,提取真菌基因组DNA,以其为模版,选取通用引物ITS1与ITS4扩增真菌ITS序列,测序后通过BLAST (http://www.ncbi.nlm.nih.gov)在线比对、鉴定菌株。

    • 将分离菌圃细菌及贝莱斯芽孢杆菌分别接种至玉米麸皮纤维素液体培养基,于28 ℃、150 r·min−1普通环境下避光摇培24~28 h后,使用分光光度计调整细菌菌液浓度,选取吸光度D(600)为0.15时的细菌菌液作为种子液。取1 mL种子液分别加入100 mL培养基中,条件同上摇培5 d后,8 000 r·min−1离心10 min,取上清液备用。

    • 在直径60 mm培养皿中加入5 mL灭菌后菌液上清液,再加入5 mL玉米麸皮双倍琼脂固体培养基,摇晃至培养基均匀凝固。接种:灭菌打孔器取直径为5 mm的蚁巢伞菌饼接入玉米麸皮细菌菌液固体培养基中,于28 ℃普通环境下避光培养15 d,不同实验组设3组重复。阳性对照:将灭菌菌液替换为灭菌葡萄糖溶液(20 g·L−1);阴性对照:将灭菌菌液替换为无菌水;中性对照:将灭菌菌液替换为灭菌后、过滤后玉米麸皮纤维素液体培养基;杂菌对照:将灭菌菌液替换为过滤后贝莱斯芽孢杆菌灭菌菌液。

    • 蚁巢伞菌丝生长速率测定:蚁巢伞在不同玉米麸皮细菌菌液固体培养基中培养至15 d时,十字交叉法记录菌丝直径,并计算生长速率。蚁巢伞生长形态观察:蚁巢伞在玉米麸皮细菌菌液固体培养基中培养至20 d时,照相记录生长形态。

    • 可溶性糖类物质标准品溶液:6种可溶性糖标准品经过(45±1) ℃干燥恒量后,分别称取1.000 g (精度0.100 mg)至100 mL容量瓶中,完全溶解后用少量无菌水定容,过0.22 μm水系滤头过滤。待测样品:取灭菌后细菌上清液,过0.22 μm水系滤头过滤。中性对照:取灭菌后玉米麸皮液体培养基,过0.22 μm水系滤头过滤。

    • 将可溶性糖类物质标准品溶液、待测样品及中性对照送浙江大学化学分析测试平台,使用高效液相色谱-示差折光检测仪(HPLC-RID)检测糖类物质种类与含量。仪器及检测条件如下:色谱仪为Waters 1525型液相色谱仪;检测器为Waters 2414示差折光检测器(美国Waters公司);糖柱为BENSON 2000-0 BP-OA Organic Acid Column (7.8 mm×300.0 mm,日本);流动相为去离子水;进样量为50 μL;柱温为80 ℃;检测器温度为40 ℃;流速为0.8 mL·min−1

    • 将100 mm 1/5改良马丁培养基分为2个半圆区域,将直径为5 mm的蚁巢伞菌饼接种于一侧中心,28 ℃避光培养10 d后接种杂菌至另一侧,相同条件对峙培养20 d,设3组重复。

    • 移除菌圃内蚁王蚁后,在环境湿度为100%,温度为28 ℃避光放置,每隔24 h拍照记录。

    • 本研究从白蚁蚁巢菌圃中共分离19株细菌,分属厚壁菌门与变形菌门,在1/5 LB固体培养基中,菌圃中可培养细菌数为1.3×108 个·g−1。BLAST比对细菌16S rRNA基因序列,其中15株属于厚壁菌门,分别为巨大芽孢杆菌Bacillus megaterium (4株)、阿氏芽孢杆菌Bacillus aryabhattai (3株)、蜡样芽孢杆菌Bacillus cereus (3株)、蕈状芽孢杆菌Bacillus mycoides (1株)、土杨芽孢杆菌Bacillus toyonensis (4株);另外4株属于变形菌门,分别为Burkholderia sp. (待定) (2株)、Burkholderia sp. (1株)和Cupriavidus sp. (1株)。

      本研究从蚁巢中分离出7个属,共12种真菌杂菌,在1/5 改良马丁培养基中,菌圃中可培养真菌数为2.8×104 个·g−1。通过BLAST比对真菌ITS序列,并结合形态学特征,分离的真菌分别为短密木霉菌Trichoderma brevicompactum、暗孢节菱孢菌Arthrinium phaeospermum、绿木霉菌Trichoderma virensPenicillium pimiteouiense、小孢产丝齿菌Hyphodontia microsporaConiochaeta fasciculata、歧皱青霉菌Penicillium steckii、枝状枝孢菌Cladosporium cladosporioidesCladosporium veloxPaecilomyces sp. 和Ophiostomatales sp.、短密青霉菌Penicillium brevicompactum。

      本研究发现:使用菌圃碎片进行真菌分离时,木霉属菌丝快速铺满培养基(图1A)。当菌圃悬液稀释至100再涂布后,培养基中分离得到的杂菌占比较大(图1B),稀释至10−1时,培养基中分离到的蚁巢伞占比提高(图1C),而稀释至10−2时,培养基中仅存在蚁巢伞分离株(图1D),且对照组中未分离到杂菌(图1E)。菌圃杂菌仅在菌圃碎片及100菌圃悬液分离培养基中出现,推测菌圃内杂菌孢子占比较小;菌圃悬液大量稀释再涂布仍能分离到蚁巢伞,推测菌圃内蚁巢伞孢子占比较大。

      图  1  黑翅土白蚁菌圃内真菌的分离

      Figure 1.  Fungi separated from the fungus-combs of O. formosanu

    • 表1可知:除巨大芽孢杆菌和阿氏芽孢杆菌外,所有的厚壁菌门细菌发酵液均可极显著提升蚁巢伞菌丝生长速率,最高可使生长速率提升0.033 cm·d−1 (P<0.01)。变形菌门细菌Burkholderia sp. (待定)、Burkholderia sp. 对蚁巢伞存在轻微抑制作用,但差异不显著。

      表 1  不同菌圃细菌处理对蚁巢伞菌丝体生长的影响

      Table 1.  Effects of different bacterium treatments on the mycelium growth of T. heimii

      菌圃细菌处理组蚁巢伞菌落直径/cm菌丝生长速率/(cm·d−1)菌圃细菌处理组蚁巢伞菌落直径/cm菌丝生长速率/(cm·d−1)
      巨大芽孢杆菌 2.50±0.18 0.167±0.012Burkholderia sp. (待定) 2.13±0.02 0.142±0.002
      阿氏芽孢杆菌 2.57±0.02* 0.171±0.002*Burkholderia sp. 2.08±0.16 0.139±0.011
      蜡样芽孢杆菌 2.62±0.09** 0.174±0.006**Cupriavidus sp. 2.57±0.02** 0.171±0.002**
      蕈状芽孢杆菌 2.68±0.12** 0.179±0.008**对照组 2.18±0.09 0.146±0.006
      土杨芽孢杆菌 2.68±0.12** 0.179±0.008**
        说明:*表示与对照相比差异显著(P<0.05);**表示与对照相比差异极显著(P<0.01)
    • 菌圃厚壁菌门细菌菌液均能在一定程度上促进蚁巢伞生长。其中巨大芽孢杆菌、阿氏芽孢杆菌和蜡样芽孢杆菌发酵菌液加入培养基后可促使蚁巢伞菌丝纠结凸起,呈现圆弧状纽结(图2A图2B图2C)。而其余厚壁菌门细菌蕈状芽孢杆菌和土杨芽孢杆菌发酵菌液加入后,菌丝虽无凸起(图2D图2E),但菌丝生长面积扩大。

      图  2  不同菌液处理下蚁巢伞形态变化

      Figure 2.  Morphological changes of T. heimii under fungus-combs bacterial fermented broths treatment

      菌圃变形菌门细菌菌液可在一定程度上抑制蚁巢伞生长。Burkholderia sp. (待定)细菌菌液对蚁巢伞生长有明显抑制作用,表现为培养基中蚁巢伞菌丝层几乎消失(图2F)。而Burkholderia sp. 和Cupriavidus sp. 细菌菌液加入后,蚁巢伞菌丝层仅仅轻微变薄(图2G图2H)。

      厚壁菌门细菌对蚁巢伞生长有促进作用,这与加入葡萄糖溶液的阳性对照组相似(图2I),较中性对照(图2J)和蒸馏水的阴性对照(图2K)生长更旺盛。与菌圃内源性细菌菌液表现有所不同,外源厚壁菌门细菌贝莱斯芽孢杆菌菌液既不抑制也不促进蚁巢伞的生长,但对其有强致畸作用,表现为蚁巢伞菌丝畸变,完全无法生长(图2L),推测菌圃外源细菌对蚁巢伞生长产生不利影响,白蚁对其有一定选择作用。

    • 由于蚁巢伞利用木质纤维素能力较低,偏好利用简单糖类物质[8],故本研究选取了6种组成相对简单的可溶性糖类物质,测定高效液相色谱出峰时间。表2表明:单糖及双糖出峰时间集中在6~8 min。

      表 2  6种常见的简单糖类物质高效液相色谱出峰时间

      Table 2.  Retention time of six simple carbohydrates by high performance liquid chromatography (HPLC)

      糖种类出峰时间/min糖类别糖种类出峰时间/min糖类别
      甘露醇7.871单糖乳糖 7.585单糖
      果糖 7.958单糖蔗糖 6.818双糖
      葡萄糖7.593单糖麦芽糖6.864双糖

      使菌丝纽结凸起的巨大芽孢杆菌、阿氏芽孢杆菌和蜡样芽孢杆菌菌液在6~8 min有明显出峰(图3A图3B图3C),对照表2各糖类物质的出峰时间可判断菌圃细菌菌液中生成了大量可溶性简单糖类物质,如单糖和双糖,推测这些简单糖类物质对促进蚁巢伞菌丝纽结凸起有一定作用。而能促进蚁巢伞生长、却无法促其菌丝纽结的蕈状芽孢杆菌和土杨芽孢杆菌菌液在6~8 min有轻微出峰,同时在4~5 min有显著出峰(图3D图3E),推测出峰时间为4~5 min的新生成可溶性糖类物质仅能促进蚁巢伞菌丝生长而无法促进菌丝纽结。综上,出峰时间为6~8 min的糖类物质更易被蚁巢伞利用,出峰时间为4~5 min的糖类物质次之。前者能助益蚁巢伞菌丝纽结凸起,在蚁巢伞出菇方面有一定的促进作用。

      变形菌门细菌Burkholderia sp. (待定)、Burkholderia sp. 和Cupriavidus sp. 发酵菌液在4~5 min和6~8 min均有出峰(图3F图3G图3H),本应促进蚁巢伞生长,但却在一定程度上抑制了菌丝生长,具体表现为菌丝层变薄,甚至几乎不生长。可推测这3种细菌菌液中均生成了一定的抑制物质,其中Burkholderia sp. (待定)发酵菌液中生成的强抑制物质在灭菌后仍有抑制活性,较为稳定。

      总体而言,菌圃细菌发酵菌液的色谱峰总面积均显著高于中性对照(图3I),说明菌液中可溶性糖含量增加,证实菌圃细菌可降解培养基中的木质纤维素,并转化生成可溶性糖类物质。

      图  3  菌圃细菌菌液高效液相色谱分析图

      Figure 3.  High performance liquid chromatography (HPLC) analysis of bacterial fermentation broths in the termite fungus-combs

    • 蚁巢伞自身抗杂菌能力较弱,无法抑制其他菌圃杂菌的生长(图4)。此外,菌圃杂菌也无法促进蚁巢伞的生长,这与SAWHASAN等[9]的结果相悖,可能是采用不同培养基所导致的。生长速度越快的杂菌对蚁巢伞影响越大,表现为蚁巢伞快速被杂菌侵染,无法正常生长;生长速度较慢的杂菌对蚁巢伞生长影响较小,但与对照相比杂菌仍产生了一定的抑制作用。

      图  4  蚁巢伞与黑翅土白蚁菌圃内其他真菌对峙培养试验

      Figure 4.  Antagonistic culture of T. heimii with other fungi separated from the fungus-combs

    • 菌圃消亡后杂菌将快速侵占菌圃(图5)。自菌圃消亡后,菌圃内幼蚁的活动能力降低,在蚁巢消亡后生长速度较快的真菌如青霉属Penicillium和木霉属Trichoderma对蚁巢的威胁和影响最大,它们将快速生长、入侵直至菌圃完全被包裹。这些杂菌在自然界中普遍存在,但在有白蚁活动的菌圃内却受到抑制、无法生长,而自巢群消亡开始,杂菌迅速占领菌圃,推测菌圃的低含水量以及白蚁分泌的部分抑菌物质是抑制杂菌生长的两大主要原因。

      图  5  菌圃消亡后5 d内菌圃中真菌类杂菌生长情况

      Figure 5.  Fungi growth in 5 days after deaid termite fungus-combs

    • 厚壁菌门为菌圃中的五大主要细菌类群之一,在不同时期菌圃内该门类细菌占比会发生一定变化[12]。在无蚁巢伞子实体生长的黑翅土白蚁蚁巢中,厚壁菌门细菌占比较有蚁巢伞子实体生长的蚁巢更大[13],推测厚壁菌门细菌对蚁巢伞出菇有促进作用。本研究也证实:菌圃厚壁菌门细菌菌液确对蚁巢伞菌丝生长及纽结有利,而同属厚壁菌门的外源细菌贝莱斯芽孢杆菌对蚁巢伞有强致畸作用,推测为了保证蚁巢伞正常生长,白蚁对菌圃内微生物有一定选择性。目前共发现330种大白蚁亚科Macrotermitinae菌培白蚁[14],其低龄工蚁以菌圃内植物材料以及菌丝瘤(蚁巢伞菌丝及分生孢子纠集而成)为食[8],菌丝瘤的存在能调节白蚁食物组成的碳氮比[15]。作为食物的菌丝瘤若不加以调控,可能会无休止地生长,影响白蚁自身生存,因此推测白蚁可能通过调控菌圃内细菌种群来控制菌丝瘤大小,使其不过度生长,易于白蚁食用。

      白蚁对菌圃微生物有一定的选择性[6, 12],而Burkholderia sp. (待定)虽能强烈抑制蚁巢伞生长,但由于存在于菌圃内,并不会被“排外”,加之其抑制蚁巢伞生长的代谢产物非常稳定,故Burkholderia sp. (待定)或其代谢产物可考虑为一种生物防治手段,通过抑制蚁巢伞的生长,阻碍蚁巢存续。

      木质纤维素在历经白蚁肠道微生物作用之后,由菌圃内微生物继续降解,并最终生成可溶性多糖,供蚁巢伞和白蚁利用[8]。本研究采用pH 5的玉米麸皮纤维素培养基在模拟菌圃环境的同时还为菌圃细菌提供了一定养分,木质纤维素的加入则更有利于探索菌圃细菌降解木质纤维素的能力以及相关代谢产物对蚁巢伞生长的影响。蚁巢伞自身缺少独立降解木质纤维素的能力,且其分泌的木质纤维素降解酶种类也较为有限[16],反观菌圃内细菌却能通过产生大量木质纤维素降解酶的方式参与协同高效降解木质纤维素[17]。LI等[3]研究发现:上、中、下层菌圃分别失去了13%、45%、60%的木质素,而葡糖糖却相应地增加了14%、28%、42%。以上研究均与本研究结果相吻合:菌圃细菌具有降解木质纤维素、生成可溶性单糖和寡糖的能力,菌圃细菌和蚁巢伞在降解木质纤维素方面有上下游协同作用,且生成的简单可溶性糖类物质如葡萄糖等对蚁巢伞生长有促进作用。

      OTANI等[7]通过高通量测序证实:菌圃内蚁巢伞占菌圃真菌的99.90%,而其余20个属真菌仅占0.07%。本研究也表明:菌圃中蚁巢伞孢子数量确实远大于其他真菌,菌圃中存在部分常见的霉菌,在菌圃消亡后将对菌圃造成一定威胁。同时OTANI等[7]发现:大部分杂菌与鸡纵菌共培养后生长受到抑制,但本研究结果却与之相悖,蚁巢伞几乎无法抑制杂菌生长。KATARIYA等[18]研究表明:白蚁能够分泌抗菌肽抑制菌圃杂菌,这与本研究推测结果相吻合,即相比蚁巢伞,白蚁才是外来杂菌的主要防御者。

      本研究初步分析了菌圃中单个微生物对蚁巢伞生长的影响。今后需要从多个菌圃微生物对蚁巢伞生长的影响为切入点,深入研究“以菌促菌”的思路,以促进人工条件下大量培育蚁巢伞。

参考文献 (18)

目录

/

返回文章
返回