留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析

周俊杰 王艺光 董彬 赵宏波

周俊杰, 王艺光, 董彬, 等. 桂花OfPSY、OfPDS和OfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
引用本文: 周俊杰, 王艺光, 董彬, 等. 桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
JIN Jing, XIE Rong, DU Yongbin, et al. Indoor prevention and toxicity test of three chemical insecticides against Melanotus ribricollis[J]. Journal of Zhejiang A&F University, 2021, 38(1): 214-218. DOI: 10.11833/j.issn.2095-0756.20190731
Citation: ZHOU Junjie, WANG Yiguang, DONG Bin, et al. Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans[J]. Journal of Zhejiang A&F University, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110

桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析

DOI: 10.11833/j.issn.2095-0756.20220110
基金项目: 国家自然科学基金面上资助项目(32072615);中国博士后科学基金第71批面上资助项目(2022M712828)
详细信息
    作者简介: 周俊杰(ORCID: 0000-0003-3459-6220 ),从事观赏植物遗传育种研究。E-mail: 747782261@qq.com
    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,从事观赏植物遗传育种研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S722.3

Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans

  • 摘要:   目的  探究高温和外源脱落酸对桂花Osmanthus fragrans类胡萝卜素生物合成的3个相关基因,包括八氢番茄红素合成酶基因(PSY)、八氢番茄红素脱氢酶基因(PDS)、β-胡萝卜素羟化酶基因(HYB)的调控作用,为阐释桂花类胡萝卜素代谢调控的机制提供研究基础。  方法  根据桂花基因组数据库的序列,从桂花品种‘堰虹桂’‘Yanhong Gui’中克隆OfPSYOfPDSOfHYB基因的启动子序列,并进行生物信息学分析,再构建PCAMBIA3301-LUC载体在烟草Nicotiana benthamiana中瞬时表达,结合高温(37 ℃)和200 mg·L−1脱落酸处理,分析启动子活性。  结果  获得OfPSYOfPDSOfHYB基因的部分启动子,其长度分别为1 908、1 521及1 830 bp。作用元件分析表明:3个启动子中均存在TATA-box和CAAT-box等启动子基本元件、光响应元件、脱落酸响应元件以及MYB和MYC结合位点。此外,在OfPSY启动子中,存在赤霉素响应元件;在OfPDS启动子中,存在茉莉酸甲酯响应元件、赤霉素响应元件、厌氧诱导型元件参与防御和胁迫的元件;在OfHYB启动子中,存在生长素、乙烯、茉莉酸甲酯等激素响应元件、低温响应元件和厌氧诱导型元件。烟草瞬时转化试验表明:相对高温能激活OfPSYOfPDSOfHYB的启动子活性,脱落酸能激活OfPDSOfHYB的启动子活性。  结论  高温和脱落酸可能通过调控桂花类胡萝卜素合成基因启动子活性,影响桂花类胡萝卜素的积累。图4表5参28
  • 土壤与植被是紧密相连的整体,土壤养分直接影响着植物的生长状况[1]。相关研究表明:土壤养分质量分数的分布存在空间异质性[24]。目前,已有众多学者对国内不同气候带、不同地形区的土壤养分空间异质性进行了研究。例如,广西热带地区北部森林土壤养分质量分数高于南部[5],浙江中亚热带安吉县毛竹Phyllostachys edulis林土壤有机质和全氮质量分数呈现中等程度的空间变异(变异系数为10%~90%)[6],温带针阔混交林的土壤有机质、全磷等养分空间特征表现出由植被类型引起的条带状和斑块状分布[7]。也有学者研究了亚热带土壤养分空间异质性,如FU等[8]和董佳琦等[9]探讨了浙江亚热带的山核桃Carya cathayensis林和香榧Torreya grandis‘Merrillii’ 林地土壤养分空间分布规律,发现果实养分和土壤养分的空间分布格局具有相似性,大面积山核桃林具有较低的土壤pH和土壤磷质量分数,香榧主产区土壤养分失衡现象较为严重,应调整并改善区域施肥及管理模式;牛文鹏等[10]对珠江三角洲耕地、园地土壤养分空间变异特征的研究发现:土壤全氮、全钾空间异质性较高,土壤养分分布受控于气候、地形等自然因素,这对因地制宜选择作物种类具有指导意义;李超等[11]对亚热带高原耕地土壤主要养分空间变异规律的研究阐明了有机质与海拔的相关关系,为合理改良和利用耕地资源提供了依据。研究土壤养分空间分布的变异及其影响因素,可为探明区域土壤生产力,管理植被资源提供基础数据和科学理论。目前,关于亚热带土壤养分空间异质性的研究多集中于经济林和耕地等,缺乏亚热带天然生态系统的土壤养分空间异质性研究。

    清凉峰是中国的典型亚热带国家级自然保护区,地处浙江省杭州市临安区境内。区内植被资源丰富,育有多种国家重点保护的珍稀特色植物种群。当前,对清凉峰的研究集中在探究保护区内植物多样性及地理分布等方面。此外,已有学者分析了该区内华南梅花鹿Cervus pseudaxis主要栖息地千顷塘的土壤肥力指标的空间变异规律[12],但对于土壤养分特征缺乏更全面、系统的调查研究。本研究的目的是:揭示亚热带地区天然生态系统土壤养分的质量分数特征;探明亚热带地区天然生态系统土壤养分的空间变异规律;解译亚热带地区天然生态系统土壤养分空间变异的影响因素,以期为保护中国亚热带丘陵地区的珍稀植被和天然生态系统提供科学依据。

    清凉峰国家级自然保护区地处浙江省杭州市临安区西北部(30°00′42″~30°19′33″N,118°50′57″~119°13′23″E),属于亚热带季风气候区,总面积为11252 hm2,最高海拔为1787.4 m,年平均气温为12.5 ℃,年降水量为1862.2~2331.9 mm。该区地层以侏罗系分布最广,主要包括中酸性火山岩、紫红色层状粉砂岩、粉晶灰岩、硅质页岩以及岩浆岩等,土壤结构由低海拔到高海拔呈现红壤带、山地黄壤带、山地棕黄壤带及草甸土带的垂直带谱。清凉峰由龙塘山、顺溪坞、千顷塘3块区域组成。本研究区域为龙塘山和顺溪坞(图1),境内海拔高差悬殊,由西北向东南方向倾斜,地势呈现“高—低—高”特征。植被垂直分布明显,蕴藏着丰富的植物资源,包括华榛Corylus chinensis、银缕梅Parrotia subaequalis、鹅掌楸Liriodendron chinense等。因保护区内存在轻微的人为土地开垦活动,本研究将该部分区域(农用地)纳入研究,与其他自然区域进行对比分析。

    图 1  研究区样点分布及海拔信息示意图
    Figure 1  Spatial distribution and elevation information of soil sampling sites

    基于样点分布的均质性和科学性原则,结合地形图和植被类型分布特征,在研究区内按等距离网格法布设1.0 km×1.0 km的样方。于2019年11月至2020年4月,在研究区每个样方中采集0~20 cm表层土壤样品3个,并均匀混合后得到1个土壤样品,共采集土壤样品56个。由于网格样方较大,为增加研究的精确性,采样过程中结合实际地形地势,在6个海拔范围(200~500、500~800、800~1 000、1 000~1 200、1 200~1 400、1 400~1 600 m)补充采集24个土壤样品,最终得到80个样品。采样时使用全球定位系统(GPS)记录样点地理信息和植被类型。土壤样品经风干,去除植物残体及石块等杂物,研磨过筛备用。

    土壤样品养分测定[13]:pH用pH酸度计测定;土壤有机质采用重铬酸钾氧化还原滴定法测定;全氮采用半微量凯氏法测定;全磷采用氢氧化钠碱熔-钼锑抗比色法测定;全钾采用氢氧化钠熔融-火焰分光光度法测定;容重采用环刀法测定。

    研究区采用美国国家航空航天局(NASA)官方网站(https://search.asf.alaska.edu/#/)的12.5 m×12.5 m数字高程模型(DEM)。在采样时用GPS测定野外采样点实地坐标、高程数据。利用ArcGIS 10.2空间分析工具直接提取基本地形数据,结合空间分析工具、水文分析模块以及栅格计算器经复合计算获取坡度数值。

    半方差函数是地统计学中描述变量的定量参数,在土壤元素空间变异性研究中应用广泛,用于揭示区域化变量的随机性和结构性特征,具体计算公式及参数见文献[14]。

    半方差分析的参数中,块金值(C0)表示由采样和检测分析误差引起的随机变异,基台值(C0+C)代表总空间变异程度,块基比[C0/(C0+C)]表示随机变异的占比情况,用于衡量空间相关程度[15],变程(a)表示空间自相关的作用范围。

    土壤属性在地理空间上与相邻区域的观测值存在的相互依赖性,即空间自相关,可用全局Moran’s I指数(IN)反映指标的空间自相关性大小,具体计算公式及参数见文献[16]。IN指数取值范围是−1~1,小于0表示负相关,等于0表示不相关,大于0表示正相关。IN的显著性水平采用下式检验:

    $$Z=\left[I_{{\rm{N}}}-{E}\left(I_{{\rm{N}}}\right)\right] / \sqrt{\operatorname{var}\left(I_{{\rm{N}}}\right)} 。 $$

    其中:Z为检验IN指数的显著性统计量;E(IN)为期望值;var(IN)为方差。$ \left| Z \right| $≥1.96和$ \left| Z \right| $≥2.58分别是空间自相关显著和极显著的分界值。

    本研究利用3倍标准差法(阈值法)剔除统计数据的异常值[17]。采用SPSS 20.0软件进行土壤养分数据的描述性统计分析、数据正态性检验[Kolmogorov-Smirnov (K-S)法]、不同植被下土壤养分的显著性检验、地形因子和土壤养分之间的相关性分析;采用GS+7.0软件进行半变异函数分析和相关模型参数优化;利用Geoda进行空间自相关计算;基于ArcGIS 10.7软件进行地形因子的计算和插值图的绘制。

    龙塘山-顺溪坞土壤养分元素质量分数描述性统计结果如表1所示。土壤pH为3.82~6.70,均值为5.10,属于酸性土壤;研究区土壤有机质、全磷、全氮、全钾平均质量分数分别为65.04、0.67、1.63、18.45 g·kg−1。根据全国第2次土壤普查属性分级标准[18],有机质质量分数处于极丰富水平(一级),全氮处于丰富水平(二级),全钾、全磷质量分数处于较丰富水平(三级)。土壤各养分的变异系数为12%~50%,根据王政权等[19]划分标准,所有养分均属于中等程度变异。K-S法正态性检验结果显示:pH、全氮符合正态分布,有机质、全磷、全钾经对数转换后符合正态分布。

    表 1  龙塘山-顺溪坞土壤养分描述性统计特征
    Table 1  Descriptive statistical characteristics of soil fertility properties in Longtangshan-Shunxiwu
    指标pH有机质/(g·kg−1)全磷/(g·kg−1)全氮/(g·kg−1)全钾/(g·kg−1)
    最小值 3.82 10.24 0.24 0.35 5.96
    最大值 6.70 143.43 1.53 3.06 41.54
    均值 5.10 65.04 0.67 1.63 18.45
    标准差 0.59 32.61 0.27 0.60 8.73
    变异系数/% 12 50 40 37 47
    偏度 0.56 −0.27 0.14 0.37 −0.09
    峰度 0.07 0.62 −0.30 −0.31 −0.66
    K-S 0.20 0.20 0.20 0.20 0.20
    分布类型 正态分布 对数正态分布 对数正态分布 正态分布 对数正态分布
    下载: 导出CSV 
    | 显示表格

    在一定的分离距离内,土壤pH和各养分的半方差均随分离距离的增加而增大(图2),最终近似趋于基台值或是围绕基台值上下波动,说明各养分在采样尺度上有一定的空间依赖性[20]

    图 2  龙塘山-顺溪坞土壤养分半变异函数分析
    Figure 2  Semivariograms of soil fertility properties in Longtangshan-Shunxiwu

    利用地统计学半方差特征参数函数分析各养分的理论拟合模型(表2)。土壤pH、有机质、全磷质量分数分布符合指数模型,土壤全氮、全钾质量分数分布符合高斯模型。拟合模型能较准确反映龙塘山-顺溪坞土壤养分的空间变异结构特征(决定系数R2>0.5)。土壤有机质、全氮、全钾的块基比分别为0.23、0.11、0.18,表现为强烈空间自相关,说明其变异主要受结构性因素影响。土壤pH、全磷的块基比分别为0.26、0.50,处于中等强度的空间相关性,表明随机因素可能存在一定的影响。IN指数分析结果显示:土壤有机质具有极显著的空间自相关性(P<0.01,Z>2.56),表明有机质分布较聚集;而土壤全氮、全钾的空间自相关性不显著,在空间上呈离散分布。土壤pH的变程很小,说明土壤pH的主控因素的空间连续性尺度较小,分布趋向于随机化,这与IN显著性检验结果较为一致。

    表 2  土壤养分半变异模型参数及IN指数
    Table 2  Semivariogram model parameters of soil fertility properties and global IN index
    指标模型块金值C0基台值(C0+C)块基比[C0/(C0+C)]INZ变程/km决定系数(R2)
    pH 指数模型 0.10 0.38 0.26 0.08 1.35 2.00 0.76
    有机质 指数模型 250.00 1084.00 0.23 0.24** 3.29 5.00 0.72
    全磷 指数模型 0.04 0.08 0.50 0.16* 2.31 26.00 0.90
    全氮 高斯模型 0.04 0.36 0.11 0.04 0.66 796.74 0.82
    全钾 高斯模型 57.90 326.70 0.18 <0.05 −0.52 354.20 0.93
      说明:*表示在0.05水平上显著相关(|Z|>1.96);**表示在0.01水平上显著相关(|Z|>2.58)
    下载: 导出CSV 
    | 显示表格

    龙塘山-顺溪坞土壤养分质量分数的空间分布如图3所示。整体上,各土壤养分的空间分布不均,斑块特征显著,表现较为明显的空间异质性。土壤pH处于5.0~5.5的范围最大,整体呈酸性;有机质质量分数大于40 g·kg−1的点位分布广泛,高值区集中分布在中偏西北部,少量分布在东南部,低值区以斑状散布在整个研究区;全氮的高值区以斑状散布在研究区边缘且主要分布于西北、东南两端,低值区则以斑块状散布于研究区内部;全磷、全钾高低值区分布较为分散,在海拔较高处分布着明显的低值区。在南部(海拔为340~816 m)出现土壤pH、全磷、全钾质量分数较高而土壤有机质和土壤全氮质量分数较低的情况。

    图 3  龙塘山-顺溪坞土壤养分空间分布示意图
    Figure 3  Spatial distribution map of soil fertility properties in Longtangshan-Shunxiwu

    龙塘山-顺溪坞土壤养分与环境因子的相关分析结果显示(图4):有机质和全氮与地形因子具有较为一致的相关性。线性拟合结果表明:土壤有机质和全氮之间呈极显著的正相关性(P<0.01)(图5)。有机质和全氮均与海拔呈极显著正相关(P<0.01);全磷、全钾质量分数呈现出随海拔升高而下降的趋势;有机质和全氮与坡度、土壤容重均呈极显著负相关(P<0.01);土壤pH与土壤容重呈正相关性(P<0.05),土壤全磷与土壤容重呈极显著正相关(P<0.01)。

    图 4  龙塘山-顺溪坞土壤养分与环境因子的相关分析
    Figure 4  Correlation analysis between soil nutrients and environmental factors in Longtangshan-Shunxiwu
    图 5  土壤有机质与土壤全氮的关系
    Figure 5  Relationship between soil organic matter and total nitrogen
    3.4.1   海拔对土壤养分空间异质性的影响

    为了进一步研究龙塘山-顺溪坞土壤有机质和全氮随海拔变化的规律,将海拔划分为200~500、500~800、800~1 000、1 000~1 200、1 200~1 400、1 400~1 600 m等6个等级(下文分别以1、2、3、4、5、6级海拔代替) (图6)。由图6可知:土壤有机质和土壤全氮随海拔升高而增加,变化规律一致。在1、2级海拔,土壤有机质和土壤全氮与3、4、5、6级海拔间均存在显著差异(P<0.05)。

    图 6  龙塘山-顺溪坞不同海拔土壤养分特征
    Figure 6  Characteristics of soil fertility properties under different elevations in Longtangshan-Shunxiwu
    3.4.2   土壤容重对土壤养分空间异质性的影响

    有机质和全氮质量分数随着容重增加而减少(表3),有机质质量分数下降较快,全氮质量分数下降较慢。土壤pH和全磷随着容重增加而增加,表明pH和全磷与土壤容重呈正向相关性,且两者上升趋势较小,总体变化平缓。

    表 3  龙塘山-顺溪坞土壤化学性质随土壤容重的变化
    Table 3  Changes of soil chemical properties with soil bulk density in Longtangshan-Shunxiwu
    容重/(g·cm−3)pH有机质/(g·kg−1)全磷/(g·kg−1)全氮/(g·kg−1)容重/(g·cm−3)pH有机质/(g·kg−1)全磷/(g·kg−1)全氮/(g·kg−1)
    0.8~0.94.61±0.6879.41±20.730.11±0.042.29±0.901.4~1.55.37±0.5859.48±19.480.12±0.041.26±0.59
    0.9~1.05.29±1.1380.81±5.400.07±0.031.81±0.111.5~1.65.13±0.7552.82±14.420.17±0.101.04±0.32
    1.0~1.14.87±0.3974.86±18.270.11±0.061.89±0.471.6~1.75.17±0.6841.08±10.310.14±0.080.91±0.13
    1.1~1.25.03±0.7671.68±18.620.10±0.031.72±0.671.7~1.85.80±0.4542.50±13.670.39±0.430.80±0.29
    1.2~1.34.96±0.3165.44±20.670.10±0.051.42±0.55F5.1336.6911.0141.04
    1.3~1.45.17±0.5746.44±11.630.15±0.091.08±0.33P0.03<0.0010.001<0.001
      说明:数值为平均值±标准差
    下载: 导出CSV 
    | 显示表格
    3.4.3   植被类型对土壤养分空间异质性的影响

    对龙塘山-顺溪坞不同植被类型下土壤养分质量分数进行统计(表4)可知:不同植被类型对土壤养分均有影响,且对土壤有机质和全氮的影响达显著水平(P<0.05)。与其他植被类型土壤相比,农田土壤有机质和全氮质量分数偏低,而土壤pH、全磷较高;草甸中土壤有机质质量分数最高;针叶林土壤全钾质量分数最高。

    表 4  龙塘山-顺溪坞不同植被类型下土壤养分特征
    Table 4  Characteristics of soil fertility properties under different vegetation types in Longtangshan-Shunxiwu
    植被类型pH养分/(g·kg−1)
    有机质全磷全氮全钾
    落叶阔叶林 5.30±0.13 a62.06±6.19 ab0.20±0.05 a1.51±0.18 ab17.25±2.44 a
    针阔叶混交林4.93±0.19 a67.48±8.71 ab0.08±0.01 a1.70±0.31 ab14.86±2.11 a
    针叶林   4.98±0.46 a71.54±6.35 ab0.07±0.02 a1.72±0.06 ab26.74±6.35 a
    竹林    5.05±0.21 a65.13±10.47 ab0.11±0.04 a1.20±0.25 b17.61±5.32 a
    草甸    4.57±0.11 a82.89±7.54 a0.07±0.01 a2.08±0.28 a20.41±4.97 a
    农作物   5.23±0.35 a46.63±7.78 b0.18±0.03 a1.09±0.19 b18.11±2.31 a
      说明:同养分不同字母表示不同植被类型之间差异显著(P<0.05);数值为平均值±标准差
    下载: 导出CSV 
    | 显示表格

    本研究结果显示:龙塘山-顺溪坞区土壤中所有养分均属于中等程度变异,并且有机质变异系数最高,表明其易受结构因素和随机因素影响。空间变异主要分为结构因素变异和随机因素变异[7]。本研究中,土壤pH、土壤全磷的块基比分别为0.26、0.50,呈中等强度的空间自相关性,说明自然和人为因素共同对目标变量存在影响。土壤有机质、全氮、全钾的块基比分别为0.23、0.11、0.18,表现为强烈空间自相关,说明其变异主要受土壤母质、植被、地形等非人为因素影响。成土母质及其风化程度也是影响土壤养分分布状况的主要因素[21],但也有研究表明:母质对土壤有机质、全氮、有效磷质量分数的影响并无显著差异[22]。本研究区土壤母质在景观尺度上的变异较为平稳,主要是酸性岩石矿物,因此对母质因子不作重点分析。地形因子导致的水热分布差异是造成土壤属性空间异质性的重要原因[2324]。森林土壤有机质空间分布受地形地貌等自然因素以及受其制约的土地利用的影响较大,受人类活动、耕作措施等随机因素影响很小[25]。由龙塘山-顺溪坞的DEM图可知:该研究区的高海拔区主要分布在西北和东南部,与土壤有机质和全氮高值区的空间分布特点具有较高的一致性。总体上,龙塘山-顺溪坞土壤养分质量分数较高,随地势的空间连续性尺度较小,分布随机化而且各土壤养分的空间变异较大,说明土壤养分的空间异质性可能受地形地势等自然因素的影响。

    总体来看,该研究区的土壤养分质量分数均较高,但全钾、全磷质量分数相对较低,多数全磷、全钾低值区分布于海拔较高处,可能与该区受地形因子控制的降水量有关[26]。海拔升高到一定高度时,降水量的增加加强了磷、钾流失。可见高海拔处的植被生产力可能易受磷、钾养分限制。在该研究区南部海拔340~816 m处存在着大面积土壤pH、全磷、全钾质量分数较高而土壤有机质和全氮质量分数较低区域。这可能与该区域的新增农田有关。有研究表明:施肥会增加土壤酸性以及磷、钾质量分数[27]。与耕地相比,自然土地的人为干扰少且凋落物养分归还多,土壤有机质和全氮质量分数较高[28]

    土壤养分的空间异质性受地形地势等自然因素的影响[23],不同海拔带间的水热分布、温湿度差异等会影响土壤养分的迁移、转化与累积,海拔因素是影响森林土壤有机碳积累的主导因子之一[29]。本研究表明:土壤有机质和全氮均与海拔呈极显著正相关,有机质在1、2级海拔和3、4、5、6级海拔间均存在显著差异。张亚茹等[30]在鼎湖山研究表明:土壤有机质具有明显的空间变异性且随海拔升高而增加。两者的研究结果一致。在高海拔处的低温环境中,微生物活性降低而凋落物增加,一方面增加了土壤有机碳的归还与积累,另一方面减慢了有机质分解转化速率。本研究结果显示:有机质和全氮呈显著正相关,这与相关森林土壤研究的结果一致[24],并且有机质和全氮与海拔因子具有较为一致的相关性。总体上,在低海拔处,水、气、热等条件有利于加速土壤中物质循环,从而提高土壤养分的利用率。随着海拔升高,气温降低,湿度变大,植物蒸腾作用减弱,微生物对凋落物及动植物残体等的分解活动减弱,生物积累作用增强,造成有机质、全氮质量分数显著高于低海拔地区[11]

    本研究区中土壤全磷、全钾质量分数呈现出随海拔升高而下降的趋势,这可能与磷、钾的元素特性有关。在低山丘陵区,海拔较高的地方受水流的侵蚀作用较强,导致土壤强淋失,降低土壤中钾质量分数[31]。在自然生态系统中,与土壤有机质和全氮不同,土壤磷主要来源于基岩的风化[32],并通过植物的聚集作用积累在表层土壤。凋落物中的磷是表层土壤磷的主要来源[33]。随着海拔升高,气温和热量下降,凋落物的分解速率降低,阻碍了植物的聚集作用,减少了土壤中磷的输入。坡度是影响土壤养分分布的重要因素之一,它能够调节地表径流,改变土壤养分的空间分布[11]。本研究中土壤有机质和全氮与坡度呈极显著负相关,坡度增大,地表径流和侵蚀变强,地表的扰动作用减少了土壤有机质和全氮的质量分数。

    本研究发现:土壤有机质和全氮质量分数随着容重增加而减少,这可能与受容重因子控制的土壤储水量有关。土壤储水量会随容重的减小而增加,因为随土壤容重的减小,土壤团粒结构和土壤有效孔隙增多,土壤结构得到改善,导致入渗能力、持水能力增大[28],有利于植物细根的穿插和发育,提升土壤养分循环,从而进一步提高土壤有机质回归能力和氮矿化速率[34]。本研究中,pH和全磷与土壤容重呈正相关。pH变化较慢,这可能是由于自然保护区的原始生态保存较为完好,研究区土壤酸性主要来自于空间连续性尺度较小的酸性土壤母岩。磷通过凋落物和根系分泌物等途径归还土壤。随土壤容重增大,土壤持水能力降低,凋落物和根系分泌物的生物化学反应加剧,可促进磷元素的溶解与周转[3335]。研究发现:土壤pH和全磷与土壤有机质呈负相关[27]。本研究区土壤整体呈酸性,土壤有机质随着容重减少而增加,同时土壤pH和全磷相应降低。总体上,随着土壤容重的变化,有机质变化较大,而全氮、全磷的变化则相反,这与有机质高值区分布较为集中而低值区分散,全氮和全磷分布较离散的研究结果一致。

    植物体养分通过凋落物的归还和植物根系的输送直接影响土壤养分质量分数及分布。本研究结果显示:不同植被类型对土壤有机质和全氮的影响达显著水平,草甸土壤中有机质和全氮质量分数最高。相关研究发现:草甸土中有机质质量分数高于针叶林中[36],浙江省乌岩岭不同植被类型土壤中有机质质量分数从大到小依次为针阔混交林、竹林、农地[37]。本研究结果与相关学者的研究结果较为一致。海拔可通过改变植被覆盖度、草地生产力等来实现对表层土壤有机质的影响。水、气、热条件随海拔变化,而这些自然条件制约着植被类型,影响着植被的养分消耗与归还,进而影响植物根系对土壤有机碳的输送量。同时,温、湿度等环境条件影响微生物对表层土壤凋落物的分解和转化。本研究中,草甸大面积分布在高海拔区域,随着海拔高度的增加,气温下降,使得有机质分解转化速率减慢,而草地覆盖度及有机碳输送能力增加,有机质易于积累。刘跃建等[38]研究表明:随海拔升高,草甸土中全氮质量分数明显高于其他森林植被类型土壤中的全氮,且全氮与有机质对环境因子的响应具有一致性。植物体养分循环是土壤全钾质量分数的主要决定过程之一。相对于其他植被类型,针叶林土壤全钾质量分数较高,可能是因为针叶林凋落物对土壤全钾有更明显的富集作用。

    清凉峰国家级自然保护区内龙塘山-顺溪坞土壤养分全磷、全钾质量分数相对较低,各土壤养分均表现为中等程度变异,具有较为明显的空间异质性。养分低值区普遍以斑状散布在研究区中,土壤有机质、全氮的高值区集中分布于西北及东南部分区域,而全磷、全钾的高值区分布较为分散。总体上,土壤养分空间分布较为破碎化,斑块特征显著。受结构性因素影响,土壤有机质和全氮与海拔、坡度、容重、植被类型的相关性达显著水平,全磷仅与容重的相关性达显著水平。研究区内土壤酸性较强,同时受地形地势的影响,研究区内土壤存在水土流失及土壤养分淋失风险,建议注重高海拔区水土保持。

  • 图  1  OfPSY基因的启动子序列

    Figure  1  Promoter sequence of OfPSY gene

    图  2  OfPDS基因的启动子序列

    Figure  2  Promoter sequence of OfPDS gene

    图  3  OfHYB基因的启动子序列

    Figure  3  Promoter sequence of OfHYB gene

    图  4  瞬时表达分析OfPSYOfPDSOfHYB启动子表达特性

    Figure  4  Transient expression analysis of OfPSY, OfPDS and OfHYB promoter expression characteristics

    表  1  启动子克隆所用引物

    Table  1.   Primers used for promoter cloning

    引物名称序列(5′→3′)
    OfPDSP-F TTAAATGGACGACTCATGTAATA
    OfPDSP-R CTCAAATTAACAGCAGAAACAT
    OfPSYP-F AAGCTTCAAAATTGCTGCTCAACTCATAC
    OfPSYP-R TCTAGAGCTGATACTGAACTATTAACGGTC
    OfHYBP-F AAGCTTTGGGTCTTACCTAACATCTTGGC
    OfHYBP-R TCTAGAGGACGGTAGTTTCAAGGGGGTG
    下载: 导出CSV

    表  2  构建PCAMBIA3301-LUC载体所用引物

    Table  2.   Primers used to construct PCAMBIA3301-LUC vector

    引物名称序列(5′→3′)
    OfPDSP-F GGTACCTTAAATGGACGACTCATGTAATA
    OfPDSP-R CCATGGCTCAAATTAACAGCAGAAACAT
    OfPSYP-F GGTACCAAGCTTCAAAATTGCTGCTCAACTCATAC
    OfPSYP-R CCATGGTCTAGAGCTGATACTGAACTATTAACGGTC
    OfHYBP-F GGTACCAAGCTTTGGGTCTTACCTAACATCTTGGC
    OfHYBP-R CCATGGTCTAGAGGACGGTAGTTTCAAGGGGGTG
    下载: 导出CSV

    表  3  OfPSY启动子中的顺式作用元件

    Table  3.   Cis-acting elements in OfPSY promoters

    元件名称数量序列(5′→3′)功能
    AAGAA-motif 1 GTAAAGAAA
    ABRE 1 ACGTG 脱落酸响应元件
    Box 4 1 ATTAAT 参与光响应的部分保守DNA序列
    CAAT-box 20 CAAT 一般元件
    G-box 1 TACGTG 光响应元件
    GARE-motif 1 TCTGTTG 赤霉素响应元件
    GT1-motif 1 GGTTAAT 光响应元件
    MYB 1 TAACCA MYB 结合位点
    MYC 1 CATGTG MYC 结合位点
    P-box 1 CCTTTTG 赤霉素响应元件
    STRE 1 AGGGG
    TATA-box 14 TATA 一般元件
    TCT-motif 1 TCTTAC 光响应元件的一部分
    Unnamed_1 1 CGTGG
    下载: 导出CSV

    表  4  OfPDS启动子中的顺式作用元件

    Table  4.   Cis-acting elements in OfPDS promoters

    元件名称数量序列(5′→3′)功能
    ARE 3 AAACCA 厌氧诱导相关的顺式调节元件
    AT~TATA-box 1 TATATA 一般元件
    Box 4 1 ATTAAT 参与光响应的部分保守
    DNA序列
    CAAT-box 21 CAAT 一般元件
    CCGTCC motif 1 CCGTCC
    CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件
    G-box 1 TACGTG 光响应元件
    GA-motif 1 ATAGATAA 光响应元件
    MBS 2 CAACTG MYB 结合位点
    MYB 1 TAACCA MYB 结合位点
    MYC 1 CATGTG MYC 结合位点
    P-box 2 CCTTTTG 赤霉素响应元件
    TATA-box 9 TATA 一般元件
    TC-rich repeats 1 ATTCTCTAAC 参与防御和胁迫的元件
    TCT-motif 3 TCTTAC 光响应元件的一部分
    Unnamed_1 1 CGTGG
    Unnamed_4 4 CTCC
    WRE3 1 CCACCT
    下载: 导出CSV

    表  5  OfHYB启动子中的顺式作用元件

    Table  5.   Cis-acting elements in OfHYB promoters

    元件名称数量序列(5′→3′)功能元件名称数量序列(5′→3′)功能
    ARE 2 AAACCA 厌氧诱导相关的顺式调节元件GT1-motif 2 GGTTAA 光响应元件
    A-box 1 CCGTCC 顺势调控元件Gap-box 1 CAAATGAA 光响应元件的一部分
    ABRE 4 ACGTG 脱落酸响应元件LTR 1 CCGAAA 低温响应元件
    AE-box 1 AGAAACTT 光响应元件的一部分MYC 1 CATGTG MYC结合位点
    AT~TATA-box 1 TATATA 一般元件Myb 1 TAACTG MYB结合位点
    AuxRR-core 1 GGTCCAT 生长素响应元件TATA 1 TATAAAAT 一般元件
    CAAT-box 20 CAAT 一般元件TATA-box 6 TATA 一般元件
    CCGTCC motif 1 CCGTCC TCCC-motif 1 TCTCCCT 光响应元件的一部分
    CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件TCT-motif 2 TCTTAC 光响应元件的一部分
    ERE 1 ATTTTAAA 乙烯响应元件Unnamed_1 1 GAATTTAATTAA 60K蛋白质结合位点
    G-box 2 TACGTG 光响应元件的一部分Unnamed_4 9 CTCC
    G-Box 1 CACGTT 光响应元件的一部分WRE3 1 CCACCT
    GC-motif 1 CCCCCG 参与缺氧特异性诱导的元件
    下载: 导出CSV
  • [1] MCQUINN R P, GIOVANNONI J J, POGSON B J. More than meets the eye: from carotenoid biosynthesis, to new insights into apocarotenoid signaling [J]. Current Opinion in Plant Biology, 2015, 27: 172 − 179.
    [2] NISAR N, LI Li, LU Shan, et al. Carotenoid metabolism in plants [J]. Molecular Plant, 2015, 8(1): 68 − 82.
    [3] HAN Y, LI L, DONG M, et al. cDNA cloning of the phytoene synthase (PSY) and expression analysis of PSY and carotenoid cleavage dioxygenase genes in Osmanthus fragrans [J]. Biologia, 2013, 68(2): 258 − 263.
    [4] MCQUINN R P, WONG B, GIOVANNONI J J. AtPDS overexpression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content [J]. Plant Biotechnology Journal, 2017, 16(2): 482 − 494.
    [5] DU Hao, WANG Nili, CUI Fei, et al. Characterization of a β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and ABA synthesis in rice [J]. Plant Physiology, 2010, 154(3): 1304 − 1318.
    [6] WANG Yiguang, ZHANG Chao, DONG Bin, et al. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans[J/OL]. Frontiers in Plant Science, 2018: 1499[2022-01-04]. doi: 10.3389/fpls.2018.01499.
    [7] HAN Yuanji, WANG Hongyun, WANG Xiaodan, et al. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool [J]. Horticulture Research, 2019, 6(1): 432 − 443.
    [8] 侯丹, 付建新, 张超, 等. 桂花品种‘堰虹桂’‘玉玲珑’和‘杭州黄’的香气成分及释放节律[J]. 浙江农林大学学报, 2015, 32(2): 208 − 220.

    HOU Dan, FU Jianxin, ZHANG Chao, et al. Flower scent composition of Osmanthus fragrans ‘Yanhong Gui’‘Yu Linglong’ and ‘Hangzhou Huang’, and their emission patterns [J]. Journal of Zhejiang A&F University, 2015, 32(2): 208 − 220.
    [9] HE Yuan, MA Yafeng, DU Yu, et al. Differential gene expression for carotenoid biosynthesis in a green alga Ulva prolifera based on transcriptome analysis [J]. BMC Genomics, 2018, 19(1): 916 − 930.
    [10] ZHANG Lancui, MA Gang, KATO M, et al. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro [J]. Journal of Experimental Botany, 2012(2): 871 − 886.
    [11] 范敏, 金黎平, 黄三文, 等. 干旱胁迫对马铃薯类黄酮和类胡萝卜素合成关键酶基因表达的影响[J]. 园艺学报, 2008, 35(4): 535 − 542.

    FAN Min, JIN Liping, HUANG Sanwen, et al. Effects of drought stress on gene expression of key enzymes for flavonoid and carotenoid synthesis in potato [J]. Acta Horticulturae Sinica, 2008, 35(4): 535 − 542.
    [12] LIU Yudong, SHI Yuan, SU Deding, et al. SlGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and SlMADS1 in tomato[J/OL]. Horticulture Research, 2021, 8(3)[ 2022-01-02]. doi: 10.1038/S41438-020-00431-9.
    [13] LIU Yudong, DONG Bin, ZHANG Chao, et al. Effects of exogenous abscisic acid (ABA) on carotenoids and petal color in Osmanthus fragrans ‘Yanhonggui’ [J]. Plants, 2020, 9(4): 454 − 466.
    [14] HAN Y, WANG X, CHEN W, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans [J]. Trees Genetics &Genomes, 2014, 10(2): 329 − 338.
    [15] BALDERMANN S, KATO M, FLEISCHMANN P, WATANABE N. Biosynthesis of α-and β-ionone, prominent scent compounds, in flowers of Osmanthus fragrans [J]. Acta Biochimica Polonica, 2012, 59(1): 79 − 81.
    [16] YANG Xiulian, YUE Yuanzheng, LI Haiyan, et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans [J/OL]. Horticulture Research, 2018, 5: 72[2021-12-23]. doi: 10.1038/s41438-018-0108-0.
    [17] FU Xiumin, CHENG Sihua, FENG Chao, et al. Lycopene cyclases determine high α-/β-carotene ratio and increased carotenoids in bananas ripening at high temperatures [J]. Food Chemistry, 2019, 283: 131 − 140.
    [18] KARPPINEN K, ZORATTI L, SARALA M, et al. Carotenoid metabolism during bilberry (Vaccinium myrtillus L. ) fruit development under different light conditions is regulated by biosynthesis and degradation [J]. BMC Plant Biology, 2016, 16(1): 95 − 111.
    [19] WANG Ruikai, WANG Chun’e. Genome-wide identification and transcription analysis of soybean carotenoid oxygenase genes during abiotic stress treatments [J]. Molecular Biology Reports, 2013, 40(8): 4737 − 4745.
    [20] LU Suwen, ZHANG Yin, ZHU Kaijie, et al. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes [J]. Plant Physiology, 2018, 176(4): 2657 − 2676.
    [21] FU Changchun, HAN Yanchao, KUANG Jianfei, et al. Papaya CpEIN3a and CpNAC2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4, CpLCY-e and CpCHY-b during fruit ripening [J]. Plant and Cell Physiology, 2017, 58(12): 2155 − 2165.
    [22] HAN Yanchao, GAO Haiyan, CHEN Hangjun, et al. The involvement of papaya CpSBP1 in modulating fruit softening and carotenoid accumulation by repressing CpPME1/2 and CpPDS4[J/OL]. Scientia Horticulturae, 2019, 256: 108582[2022-01-02]. doi:10.1016/j.scienta.2019.108582.
    [23] KEVIN S, PAULINA F, FELIPE Q I L, et al. Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota [J]. Journal of Experimental Botany, 2018, 69(16): 4113 − 4126.
    [24] YOSHIDA T, FUJITA Y, SAYAMA H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation [J]. The Plant Journal, 2010, 61(4): 672 − 685.
    [25] CHOI H I, HONG J H, HA J O, et al. ABFs, a family of ABA-responsive element binding factors [J]. Journal of Biological Chemistry, 2000, 275(3): 1723 − 1730.
    [26] BALDERMANN S, KATO M, KUROSAWA M, et al. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. [J]. Journal of Experimental Botany, 2010, 61(11): 2967 − 2977.
    [27] ZHANG Chao, WANG Yiguang, FU Jianxin, et al. Transcriptomic analysis and carotenogenic gene expression related to petal coloration in Osmanthus fragrans ‘Yanhong Gui’ [J]. Trees, 2016, 30(4): 1207 − 1223.
    [28] 刘玉成, 王艺光, 张超, 等. 桂花OfCCD1基因启动子克隆与表达特性[J]. 浙江农林大学学报, 2018, 35(4): 596 − 603.

    LIU Yucheng, WANG Yiguang, ZHANG Chao, et al. Cloning and transient expression assay of OfCCD1 gene promoters from Osmanthus fragrans [J]. Journal of Zhejiang A&F University, 2018, 35(4): 596 − 603.
  • [1] 李莉, 庞天虹, 付建新, 张超.  桂花番茄红素β-环化酶基因LCYB上游B2亚组ERF转录因子的筛选和鉴定 . 浙江农林大学学报, 2025, 42(1): 86-93. doi: 10.11833/j.issn.2095-0756.20240316
    [2] 向玉勇, 张妍, 陶翠玲.  温度对金银花尺蠖幼虫、蛹和成虫4种酶活性的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240471
    [3] 张耀, 王家璇, 蔡璇, 曾祥玲, 杨洁, 陈洪国, 邹晶晶.  桂花OfACOs基因家族鉴定及表达分析 . 浙江农林大学学报, 2023, 40(3): 492-501. doi: 10.11833/j.issn.2095-0756.20220783
    [4] 洪方蕾, 陆瑶, 俞世姣, 胡芷诺, 缪云锋, 钟诗蔚, 赵宏波.  桂花OfABFs基因克隆和表达分析 . 浙江农林大学学报, 2023, 40(3): 481-491. doi: 10.11833/j.issn.2095-0756.20220264
    [5] 向玉勇, 孙星, 殷培峰.  寄主植物、温度对金银花尺蠖幼虫消化酶活性的影响 . 浙江农林大学学报, 2020, 37(2): 311-318. doi: 10.11833/j.issn.2095-0756.2020.02.016
    [6] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [7] 王千千, 蒋琦妮, 付建新, 董彬, 赵宏波.  不同光周期和温度处理下桂花内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 928-934. doi: 10.11833/j.issn.2095-0756.2019.05.011
    [8] 张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙.  凤阳山4种森林土壤在不同温度培养下活性有机碳的变化 . 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
    [9] 刘玉成, 王艺光, 张超, 董彬, 付建新, 胡绍庆, 赵宏波.  桂花OfCCD1基因启动子克隆与表达特性 . 浙江农林大学学报, 2018, 35(4): 596-603. doi: 10.11833/j.issn.2095-0756.2018.04.003
    [10] 王英, 张超, 付建新, 赵宏波.  桂花花芽分化和花开放研究进展 . 浙江农林大学学报, 2016, 33(2): 340-347. doi: 10.11833/j.issn.2095-0756.2016.02.021
    [11] NGUYENThiHuongGiang, 张齐生.  竹集成材高频热压过程中板坯内温度的变化趋势 . 浙江农林大学学报, 2015, 32(2): 167-172. doi: 10.11833/j.issn.2095-0756.2015.02.001
    [12] 杨秀莲, 郝其梅.  桂花种子休眠和萌发的初步研究 . 浙江农林大学学报, 2010, 27(2): 272-276. doi: 10.11833/j.issn.2095-0756.2010.02.018
    [13] 蔡璇, 苏蘩, 金荷仙, 姚崇怀, 王彩云.  四季桂花瓣色素的初步鉴定与提取方法 . 浙江农林大学学报, 2010, 27(4): 559-564. doi: 10.11833/j.issn.2095-0756.2010.04.014
    [14] 李晓平, 周定国.  温度对稻草部分理化性能的影响 . 浙江农林大学学报, 2007, 24(5): 528-532.
    [15] 胡绍庆, 宣子灿, 周煦浪, 吴光洪.  杭州市桂花品种的分类整理 . 浙江农林大学学报, 2006, 23(2): 179-187.
    [16] 周媛, 姚崇怀, 王彩云.  桂花切花品种筛选 . 浙江农林大学学报, 2006, 23(6): 660-663.
    [17] 苏明申, 叶正文, 吴钰良, 李胜源, 钱进, 张均强.  温度对桃品种破眠效应的研究 . 浙江农林大学学报, 2005, 22(1): 12-15.
    [18] 吴光洪, 胡绍庆, 宣子灿, 向其柏.  桂花品种分类标准与应用 . 浙江农林大学学报, 2004, 21(3): 281-284.
    [19] 项文化, 田大伦, 闫文德, 罗勇.  白栎光合特性对二氧化碳浓度增加和温度升高的响应 . 浙江农林大学学报, 2004, 21(3): 247-253.
    [20] 陈国瑞, 李天佑, 俞益武, 蒋秋怡.  杭州常绿阔叶林对林内近地层温度和湿度的调节效应* . 浙江农林大学学报, 1994, 11(2): 151-158.
  • 期刊类型引用(7)

    1. 黄跃,谢晏芬,朱宣全,贾孟,王戈,白羽祥,杜宇,周鹏,赵宇婷,朱红琼,杨帆,肖志文,王文波,方志鹏,韩家宝,王娜. 植烟区烟叶氯含量风险评估及影响因素分析. 中国农业科技导报. 2024(06): 206-213 . 百度学术
    2. 牟晨,王海燕,崔雪,赵晗,董齐琪. 长白山天然针阔混交林土壤养分空间异质性及其影响因素. 应用与环境生物学报. 2024(05): 894-903 . 百度学术
    3. 李淑璇,王勇辉,刘涛涛. 基于地理探测器的土壤碳、氮影响因子分析——以新疆维吾尔自治区博乐市为例. 新疆师范大学学报(自然科学版). 2023(01): 42-50 . 百度学术
    4. 张向宁,王海燕,崔雪,赵晗,董齐琪,赵慧英. 土壤pH与养分的空间异质性及土壤肥力分析——以内蒙古旺业甸林场为例. 干旱区资源与环境. 2023(07): 127-136 . 百度学术
    5. 童童,梅帅,刘莹,常珺枫,梁华忠,范其龙,王强,马友华. 基于GIS的环巢湖地区土壤养分空间变异特征研究. 农业环境科学学报. 2023(07): 1522-1531 . 百度学术
    6. 叶彩红,李莹莹,何茜,丁晓纲. 韩江流域中下游林地土壤全磷含量特征及空间分布格局. 林业与环境科学. 2022(04): 23-27 . 百度学术
    7. 邓智文,丁晓纲,李莹莹,齐也,王洋,孙冬晓,张中瑞. 清远市针叶林土壤磷元素及空间分布研究. 林业与环境科学. 2022(05): 1-5 . 百度学术

    其他类型引用(5)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220110

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/1/64

图(4) / 表(5)
计量
  • 文章访问数:  1526
  • HTML全文浏览量:  241
  • PDF下载量:  191
  • 被引次数: 12
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-07-10
  • 录用日期:  2022-08-16
  • 网络出版日期:  2022-10-10
  • 刊出日期:  2023-01-17

桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析

doi: 10.11833/j.issn.2095-0756.20220110
    基金项目:  国家自然科学基金面上资助项目(32072615);中国博士后科学基金第71批面上资助项目(2022M712828)
    作者简介:

    周俊杰(ORCID: 0000-0003-3459-6220 ),从事观赏植物遗传育种研究。E-mail: 747782261@qq.com

    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,从事观赏植物遗传育种研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S722.3

摘要:   目的  探究高温和外源脱落酸对桂花Osmanthus fragrans类胡萝卜素生物合成的3个相关基因,包括八氢番茄红素合成酶基因(PSY)、八氢番茄红素脱氢酶基因(PDS)、β-胡萝卜素羟化酶基因(HYB)的调控作用,为阐释桂花类胡萝卜素代谢调控的机制提供研究基础。  方法  根据桂花基因组数据库的序列,从桂花品种‘堰虹桂’‘Yanhong Gui’中克隆OfPSYOfPDSOfHYB基因的启动子序列,并进行生物信息学分析,再构建PCAMBIA3301-LUC载体在烟草Nicotiana benthamiana中瞬时表达,结合高温(37 ℃)和200 mg·L−1脱落酸处理,分析启动子活性。  结果  获得OfPSYOfPDSOfHYB基因的部分启动子,其长度分别为1 908、1 521及1 830 bp。作用元件分析表明:3个启动子中均存在TATA-box和CAAT-box等启动子基本元件、光响应元件、脱落酸响应元件以及MYB和MYC结合位点。此外,在OfPSY启动子中,存在赤霉素响应元件;在OfPDS启动子中,存在茉莉酸甲酯响应元件、赤霉素响应元件、厌氧诱导型元件参与防御和胁迫的元件;在OfHYB启动子中,存在生长素、乙烯、茉莉酸甲酯等激素响应元件、低温响应元件和厌氧诱导型元件。烟草瞬时转化试验表明:相对高温能激活OfPSYOfPDSOfHYB的启动子活性,脱落酸能激活OfPDSOfHYB的启动子活性。  结论  高温和脱落酸可能通过调控桂花类胡萝卜素合成基因启动子活性,影响桂花类胡萝卜素的积累。图4表5参28

English Abstract

周俊杰, 王艺光, 董彬, 等. 桂花OfPSY、OfPDS和OfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
引用本文: 周俊杰, 王艺光, 董彬, 等. 桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
JIN Jing, XIE Rong, DU Yongbin, et al. Indoor prevention and toxicity test of three chemical insecticides against Melanotus ribricollis[J]. Journal of Zhejiang A&F University, 2021, 38(1): 214-218. DOI: 10.11833/j.issn.2095-0756.20190731
Citation: ZHOU Junjie, WANG Yiguang, DONG Bin, et al. Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans[J]. Journal of Zhejiang A&F University, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
  • 类胡萝卜素是一种亲脂类异戊二烯,是一种自然界中广泛存在的生物色素,主要反射黄色、橙色和红色的光[1]。在植物器官中,类胡萝卜素在质体中的积累对吸收过量光能、清除活性氧、合成植物激素提供前体物质都起重要的作用[2]。八氢番茄红素合成酶(phytoene synthase, PSY)是类胡萝卜素合成途径中的第1个限速酶,它的作用是将2分子的香叶酰香叶酰二磷酸(geranylgeranyl diphosphate,GGPP)合成无色的八氢番茄红素[3]。随后,八氢番茄红素经过包括八氢番茄红素脱氢酶(phytoene desaturase,PDS)在内的4次去饱和反应和2次异构化反应的多顺式转化,最终生成红色的全反式番茄红素[4]。而β-羟化酶(β-carotene hydroxylase,HYB)既可以单独作用使β-胡萝卜素经羟化作用转化为紫黄质,也可与ε-羟化酶(ε-carotene hydroxylase,HYE)协同作用使α-胡萝卜素经羟化作用形成叶黄素[5]。桂花Osmanthus fragrans是重要的观赏植物,花色和花香是其主要观赏性状。已有研究发现:类胡萝卜素既是桂花花瓣中主要色素成分[6],也是桂花香气物质的前体物质[7]。目前已在多种植物中发现,植物器官中的类胡萝卜素含量及相关基因的表达水平受到多种因素的影响,如温度[8]、光照[9]、干旱胁迫[10]、乙烯[11]等。前期研究[12]发现:在200 mg·L−1脱落酸处理下,桂花花色明显加深,花瓣类胡萝卜素含量上升,类胡萝卜素合成关键基因OfPSYOfPDSOfHYB表达水平显著上调。相关基因在前人的研究中均已克隆到[13-15],但对其调控的作用机制仍知之甚少。基因的启动子作为上游调控因子识别并结合的部位,是基因表达调控的重要作用位点。为进一步揭示桂花花色形成及其调控的分子机制,本研究克隆了OfPSYOfPDSOfHYB基因的启动子,通过作用元件分析、表达载体构建和瞬时表达分析,初步明确其作用。

    • 8~10年生丹桂品种‘堰虹桂’Osmanthus fragrans‘Yanhong Gui’栽植于浙江农林大学桂花资源圃;烟草Nicotiana benthamiana栽培于浙江农林大学园林植物实验室。

    • DNA提取试剂盒、Premix Taq聚合酶、质粒载体PMD18-T、大肠埃希菌Escherichia coli DH5α、切胶回收试剂盒、DNA片段纯化试剂盒、限制性内切酶EcoR Ⅰ、Nco Ⅰ、DNA连接酶等购自Takara公司(大连)。

    • 参照DNA提取试剂盒所用方法提取桂花‘堰虹桂’基因组DNA。

    • 根据桂花基因组数据[16]中的OfPSYOfPDSOfHYB基因启动子序列,用Primer Premier 5.0分别设计上下游引物。引物由有康生物公司(杭州)合成(表1)。

      表 1  启动子克隆所用引物

      Table 1.  Primers used for promoter cloning

      引物名称序列(5′→3′)
      OfPDSP-F TTAAATGGACGACTCATGTAATA
      OfPDSP-R CTCAAATTAACAGCAGAAACAT
      OfPSYP-F AAGCTTCAAAATTGCTGCTCAACTCATAC
      OfPSYP-R TCTAGAGCTGATACTGAACTATTAACGGTC
      OfHYBP-F AAGCTTTGGGTCTTACCTAACATCTTGGC
      OfHYBP-R TCTAGAGGACGGTAGTTTCAAGGGGGTG
    • 以桂花‘堰虹桂’基因组DNA为模板,分别用引物OfPSYP-F和OfPSYP-R、OfPDSP-F和OfPDSP-R、OfHYBP-F和OfHYBP-R对其启动子进行扩增。将扩增产物连接至质粒载体PMD18-T并转化大肠埃希菌DH5α,随后鉴定阳性克隆并送至有康公司(杭州)测序。启动子作用元件分析通过在线网站Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)进行。

    • 设计包含酶切位点的引物(表2),用于构建启动子表达载体。使用限制性内切酶EcoR Ⅰ和Nco Ⅰ分别对PCAMBIA3301-LUC载体和添加了酶切位点的启动子进行双酶切。用T4连接酶连接回收的启动子和载体片段。再经转化大肠埃希菌DH5α鉴定,得到重组的PSYP::LUC、PDSP::LUC、HYBP::LUC载体。再将重组质粒转化农杆菌Agrobacterium tumefaciens GV3101。

      表 2  构建PCAMBIA3301-LUC载体所用引物

      Table 2.  Primers used to construct PCAMBIA3301-LUC vector

      引物名称序列(5′→3′)
      OfPDSP-F GGTACCTTAAATGGACGACTCATGTAATA
      OfPDSP-R CCATGGCTCAAATTAACAGCAGAAACAT
      OfPSYP-F GGTACCAAGCTTCAAAATTGCTGCTCAACTCATAC
      OfPSYP-R CCATGGTCTAGAGCTGATACTGAACTATTAACGGTC
      OfHYBP-F GGTACCAAGCTTTGGGTCTTACCTAACATCTTGGC
      OfHYBP-R CCATGGTCTAGAGGACGGTAGTTTCAAGGGGGTG
    • 将含有重组质粒的农杆菌菌液在含有利福平和卡那霉素的LB培养基中振荡培养至D(600)达0.8~1.0,在4 ℃下以4 000 r·min−1离心10 min,收集菌体,随后以2 mL含10 mmol·L−1MES、10 mmol·L−1 MgCl2和150 μmol·L−1的乙酰丁香酮的悬浮液重悬菌体2次。选取长势较好的烟草,将悬浮液用1 mL注射器从叶片下表皮注射到烟草叶片中直至整个叶片呈现水渍状。将烟草置于暗处培养1 d后转移至人工气候室继续培养1~2 d,随后将植株分别进行37 ℃处理和200 mg·L−1脱落酸喷施处理,12 h后将注射后的叶片取下,喷洒1 mmol·L−1的荧光素钠盐溶液,暗处放置5 min后在CCD冷冻发光仪下观察LUC荧光信号。参考Luciferase (Promega)荧光素酶报告系统试剂盒对酶活性进行检测,以对照组的比值为单位1,得到不同处理组的相对Luciferase活性,每组实验均包括3次技术重复和生物学重复。利用SPSS 19.0软件进行数据差异分析。

    • 以桂花‘堰虹桂’基因组DNA为模板,用引物OfPSYP-F和OfPSYP-R、OfPDSP-F和OfPDSP-R、OfHYBP-F和OfHYBP-R对其启动子进行扩增,分别得到OfPSY启动子长度为1 908 bp (图1),OfPDS启动子长度为1521 bp (图2),OfHYB启动子长度为1 830 bp (图3)的序列。利用Plant CARE在线软件对启动子序列的结合位点进行分析。在OfPSYP中,存在TATA-box、CAAT-box等启动子基本元件,和光响应元件、脱落酸(ABA)响应元件、赤霉素响应元件等响应元件,以及MYB、MYC结合位点(表3);在OfPDSP中,存在TATA-box、CAAT-box等启动子基本元件,和脱落酸响应元件、茉莉酸甲酯响应元件、赤霉素响应元件、光响应元件、厌氧诱导型元件、防御和胁迫响应元件等响应元件,以及MYB、MYC结合位点(表4);在OfHYBP中,存在TATA-box、CAAT-box等启动子基本元件,和脱落酸响应元件、生长素响应元件、低温响应元件、乙烯响应元件、茉莉酸甲酯响应元件、光响应元件、厌氧诱导型元件等响应元件,以及MYB、MYC结合位点(表5)。

      图  1  OfPSY基因的启动子序列

      Figure 1.  Promoter sequence of OfPSY gene

      图  2  OfPDS基因的启动子序列

      Figure 2.  Promoter sequence of OfPDS gene

      图  3  OfHYB基因的启动子序列

      Figure 3.  Promoter sequence of OfHYB gene

      表 3  OfPSY启动子中的顺式作用元件

      Table 3.  Cis-acting elements in OfPSY promoters

      元件名称数量序列(5′→3′)功能
      AAGAA-motif 1 GTAAAGAAA
      ABRE 1 ACGTG 脱落酸响应元件
      Box 4 1 ATTAAT 参与光响应的部分保守DNA序列
      CAAT-box 20 CAAT 一般元件
      G-box 1 TACGTG 光响应元件
      GARE-motif 1 TCTGTTG 赤霉素响应元件
      GT1-motif 1 GGTTAAT 光响应元件
      MYB 1 TAACCA MYB 结合位点
      MYC 1 CATGTG MYC 结合位点
      P-box 1 CCTTTTG 赤霉素响应元件
      STRE 1 AGGGG
      TATA-box 14 TATA 一般元件
      TCT-motif 1 TCTTAC 光响应元件的一部分
      Unnamed_1 1 CGTGG

      表 4  OfPDS启动子中的顺式作用元件

      Table 4.  Cis-acting elements in OfPDS promoters

      元件名称数量序列(5′→3′)功能
      ARE 3 AAACCA 厌氧诱导相关的顺式调节元件
      AT~TATA-box 1 TATATA 一般元件
      Box 4 1 ATTAAT 参与光响应的部分保守
      DNA序列
      CAAT-box 21 CAAT 一般元件
      CCGTCC motif 1 CCGTCC
      CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件
      G-box 1 TACGTG 光响应元件
      GA-motif 1 ATAGATAA 光响应元件
      MBS 2 CAACTG MYB 结合位点
      MYB 1 TAACCA MYB 结合位点
      MYC 1 CATGTG MYC 结合位点
      P-box 2 CCTTTTG 赤霉素响应元件
      TATA-box 9 TATA 一般元件
      TC-rich repeats 1 ATTCTCTAAC 参与防御和胁迫的元件
      TCT-motif 3 TCTTAC 光响应元件的一部分
      Unnamed_1 1 CGTGG
      Unnamed_4 4 CTCC
      WRE3 1 CCACCT

      表 5  OfHYB启动子中的顺式作用元件

      Table 5.  Cis-acting elements in OfHYB promoters

      元件名称数量序列(5′→3′)功能元件名称数量序列(5′→3′)功能
      ARE 2 AAACCA 厌氧诱导相关的顺式调节元件GT1-motif 2 GGTTAA 光响应元件
      A-box 1 CCGTCC 顺势调控元件Gap-box 1 CAAATGAA 光响应元件的一部分
      ABRE 4 ACGTG 脱落酸响应元件LTR 1 CCGAAA 低温响应元件
      AE-box 1 AGAAACTT 光响应元件的一部分MYC 1 CATGTG MYC结合位点
      AT~TATA-box 1 TATATA 一般元件Myb 1 TAACTG MYB结合位点
      AuxRR-core 1 GGTCCAT 生长素响应元件TATA 1 TATAAAAT 一般元件
      CAAT-box 20 CAAT 一般元件TATA-box 6 TATA 一般元件
      CCGTCC motif 1 CCGTCC TCCC-motif 1 TCTCCCT 光响应元件的一部分
      CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件TCT-motif 2 TCTTAC 光响应元件的一部分
      ERE 1 ATTTTAAA 乙烯响应元件Unnamed_1 1 GAATTTAATTAA 60K蛋白质结合位点
      G-box 2 TACGTG 光响应元件的一部分Unnamed_4 9 CTCC
      G-Box 1 CACGTT 光响应元件的一部分WRE3 1 CCACCT
      GC-motif 1 CCCCCG 参与缺氧特异性诱导的元件
    • 重组载体瞬时表达的荧光成像结果显示:注射了含重组载体农杆菌的烟草叶片均显现出荧光(图4),表明OfPSYPOfPDSPOfHYBP均能够驱动LUC报告基因的表达,具有启动子活性。相对于25 ℃处理的烟草叶片,在37 ℃处理下,注射了OfPSYP::LUC、OfPDSP::LUC和OfHYBP::LUC的烟草叶片呈现出更强的荧光信号;在200 mg·L−1脱落酸处理下,注射了OfPDSP::LUC和OfHYBP::LUC的烟草叶片呈现出更强的荧光信号。结果表明:相对高温胁迫上调了OfPSYOfPDSOfHYB的启动子活性,脱落酸上调了OfPDSOfHYB的启动子活性。

      图  4  瞬时表达分析OfPSYOfPDSOfHYB启动子表达特性

      Figure 4.  Transient expression analysis of OfPSY, OfPDS and OfHYB promoter expression characteristics

    • 植物中类胡萝卜素的成分和含量是由一系列酶促反应完成的。研究发现类胡萝卜素代谢关键基因的表达受到各种环境因素和激素的调控。在香蕉Musa nana中,高温可以上调α-胡萝卜素和β-胡萝卜素生物合成途径相关基因的转录水平[17];在蓝莓Vaccinium spp.中,红光和远红光对果实中类胡萝卜素合成和降解基因的表达均起到上调作用[18];在大豆Glycine max中,氯化钠(NaCl)、聚乙二醇(PEG)、高温、低温等胁迫和ABA处理对类胡萝卜素降解基因起明显的上调作用[19]。此外,转录因子对类胡萝卜素代谢关键基因的启动子存在直接调控作用。在柑橘Citrus reticulata中,CsMADS6基因可以结合CsPSYCsPDS基因的启动子[20],从而促进其基因的表达;在番木瓜Carica papaya中,CpEIN3a既可以直接识别并结合CpPDSCpCHYB基因的启动子,也可与CpNAC1/2基因共同促进CpPDS的表达[21],而CpSBP1则对CpPDS基因存在负调控作用[22];在胡萝卜Daucus carota中,DcAREB3可响应盐胁迫和ABA处理,识别并结合DcPSY2启动子的ABRE作用元件,从而促进其表达[23]

      前期通过对桂花进行ABA处理发现,相对于未处理的桂花,经200 mg·L−1 ABA处理的桂花花瓣中的类胡萝卜素含量上升;对花瓣中类胡萝卜素代谢关键基因实时荧光定量表达显示:经ABA处理后OfPSYOfPDSOfHYB等基因的表达量显著上调,推测ABA通过调控这几个基因的表达,从而影响了桂花花色[12]。本研究在OfHYB启动子中发现了4个ABRE作用元件,该作用元件被认为是AREB转录因子的结合位点[24]。研究发现AREB转录因子能够识别并结合2个相距较近的ABRE作用元件[25]。在OfHYB启动子的4个ABRE作用元件中,有3个元件之间相距19和12 bp,表明OfHYB基因极有可能受到ABA调控,与此同时,OfHYB启动子上发现了最多的激素响应元件,除ABA响应元件外,还存在生长素、茉莉酸甲酯和乙烯响应元件,表明OfHYB基因的表达可能受到多种激素的调控。本研究通过高温和外源施加ABA,研究了几个启动子表达特性,进一步验证了相对高温对OfPSYOfHYB基因启动子以及ABA对OfPDSOfHYB启动子表达的调控作用。此外,在3个基因启动子中均存在数个光响应元件,在桂花中已经发现OfCCD1的表达可能受光照影响[2628],说明桂花花色物质的合成与降解均可能与光信号传导有关,但其具体作用机制仍有待进一步研究。本研究克隆得到的启动子经瞬时表达验证均具有启动子活性,下一步可将其构建酵母单杂载体,通过寻找上游的调控因子,明确桂花花瓣类胡萝卜素合成基因转录调控的分子机制。

参考文献 (28)

目录

/

返回文章
返回