留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析

周俊杰 王艺光 董彬 赵宏波

周俊杰, 王艺光, 董彬, 等. 桂花OfPSY、OfPDS和OfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
引用本文: 周俊杰, 王艺光, 董彬, 等. 桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
WANG Li-ying, LOU Lu-huan, WANG Chao, et al. Leaf gas exchange and chlorophyll fluorescence parameters in three species of Ilex[J]. Journal of Zhejiang A&F University, 2009, 26(1): 27-31.
Citation: ZHOU Junjie, WANG Yiguang, DONG Bin, et al. Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans[J]. Journal of Zhejiang A&F University, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110

桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析

DOI: 10.11833/j.issn.2095-0756.20220110
基金项目: 国家自然科学基金面上资助项目(32072615);中国博士后科学基金第71批面上资助项目(2022M712828)
详细信息
    作者简介: 周俊杰(ORCID: 0000-0003-3459-6220 ),从事观赏植物遗传育种研究。E-mail: 747782261@qq.com
    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,从事观赏植物遗传育种研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S722.3

Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans

  • 摘要:   目的  探究高温和外源脱落酸对桂花Osmanthus fragrans类胡萝卜素生物合成的3个相关基因,包括八氢番茄红素合成酶基因(PSY)、八氢番茄红素脱氢酶基因(PDS)、β-胡萝卜素羟化酶基因(HYB)的调控作用,为阐释桂花类胡萝卜素代谢调控的机制提供研究基础。  方法  根据桂花基因组数据库的序列,从桂花品种‘堰虹桂’‘Yanhong Gui’中克隆OfPSYOfPDSOfHYB基因的启动子序列,并进行生物信息学分析,再构建PCAMBIA3301-LUC载体在烟草Nicotiana benthamiana中瞬时表达,结合高温(37 ℃)和200 mg·L−1脱落酸处理,分析启动子活性。  结果  获得OfPSYOfPDSOfHYB基因的部分启动子,其长度分别为1 908、1 521及1 830 bp。作用元件分析表明:3个启动子中均存在TATA-box和CAAT-box等启动子基本元件、光响应元件、脱落酸响应元件以及MYB和MYC结合位点。此外,在OfPSY启动子中,存在赤霉素响应元件;在OfPDS启动子中,存在茉莉酸甲酯响应元件、赤霉素响应元件、厌氧诱导型元件参与防御和胁迫的元件;在OfHYB启动子中,存在生长素、乙烯、茉莉酸甲酯等激素响应元件、低温响应元件和厌氧诱导型元件。烟草瞬时转化试验表明:相对高温能激活OfPSYOfPDSOfHYB的启动子活性,脱落酸能激活OfPDSOfHYB的启动子活性。  结论  高温和脱落酸可能通过调控桂花类胡萝卜素合成基因启动子活性,影响桂花类胡萝卜素的积累。图4表5参28
  • 农田杂草与作物竞争,影响作物生长发育,导致作物产量下降,是农业生产面临的主要危害之一[1]。中国每年的杂草发生面积超过9000万hm2,造成的主粮作物损失超过300万t[2]。传统的杂草管理方式,如物理拔除和化学除草剂等,并不能彻底解决农田中的杂草问题,且存在诸多弊端[3]。因此,农作物栽培等领域可以结合生态学理论(如作物-杂草竞争、物种共存等方向)进行学科交叉研究,寻找可持续的综合性杂草管理策略。例如,通过施肥[4]、调控种植密度[5]和杂草种类[6]来调控作物-杂草群落的结构和群落内植物的功能性状,进而影响杂草与作物的资源竞争,从而达到提升作物产量的目的[78]

    小麦 Triticum aestivum是支撑全球粮食产量的主要作物之一,中国小麦种植面积约2 400万 hm2,占全球总产量的17%[9],麦田杂草主要以禾本科Poaceae植物为主,造成的小麦产量损失每年超过15%,高达150万 t[10]。麦田杂草约200多种,以安徽巢湖农业示范基地小麦田为例,其优势杂草主要为野燕麦Avena fatua和稗草Echinochloa crus-galli,共占杂草总丰度的86%[11]。野燕麦是常见的恶性杂草。稗草原本是水稻Oryza sativa田中的典型杂草[12],偏好温暖阴湿的生长环境,但随着多地区推广稻麦轮作耕作制度,稗草也开始在水分充足的稻茬麦田中出现[11]

    合理的种植密度和施肥是调节作物生长发育的重要栽培措施之一,直接关系到作物的表型和产量[1314]。适宜的种植密度和施肥可以提高资源利用率,形成优良的农田群落结构[14]。此外,杂草密度和类型也是影响作物产量的主要因素之一[15]。通过改变作物和杂草密度、比例和类型,使群落内出现多种低竞争能力的杂草,进而提升作物产量[78]

    植物的功能性状决定了植物对资源的竞争能力[16],是植物适应环境变化的关键生态策略,反映了植物在特定环境中生存和繁衍的能力[17]。其中,株高和叶片性状是光合活动的重要指标[1819],这些性状不仅与植物的生物量积累和光资源的吸收利用有关,还能够揭示植物的养分供应状态和生存策略[20]。而根系作为植物吸收水分和矿质元素的主要器官,其形态特征与植物吸收利用、生长发育和籽粒产量密切相关。如更高的株高、更大的叶、根面积和体积等,均有助于作物获取光、水、氮等资源并提高利用效率,进而促进生物量的积累[21]。但目前针对小麦-杂草体系中种植密度、比例和施肥对小麦功能性状影响的研究相对较少。因此,本研究以冬小麦为目标作物,研究优势杂草野燕麦和稗草在不同密度和施肥条件下对小麦的生物量和功能性状的影响,旨在为小麦杂草管理和生产提供理论依据。

    本研究选择在安徽省合肥市庐阳区大杨镇的合肥高新技术农业园内(31°55′28.17″N,117°12′12.85″E)的温室大棚中进行。研究区属于亚热带湿润季风气候,年平均气温为14~22 ℃,全年降水充沛且多集中在夏季,光照充足。供试小麦品种为‘烟农19’‘Yannong 19’,野燕麦和稗草种子采集于合肥高新技术农业园内。挑选均匀饱满、无虫眼和霉坏的小麦、野燕麦和稗草种子,清洗消毒后置于培养皿中,在25 ℃光照培养箱内育苗,待幼苗长至2~4 cm,选取长势基本一致的幼苗移栽进行盆栽试验。

    冬小麦于2021年11月13日播种,2022年5月开始收割。所用花盆上口直径为24.5 cm,下口直径为18.5 cm,高为25.0 cm。设置3种种植方式(表1):小麦单播(W)、小麦与野燕麦混播(W-O)、小麦与稗草混播(W-B)。氮肥施用量为小麦田常规施肥量(210.000 kg·hm−2),对应每盆施加2.182 g尿素,在移栽前作为基肥溶于水后一次性施入盆栽土壤中[11]。植物栽种参考响应曲面法,在设置密度梯度的同时,嵌套小麦和杂草的种植比例详见表1。盆栽总计128盆,采取随机区组设计摆放,降低光照和温度等环境差异对植株生长的影响。在移栽后的2周内对盆栽中死亡的幼苗进行替补移栽,并去除来自于土壤库中的植株幼苗。

    表 1  小麦和杂草的种植方式
    Table 1  Planting pattern for wheat and weeds
    种植方式 种植密度
    (株·盆−1)
    种植比例(小麦∶杂草) 施肥处理 盆数
    小麦单播(W) 4、8、12、16 100%∶0 未施肥 16盆(4种种植密度各4盆)
    施肥 16盆(4种种植密度各4盆)
    小麦-稗草混播(W-B) 4、8、12、16 25%∶75%、50%∶50%、75%∶25% 未施肥 24盆(4种种植密度各6盆,内含3种种植比例各2盆)
    施肥 24盆(4种种植密度各6盆,内含3种种植比例各2盆)
    小麦-野燕麦混播(W-O) 4、8、12、16 25%∶75%、50%∶50%、75%∶25% 未施肥 24盆(4种种植密度各6盆,内含3种种植比例各2盆)
    施肥 24盆(4种种植密度各6盆,内含3种种植比例各2盆)
    下载: 导出CSV 
    | 显示表格

    将植株从土壤中完整采集,分为地上和地下部分,用蒸馏水冲洗干净后置于65 ℃烘箱内48 h至恒量,利用天平(精度0.0001 g)称取植株生物量。对于地上性状,收样前使用直尺测量植物地上部分的最大拉伸高度,记为最大株高;从每株植物中随机选择不少于总数四分之一的健康完整叶片测量叶片性状,包括叶片鲜质量、叶面积和叶片干质量。叶面积使用Digimizer统计软件测量,叶片质量由天平称量。利用叶面积/叶片干质量计算比叶面积,叶片干质量/叶片鲜质量计算叶片干物质相对含量。对于地下性状,利用根系扫描仪(Expression 12000XL, EPSON) 和WinRHIZO根系分析软件测量植株根长、根表面积和根体积。利用根表面积/根干质量计算比根面积,根长/根干质量计算比根长,根体积/根干质量计算比根体积,根干质量/根体积计算根组织密度。

    所有数据采用R 4.2.3软件进行分析和绘图。利用ggplot2包绘图[22];将原始数据进行以10为底的对数转化以使数据总体符合正态分布,进而利用stats包对取对数后的数据进行线性回归、方差分析及多重比较,分析种植密度、种植比例、施肥对小麦生物量和功能性状的影响;利用vegan包对原始数据进行冗余分析[23]

    在单播小麦条件下,无论是否施肥,随着种植密度增大,小麦生物量显著降低(P<0.05);施肥显著增加了生物量,种植密度为8株·盆−1时增幅最大,达58.8% (图1AP<0.05)。在功能性状方面,对于地上性状,小麦的最大株高在种植密度为4株·盆−1时最大,施肥对最大株高无显著影响(图1B)。小麦叶面积在未施肥时随着种植密度增大逐渐降低,而施肥显著增加叶面积,且在种植密度为8株·盆−1时增幅最大,达143.4% (图1CP<0.05)。小麦的比叶面积在种植密度改变时并未发生显著变化,与未施肥相比,种植密度为8株·盆−1时,施肥仅显著增加了比叶面积,从111.90 cm2·g−1增大至168.60 cm2·g−1 (图1DP<0.05)。小麦叶片干物质相对含量在未施肥时随着种植密度增大呈驼峰形变化趋势,而在施肥情况下随着种植密度增大呈U形的变化趋势(图1E)。对于根性状,施肥和种植密度均未改变根长、根表面积、比根体积和根组织密度(图1F~K)。整体而言,种植密度和施肥会影响单播小麦的生物量和地上性状,而对根性状作用不明显。

    图 1  种植密度和施肥对单播小麦生长特征的影响
    Figure 1  Changes of wheat biomass and functional traits with N addition and planting density treatments in monoculture

    单株小麦的生物量、最大株高和叶面积之间呈正相关,它们与叶片干物质相对含量呈负相关(图2A);单株小麦的根长与根表面积呈正相关,比根面积和比根长呈正相关,两类根性状呈负相关,比根体积与其余4个性状相关性较小(图2B)。

    图 2  种植密度和施肥与小麦生长特征之间的相关性分析
    Figure 2  Redundancy analysis between wheat biomass and functional traits with N addition and planting density treatments in monoculture

    当小麦与野燕麦混播时,无论小麦种植比例如何,随着种植密度增大,小麦生物量显著降低(P<0.05);当种植密度相同时,随着小麦种植比例增大,生物量整体呈下降趋势;当种植密度为8株·盆−1,且小麦与野燕麦种植比例为25%∶75%时,施肥仅显著增加了生物量,未施肥时为4.23 g,施肥时为15.65 g,增加了270.3% (图3AP<0.05)。在功能性状方面,当小麦与野燕麦种植比例为25%∶75%和50%∶50%时,施肥、种植密度和小麦种植比例均未改变最大株高;当小麦与野燕麦种植比例为75%∶25%时,未施肥时最大株高随种植密度增大显著降低(P<0.05),从密度为4株·盆−1时的最大值(59.41 cm)降低至密度为16株·盆−1时的最小值(39.56 cm);施肥时株高的密度依赖性消失(图3B)。对于叶片性状,施肥、种植密度和小麦种植比例均未改变小麦平均叶面积、比叶面积和叶片干物质相对含量(图3C~E,P>0.05)。对于根性状,施肥、种植密度和种植比例均未改变根长、根表面积、比根长、比根体积和根组织密度(图3F~K,P>0.05)。

    图 3  与野燕麦混播时不同处理下小麦生长特征的变化
    Figure 3  Changes of wheat biomass and functional traits of wheat in W-O mixture with N addition, planting density and proportion

    图4可见:当小麦与稗草混播时,无论小麦种植比例如何,随着种植密度增大,小麦生物量显著降低(P<0.05);当种植密度相同时,随着小麦种植比例增大,生物量整体呈下降趋势;施肥并未改变小麦生物量。在功能性状方面,施肥、种植密度和种植比例均未改变小麦地上性状和根性状。施肥、种植密度和种植比例的交互作用会改变根长和根表面积。在未施肥时,当种植密度为4株·盆−1,且小麦与稗草种植比例为25%∶75%时,小麦根长和根表面积最大,而当种植密度为16株·盆−1,且小麦与杂草种植比例为75%∶25%时,小麦根长和根表面积最小。

    图 4  与稗草混播时不同处理下小麦生长特征的影响
    Figure 4  Changes of biomass and functional traits of wheat in W-B mixture with N addition, planting density and proportion

    本研究中,无论是单播还是混播,小麦的单株生物量随着种植密度的增大而显著下降,不依赖于小麦邻体杂草的物种类型。这与以往的研究结果一致,这是因为在高种植密度下,个体可用资源减少[24]。当小麦与野燕麦混播种植比例为75%∶25%,且未施肥时,小麦的最大株高随种植密度增大而显著降低,而此时小麦与稗草混播中的小麦最大株高无明显变化。这表明在相同种植密度和种植比例下,小麦与野燕麦共存时承受着更为激烈的光竞争压力。这可能是因为冬季和早春气温较低,导致原本在温暖潮湿地区常见的稗草发芽和生长较慢[2526]。相比之下,野燕麦耐旱耐冷、适应性强,拔节后生长迅速,能对小麦构成更大的竞争。此外,野燕麦种子成熟时间较早,这也增大了其对土壤资源的占据[27],体现了杂草生长过程中的权衡策略[28],即通过缩短生育期来获取在资源竞争中的优势[29]

    施肥是提高土壤肥力的常用手段[3031]。本研究发现:在小麦单播时,施肥可以增大单株小麦的生物量和叶面积,表明施肥能通过缓解氮受限来增强光合作用和呼吸作用,从而促进生物量的积累[32]。然而,在混播系统中,施肥与否对小麦的生长并无显著改变,这可能是因为当前施肥量对小麦生长的增益不足以弥补种植密度对小麦生长的制约[32],也可能是因为邻体杂草的竞争作用抵消了施肥对小麦生长的促进[33]

    当小麦与野燕麦混播时,施肥显著增加了种植密度为8株·盆−1,种植比例为25%∶75%时的单株小麦生物量。这可能是因为施肥后土壤中的可利用氮素增加,在一定程度上缓解了对小麦株高和根系生长的密度制约效应,从而有利于小麦生物量的积累。同时,土壤中可利用氮素的增加也会促进杂草的生长[34],而野燕麦的生长能力和养分吸收能力优于小麦[35],因此施肥处理可能会加剧野燕麦对小麦产量的密度制约效应。而当小麦与稗草混播时,施肥对其影响相对较小。这表明种植密度、种植比例和施肥的交互作用对小麦与杂草混播时单株小麦生长的影响可能具有杂草依赖性。种植密度和施肥的交互作用对根长和根表面积的影响较大,即在低密度施肥时最高而高密度未施肥时最低,而对株高和叶片性状的影响较小。这可能是因为与大田环境相比,盆栽不同植株获得光资源的差异较小,而土壤资源和空间受限,使得小麦根系需要发生比地上性状更大的表型可塑性以获取养分和生长。

    本研究采用容易获得的形态性状进行分析,并未对叶片光合作用、根呼吸和根系分泌物特征等生理性状进行研究,这些性状能更准确地反映植物对不同环境因子的响应[36],但难以快速大量测量[3738],所以相关研究仍然较少。为了能进一步揭示植物地上、地下性状的权衡机制并将其运用到农业生产和杂草管理之中,应在不同作物、不同耕作方式和不同的田间配置条件下进行有关植物生理属性的研究,并平衡多个功能性状间的权衡关系提高作物适合度。

    种植密度、种植比例和施肥的交互作用对小麦与杂草混播系统中小麦的生物量、根长和根表面积产生较大影响,而对株高和叶片性状的影响相对较小。在相同的种植条件下,野燕麦对小麦生长的不利影响超过稗草。施肥则根据混播的杂草种类而表现出不同的效果。因此,在农业生产实践中,应合理调控种植密度、杂草比例和施肥量。同时,在进行杂草管理时应选择合适的杂草种类,以发挥作物和杂草多样性在调控产量中的潜在价值。

  • 图  1  OfPSY基因的启动子序列

    Figure  1  Promoter sequence of OfPSY gene

    图  2  OfPDS基因的启动子序列

    Figure  2  Promoter sequence of OfPDS gene

    图  3  OfHYB基因的启动子序列

    Figure  3  Promoter sequence of OfHYB gene

    图  4  瞬时表达分析OfPSYOfPDSOfHYB启动子表达特性

    Figure  4  Transient expression analysis of OfPSY, OfPDS and OfHYB promoter expression characteristics

    表  1  启动子克隆所用引物

    Table  1.   Primers used for promoter cloning

    引物名称序列(5′→3′)
    OfPDSP-F TTAAATGGACGACTCATGTAATA
    OfPDSP-R CTCAAATTAACAGCAGAAACAT
    OfPSYP-F AAGCTTCAAAATTGCTGCTCAACTCATAC
    OfPSYP-R TCTAGAGCTGATACTGAACTATTAACGGTC
    OfHYBP-F AAGCTTTGGGTCTTACCTAACATCTTGGC
    OfHYBP-R TCTAGAGGACGGTAGTTTCAAGGGGGTG
    下载: 导出CSV

    表  2  构建PCAMBIA3301-LUC载体所用引物

    Table  2.   Primers used to construct PCAMBIA3301-LUC vector

    引物名称序列(5′→3′)
    OfPDSP-F GGTACCTTAAATGGACGACTCATGTAATA
    OfPDSP-R CCATGGCTCAAATTAACAGCAGAAACAT
    OfPSYP-F GGTACCAAGCTTCAAAATTGCTGCTCAACTCATAC
    OfPSYP-R CCATGGTCTAGAGCTGATACTGAACTATTAACGGTC
    OfHYBP-F GGTACCAAGCTTTGGGTCTTACCTAACATCTTGGC
    OfHYBP-R CCATGGTCTAGAGGACGGTAGTTTCAAGGGGGTG
    下载: 导出CSV

    表  3  OfPSY启动子中的顺式作用元件

    Table  3.   Cis-acting elements in OfPSY promoters

    元件名称数量序列(5′→3′)功能
    AAGAA-motif 1 GTAAAGAAA
    ABRE 1 ACGTG 脱落酸响应元件
    Box 4 1 ATTAAT 参与光响应的部分保守DNA序列
    CAAT-box 20 CAAT 一般元件
    G-box 1 TACGTG 光响应元件
    GARE-motif 1 TCTGTTG 赤霉素响应元件
    GT1-motif 1 GGTTAAT 光响应元件
    MYB 1 TAACCA MYB 结合位点
    MYC 1 CATGTG MYC 结合位点
    P-box 1 CCTTTTG 赤霉素响应元件
    STRE 1 AGGGG
    TATA-box 14 TATA 一般元件
    TCT-motif 1 TCTTAC 光响应元件的一部分
    Unnamed_1 1 CGTGG
    下载: 导出CSV

    表  4  OfPDS启动子中的顺式作用元件

    Table  4.   Cis-acting elements in OfPDS promoters

    元件名称数量序列(5′→3′)功能
    ARE 3 AAACCA 厌氧诱导相关的顺式调节元件
    AT~TATA-box 1 TATATA 一般元件
    Box 4 1 ATTAAT 参与光响应的部分保守
    DNA序列
    CAAT-box 21 CAAT 一般元件
    CCGTCC motif 1 CCGTCC
    CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件
    G-box 1 TACGTG 光响应元件
    GA-motif 1 ATAGATAA 光响应元件
    MBS 2 CAACTG MYB 结合位点
    MYB 1 TAACCA MYB 结合位点
    MYC 1 CATGTG MYC 结合位点
    P-box 2 CCTTTTG 赤霉素响应元件
    TATA-box 9 TATA 一般元件
    TC-rich repeats 1 ATTCTCTAAC 参与防御和胁迫的元件
    TCT-motif 3 TCTTAC 光响应元件的一部分
    Unnamed_1 1 CGTGG
    Unnamed_4 4 CTCC
    WRE3 1 CCACCT
    下载: 导出CSV

    表  5  OfHYB启动子中的顺式作用元件

    Table  5.   Cis-acting elements in OfHYB promoters

    元件名称数量序列(5′→3′)功能元件名称数量序列(5′→3′)功能
    ARE 2 AAACCA 厌氧诱导相关的顺式调节元件GT1-motif 2 GGTTAA 光响应元件
    A-box 1 CCGTCC 顺势调控元件Gap-box 1 CAAATGAA 光响应元件的一部分
    ABRE 4 ACGTG 脱落酸响应元件LTR 1 CCGAAA 低温响应元件
    AE-box 1 AGAAACTT 光响应元件的一部分MYC 1 CATGTG MYC结合位点
    AT~TATA-box 1 TATATA 一般元件Myb 1 TAACTG MYB结合位点
    AuxRR-core 1 GGTCCAT 生长素响应元件TATA 1 TATAAAAT 一般元件
    CAAT-box 20 CAAT 一般元件TATA-box 6 TATA 一般元件
    CCGTCC motif 1 CCGTCC TCCC-motif 1 TCTCCCT 光响应元件的一部分
    CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件TCT-motif 2 TCTTAC 光响应元件的一部分
    ERE 1 ATTTTAAA 乙烯响应元件Unnamed_1 1 GAATTTAATTAA 60K蛋白质结合位点
    G-box 2 TACGTG 光响应元件的一部分Unnamed_4 9 CTCC
    G-Box 1 CACGTT 光响应元件的一部分WRE3 1 CCACCT
    GC-motif 1 CCCCCG 参与缺氧特异性诱导的元件
    下载: 导出CSV
  • [1] MCQUINN R P, GIOVANNONI J J, POGSON B J. More than meets the eye: from carotenoid biosynthesis, to new insights into apocarotenoid signaling [J]. Current Opinion in Plant Biology, 2015, 27: 172 − 179.
    [2] NISAR N, LI Li, LU Shan, et al. Carotenoid metabolism in plants [J]. Molecular Plant, 2015, 8(1): 68 − 82.
    [3] HAN Y, LI L, DONG M, et al. cDNA cloning of the phytoene synthase (PSY) and expression analysis of PSY and carotenoid cleavage dioxygenase genes in Osmanthus fragrans [J]. Biologia, 2013, 68(2): 258 − 263.
    [4] MCQUINN R P, WONG B, GIOVANNONI J J. AtPDS overexpression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content [J]. Plant Biotechnology Journal, 2017, 16(2): 482 − 494.
    [5] DU Hao, WANG Nili, CUI Fei, et al. Characterization of a β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and ABA synthesis in rice [J]. Plant Physiology, 2010, 154(3): 1304 − 1318.
    [6] WANG Yiguang, ZHANG Chao, DONG Bin, et al. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans[J/OL]. Frontiers in Plant Science, 2018: 1499[2022-01-04]. doi: 10.3389/fpls.2018.01499.
    [7] HAN Yuanji, WANG Hongyun, WANG Xiaodan, et al. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool [J]. Horticulture Research, 2019, 6(1): 432 − 443.
    [8] 侯丹, 付建新, 张超, 等. 桂花品种‘堰虹桂’‘玉玲珑’和‘杭州黄’的香气成分及释放节律[J]. 浙江农林大学学报, 2015, 32(2): 208 − 220.

    HOU Dan, FU Jianxin, ZHANG Chao, et al. Flower scent composition of Osmanthus fragrans ‘Yanhong Gui’‘Yu Linglong’ and ‘Hangzhou Huang’, and their emission patterns [J]. Journal of Zhejiang A&F University, 2015, 32(2): 208 − 220.
    [9] HE Yuan, MA Yafeng, DU Yu, et al. Differential gene expression for carotenoid biosynthesis in a green alga Ulva prolifera based on transcriptome analysis [J]. BMC Genomics, 2018, 19(1): 916 − 930.
    [10] ZHANG Lancui, MA Gang, KATO M, et al. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro [J]. Journal of Experimental Botany, 2012(2): 871 − 886.
    [11] 范敏, 金黎平, 黄三文, 等. 干旱胁迫对马铃薯类黄酮和类胡萝卜素合成关键酶基因表达的影响[J]. 园艺学报, 2008, 35(4): 535 − 542.

    FAN Min, JIN Liping, HUANG Sanwen, et al. Effects of drought stress on gene expression of key enzymes for flavonoid and carotenoid synthesis in potato [J]. Acta Horticulturae Sinica, 2008, 35(4): 535 − 542.
    [12] LIU Yudong, SHI Yuan, SU Deding, et al. SlGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and SlMADS1 in tomato[J/OL]. Horticulture Research, 2021, 8(3)[ 2022-01-02]. doi: 10.1038/S41438-020-00431-9.
    [13] LIU Yudong, DONG Bin, ZHANG Chao, et al. Effects of exogenous abscisic acid (ABA) on carotenoids and petal color in Osmanthus fragrans ‘Yanhonggui’ [J]. Plants, 2020, 9(4): 454 − 466.
    [14] HAN Y, WANG X, CHEN W, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans [J]. Trees Genetics &Genomes, 2014, 10(2): 329 − 338.
    [15] BALDERMANN S, KATO M, FLEISCHMANN P, WATANABE N. Biosynthesis of α-and β-ionone, prominent scent compounds, in flowers of Osmanthus fragrans [J]. Acta Biochimica Polonica, 2012, 59(1): 79 − 81.
    [16] YANG Xiulian, YUE Yuanzheng, LI Haiyan, et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans [J/OL]. Horticulture Research, 2018, 5: 72[2021-12-23]. doi: 10.1038/s41438-018-0108-0.
    [17] FU Xiumin, CHENG Sihua, FENG Chao, et al. Lycopene cyclases determine high α-/β-carotene ratio and increased carotenoids in bananas ripening at high temperatures [J]. Food Chemistry, 2019, 283: 131 − 140.
    [18] KARPPINEN K, ZORATTI L, SARALA M, et al. Carotenoid metabolism during bilberry (Vaccinium myrtillus L. ) fruit development under different light conditions is regulated by biosynthesis and degradation [J]. BMC Plant Biology, 2016, 16(1): 95 − 111.
    [19] WANG Ruikai, WANG Chun’e. Genome-wide identification and transcription analysis of soybean carotenoid oxygenase genes during abiotic stress treatments [J]. Molecular Biology Reports, 2013, 40(8): 4737 − 4745.
    [20] LU Suwen, ZHANG Yin, ZHU Kaijie, et al. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes [J]. Plant Physiology, 2018, 176(4): 2657 − 2676.
    [21] FU Changchun, HAN Yanchao, KUANG Jianfei, et al. Papaya CpEIN3a and CpNAC2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4, CpLCY-e and CpCHY-b during fruit ripening [J]. Plant and Cell Physiology, 2017, 58(12): 2155 − 2165.
    [22] HAN Yanchao, GAO Haiyan, CHEN Hangjun, et al. The involvement of papaya CpSBP1 in modulating fruit softening and carotenoid accumulation by repressing CpPME1/2 and CpPDS4[J/OL]. Scientia Horticulturae, 2019, 256: 108582[2022-01-02]. doi:10.1016/j.scienta.2019.108582.
    [23] KEVIN S, PAULINA F, FELIPE Q I L, et al. Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota [J]. Journal of Experimental Botany, 2018, 69(16): 4113 − 4126.
    [24] YOSHIDA T, FUJITA Y, SAYAMA H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation [J]. The Plant Journal, 2010, 61(4): 672 − 685.
    [25] CHOI H I, HONG J H, HA J O, et al. ABFs, a family of ABA-responsive element binding factors [J]. Journal of Biological Chemistry, 2000, 275(3): 1723 − 1730.
    [26] BALDERMANN S, KATO M, KUROSAWA M, et al. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. [J]. Journal of Experimental Botany, 2010, 61(11): 2967 − 2977.
    [27] ZHANG Chao, WANG Yiguang, FU Jianxin, et al. Transcriptomic analysis and carotenogenic gene expression related to petal coloration in Osmanthus fragrans ‘Yanhong Gui’ [J]. Trees, 2016, 30(4): 1207 − 1223.
    [28] 刘玉成, 王艺光, 张超, 等. 桂花OfCCD1基因启动子克隆与表达特性[J]. 浙江农林大学学报, 2018, 35(4): 596 − 603.

    LIU Yucheng, WANG Yiguang, ZHANG Chao, et al. Cloning and transient expression assay of OfCCD1 gene promoters from Osmanthus fragrans [J]. Journal of Zhejiang A&F University, 2018, 35(4): 596 − 603.
  • [1] 李莉, 庞天虹, 付建新, 张超.  桂花番茄红素β-环化酶基因LCYB上游B2亚组ERF转录因子的筛选和鉴定 . 浙江农林大学学报, 2025, 42(1): 86-93. doi: 10.11833/j.issn.2095-0756.20240316
    [2] 向玉勇, 张妍, 陶翠玲.  温度对金银花尺蠖幼虫、蛹和成虫4种酶活性的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240471
    [3] 张耀, 王家璇, 蔡璇, 曾祥玲, 杨洁, 陈洪国, 邹晶晶.  桂花OfACOs基因家族鉴定及表达分析 . 浙江农林大学学报, 2023, 40(3): 492-501. doi: 10.11833/j.issn.2095-0756.20220783
    [4] 洪方蕾, 陆瑶, 俞世姣, 胡芷诺, 缪云锋, 钟诗蔚, 赵宏波.  桂花OfABFs基因克隆和表达分析 . 浙江农林大学学报, 2023, 40(3): 481-491. doi: 10.11833/j.issn.2095-0756.20220264
    [5] 向玉勇, 孙星, 殷培峰.  寄主植物、温度对金银花尺蠖幼虫消化酶活性的影响 . 浙江农林大学学报, 2020, 37(2): 311-318. doi: 10.11833/j.issn.2095-0756.2020.02.016
    [6] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [7] 王千千, 蒋琦妮, 付建新, 董彬, 赵宏波.  不同光周期和温度处理下桂花内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 928-934. doi: 10.11833/j.issn.2095-0756.2019.05.011
    [8] 张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙.  凤阳山4种森林土壤在不同温度培养下活性有机碳的变化 . 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
    [9] 刘玉成, 王艺光, 张超, 董彬, 付建新, 胡绍庆, 赵宏波.  桂花OfCCD1基因启动子克隆与表达特性 . 浙江农林大学学报, 2018, 35(4): 596-603. doi: 10.11833/j.issn.2095-0756.2018.04.003
    [10] 王英, 张超, 付建新, 赵宏波.  桂花花芽分化和花开放研究进展 . 浙江农林大学学报, 2016, 33(2): 340-347. doi: 10.11833/j.issn.2095-0756.2016.02.021
    [11] NGUYENThiHuongGiang, 张齐生.  竹集成材高频热压过程中板坯内温度的变化趋势 . 浙江农林大学学报, 2015, 32(2): 167-172. doi: 10.11833/j.issn.2095-0756.2015.02.001
    [12] 杨秀莲, 郝其梅.  桂花种子休眠和萌发的初步研究 . 浙江农林大学学报, 2010, 27(2): 272-276. doi: 10.11833/j.issn.2095-0756.2010.02.018
    [13] 蔡璇, 苏蘩, 金荷仙, 姚崇怀, 王彩云.  四季桂花瓣色素的初步鉴定与提取方法 . 浙江农林大学学报, 2010, 27(4): 559-564. doi: 10.11833/j.issn.2095-0756.2010.04.014
    [14] 李晓平, 周定国.  温度对稻草部分理化性能的影响 . 浙江农林大学学报, 2007, 24(5): 528-532.
    [15] 胡绍庆, 宣子灿, 周煦浪, 吴光洪.  杭州市桂花品种的分类整理 . 浙江农林大学学报, 2006, 23(2): 179-187.
    [16] 周媛, 姚崇怀, 王彩云.  桂花切花品种筛选 . 浙江农林大学学报, 2006, 23(6): 660-663.
    [17] 苏明申, 叶正文, 吴钰良, 李胜源, 钱进, 张均强.  温度对桃品种破眠效应的研究 . 浙江农林大学学报, 2005, 22(1): 12-15.
    [18] 吴光洪, 胡绍庆, 宣子灿, 向其柏.  桂花品种分类标准与应用 . 浙江农林大学学报, 2004, 21(3): 281-284.
    [19] 项文化, 田大伦, 闫文德, 罗勇.  白栎光合特性对二氧化碳浓度增加和温度升高的响应 . 浙江农林大学学报, 2004, 21(3): 247-253.
    [20] 陈国瑞, 李天佑, 俞益武, 蒋秋怡.  杭州常绿阔叶林对林内近地层温度和湿度的调节效应* . 浙江农林大学学报, 1994, 11(2): 151-158.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220110

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/1/64

图(4) / 表(5)
计量
  • 文章访问数:  1532
  • HTML全文浏览量:  242
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-07-10
  • 录用日期:  2022-08-16
  • 网络出版日期:  2022-10-10
  • 刊出日期:  2023-01-17

桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析

doi: 10.11833/j.issn.2095-0756.20220110
    基金项目:  国家自然科学基金面上资助项目(32072615);中国博士后科学基金第71批面上资助项目(2022M712828)
    作者简介:

    周俊杰(ORCID: 0000-0003-3459-6220 ),从事观赏植物遗传育种研究。E-mail: 747782261@qq.com

    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,从事观赏植物遗传育种研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S722.3

摘要:   目的  探究高温和外源脱落酸对桂花Osmanthus fragrans类胡萝卜素生物合成的3个相关基因,包括八氢番茄红素合成酶基因(PSY)、八氢番茄红素脱氢酶基因(PDS)、β-胡萝卜素羟化酶基因(HYB)的调控作用,为阐释桂花类胡萝卜素代谢调控的机制提供研究基础。  方法  根据桂花基因组数据库的序列,从桂花品种‘堰虹桂’‘Yanhong Gui’中克隆OfPSYOfPDSOfHYB基因的启动子序列,并进行生物信息学分析,再构建PCAMBIA3301-LUC载体在烟草Nicotiana benthamiana中瞬时表达,结合高温(37 ℃)和200 mg·L−1脱落酸处理,分析启动子活性。  结果  获得OfPSYOfPDSOfHYB基因的部分启动子,其长度分别为1 908、1 521及1 830 bp。作用元件分析表明:3个启动子中均存在TATA-box和CAAT-box等启动子基本元件、光响应元件、脱落酸响应元件以及MYB和MYC结合位点。此外,在OfPSY启动子中,存在赤霉素响应元件;在OfPDS启动子中,存在茉莉酸甲酯响应元件、赤霉素响应元件、厌氧诱导型元件参与防御和胁迫的元件;在OfHYB启动子中,存在生长素、乙烯、茉莉酸甲酯等激素响应元件、低温响应元件和厌氧诱导型元件。烟草瞬时转化试验表明:相对高温能激活OfPSYOfPDSOfHYB的启动子活性,脱落酸能激活OfPDSOfHYB的启动子活性。  结论  高温和脱落酸可能通过调控桂花类胡萝卜素合成基因启动子活性,影响桂花类胡萝卜素的积累。图4表5参28

English Abstract

周俊杰, 王艺光, 董彬, 等. 桂花OfPSY、OfPDS和OfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
引用本文: 周俊杰, 王艺光, 董彬, 等. 桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
WANG Li-ying, LOU Lu-huan, WANG Chao, et al. Leaf gas exchange and chlorophyll fluorescence parameters in three species of Ilex[J]. Journal of Zhejiang A&F University, 2009, 26(1): 27-31.
Citation: ZHOU Junjie, WANG Yiguang, DONG Bin, et al. Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans[J]. Journal of Zhejiang A&F University, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
  • 类胡萝卜素是一种亲脂类异戊二烯,是一种自然界中广泛存在的生物色素,主要反射黄色、橙色和红色的光[1]。在植物器官中,类胡萝卜素在质体中的积累对吸收过量光能、清除活性氧、合成植物激素提供前体物质都起重要的作用[2]。八氢番茄红素合成酶(phytoene synthase, PSY)是类胡萝卜素合成途径中的第1个限速酶,它的作用是将2分子的香叶酰香叶酰二磷酸(geranylgeranyl diphosphate,GGPP)合成无色的八氢番茄红素[3]。随后,八氢番茄红素经过包括八氢番茄红素脱氢酶(phytoene desaturase,PDS)在内的4次去饱和反应和2次异构化反应的多顺式转化,最终生成红色的全反式番茄红素[4]。而β-羟化酶(β-carotene hydroxylase,HYB)既可以单独作用使β-胡萝卜素经羟化作用转化为紫黄质,也可与ε-羟化酶(ε-carotene hydroxylase,HYE)协同作用使α-胡萝卜素经羟化作用形成叶黄素[5]。桂花Osmanthus fragrans是重要的观赏植物,花色和花香是其主要观赏性状。已有研究发现:类胡萝卜素既是桂花花瓣中主要色素成分[6],也是桂花香气物质的前体物质[7]。目前已在多种植物中发现,植物器官中的类胡萝卜素含量及相关基因的表达水平受到多种因素的影响,如温度[8]、光照[9]、干旱胁迫[10]、乙烯[11]等。前期研究[12]发现:在200 mg·L−1脱落酸处理下,桂花花色明显加深,花瓣类胡萝卜素含量上升,类胡萝卜素合成关键基因OfPSYOfPDSOfHYB表达水平显著上调。相关基因在前人的研究中均已克隆到[13-15],但对其调控的作用机制仍知之甚少。基因的启动子作为上游调控因子识别并结合的部位,是基因表达调控的重要作用位点。为进一步揭示桂花花色形成及其调控的分子机制,本研究克隆了OfPSYOfPDSOfHYB基因的启动子,通过作用元件分析、表达载体构建和瞬时表达分析,初步明确其作用。

    • 8~10年生丹桂品种‘堰虹桂’Osmanthus fragrans‘Yanhong Gui’栽植于浙江农林大学桂花资源圃;烟草Nicotiana benthamiana栽培于浙江农林大学园林植物实验室。

    • DNA提取试剂盒、Premix Taq聚合酶、质粒载体PMD18-T、大肠埃希菌Escherichia coli DH5α、切胶回收试剂盒、DNA片段纯化试剂盒、限制性内切酶EcoR Ⅰ、Nco Ⅰ、DNA连接酶等购自Takara公司(大连)。

    • 参照DNA提取试剂盒所用方法提取桂花‘堰虹桂’基因组DNA。

    • 根据桂花基因组数据[16]中的OfPSYOfPDSOfHYB基因启动子序列,用Primer Premier 5.0分别设计上下游引物。引物由有康生物公司(杭州)合成(表1)。

      表 1  启动子克隆所用引物

      Table 1.  Primers used for promoter cloning

      引物名称序列(5′→3′)
      OfPDSP-F TTAAATGGACGACTCATGTAATA
      OfPDSP-R CTCAAATTAACAGCAGAAACAT
      OfPSYP-F AAGCTTCAAAATTGCTGCTCAACTCATAC
      OfPSYP-R TCTAGAGCTGATACTGAACTATTAACGGTC
      OfHYBP-F AAGCTTTGGGTCTTACCTAACATCTTGGC
      OfHYBP-R TCTAGAGGACGGTAGTTTCAAGGGGGTG
    • 以桂花‘堰虹桂’基因组DNA为模板,分别用引物OfPSYP-F和OfPSYP-R、OfPDSP-F和OfPDSP-R、OfHYBP-F和OfHYBP-R对其启动子进行扩增。将扩增产物连接至质粒载体PMD18-T并转化大肠埃希菌DH5α,随后鉴定阳性克隆并送至有康公司(杭州)测序。启动子作用元件分析通过在线网站Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)进行。

    • 设计包含酶切位点的引物(表2),用于构建启动子表达载体。使用限制性内切酶EcoR Ⅰ和Nco Ⅰ分别对PCAMBIA3301-LUC载体和添加了酶切位点的启动子进行双酶切。用T4连接酶连接回收的启动子和载体片段。再经转化大肠埃希菌DH5α鉴定,得到重组的PSYP::LUC、PDSP::LUC、HYBP::LUC载体。再将重组质粒转化农杆菌Agrobacterium tumefaciens GV3101。

      表 2  构建PCAMBIA3301-LUC载体所用引物

      Table 2.  Primers used to construct PCAMBIA3301-LUC vector

      引物名称序列(5′→3′)
      OfPDSP-F GGTACCTTAAATGGACGACTCATGTAATA
      OfPDSP-R CCATGGCTCAAATTAACAGCAGAAACAT
      OfPSYP-F GGTACCAAGCTTCAAAATTGCTGCTCAACTCATAC
      OfPSYP-R CCATGGTCTAGAGCTGATACTGAACTATTAACGGTC
      OfHYBP-F GGTACCAAGCTTTGGGTCTTACCTAACATCTTGGC
      OfHYBP-R CCATGGTCTAGAGGACGGTAGTTTCAAGGGGGTG
    • 将含有重组质粒的农杆菌菌液在含有利福平和卡那霉素的LB培养基中振荡培养至D(600)达0.8~1.0,在4 ℃下以4 000 r·min−1离心10 min,收集菌体,随后以2 mL含10 mmol·L−1MES、10 mmol·L−1 MgCl2和150 μmol·L−1的乙酰丁香酮的悬浮液重悬菌体2次。选取长势较好的烟草,将悬浮液用1 mL注射器从叶片下表皮注射到烟草叶片中直至整个叶片呈现水渍状。将烟草置于暗处培养1 d后转移至人工气候室继续培养1~2 d,随后将植株分别进行37 ℃处理和200 mg·L−1脱落酸喷施处理,12 h后将注射后的叶片取下,喷洒1 mmol·L−1的荧光素钠盐溶液,暗处放置5 min后在CCD冷冻发光仪下观察LUC荧光信号。参考Luciferase (Promega)荧光素酶报告系统试剂盒对酶活性进行检测,以对照组的比值为单位1,得到不同处理组的相对Luciferase活性,每组实验均包括3次技术重复和生物学重复。利用SPSS 19.0软件进行数据差异分析。

    • 以桂花‘堰虹桂’基因组DNA为模板,用引物OfPSYP-F和OfPSYP-R、OfPDSP-F和OfPDSP-R、OfHYBP-F和OfHYBP-R对其启动子进行扩增,分别得到OfPSY启动子长度为1 908 bp (图1),OfPDS启动子长度为1521 bp (图2),OfHYB启动子长度为1 830 bp (图3)的序列。利用Plant CARE在线软件对启动子序列的结合位点进行分析。在OfPSYP中,存在TATA-box、CAAT-box等启动子基本元件,和光响应元件、脱落酸(ABA)响应元件、赤霉素响应元件等响应元件,以及MYB、MYC结合位点(表3);在OfPDSP中,存在TATA-box、CAAT-box等启动子基本元件,和脱落酸响应元件、茉莉酸甲酯响应元件、赤霉素响应元件、光响应元件、厌氧诱导型元件、防御和胁迫响应元件等响应元件,以及MYB、MYC结合位点(表4);在OfHYBP中,存在TATA-box、CAAT-box等启动子基本元件,和脱落酸响应元件、生长素响应元件、低温响应元件、乙烯响应元件、茉莉酸甲酯响应元件、光响应元件、厌氧诱导型元件等响应元件,以及MYB、MYC结合位点(表5)。

      图  1  OfPSY基因的启动子序列

      Figure 1.  Promoter sequence of OfPSY gene

      图  2  OfPDS基因的启动子序列

      Figure 2.  Promoter sequence of OfPDS gene

      图  3  OfHYB基因的启动子序列

      Figure 3.  Promoter sequence of OfHYB gene

      表 3  OfPSY启动子中的顺式作用元件

      Table 3.  Cis-acting elements in OfPSY promoters

      元件名称数量序列(5′→3′)功能
      AAGAA-motif 1 GTAAAGAAA
      ABRE 1 ACGTG 脱落酸响应元件
      Box 4 1 ATTAAT 参与光响应的部分保守DNA序列
      CAAT-box 20 CAAT 一般元件
      G-box 1 TACGTG 光响应元件
      GARE-motif 1 TCTGTTG 赤霉素响应元件
      GT1-motif 1 GGTTAAT 光响应元件
      MYB 1 TAACCA MYB 结合位点
      MYC 1 CATGTG MYC 结合位点
      P-box 1 CCTTTTG 赤霉素响应元件
      STRE 1 AGGGG
      TATA-box 14 TATA 一般元件
      TCT-motif 1 TCTTAC 光响应元件的一部分
      Unnamed_1 1 CGTGG

      表 4  OfPDS启动子中的顺式作用元件

      Table 4.  Cis-acting elements in OfPDS promoters

      元件名称数量序列(5′→3′)功能
      ARE 3 AAACCA 厌氧诱导相关的顺式调节元件
      AT~TATA-box 1 TATATA 一般元件
      Box 4 1 ATTAAT 参与光响应的部分保守
      DNA序列
      CAAT-box 21 CAAT 一般元件
      CCGTCC motif 1 CCGTCC
      CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件
      G-box 1 TACGTG 光响应元件
      GA-motif 1 ATAGATAA 光响应元件
      MBS 2 CAACTG MYB 结合位点
      MYB 1 TAACCA MYB 结合位点
      MYC 1 CATGTG MYC 结合位点
      P-box 2 CCTTTTG 赤霉素响应元件
      TATA-box 9 TATA 一般元件
      TC-rich repeats 1 ATTCTCTAAC 参与防御和胁迫的元件
      TCT-motif 3 TCTTAC 光响应元件的一部分
      Unnamed_1 1 CGTGG
      Unnamed_4 4 CTCC
      WRE3 1 CCACCT

      表 5  OfHYB启动子中的顺式作用元件

      Table 5.  Cis-acting elements in OfHYB promoters

      元件名称数量序列(5′→3′)功能元件名称数量序列(5′→3′)功能
      ARE 2 AAACCA 厌氧诱导相关的顺式调节元件GT1-motif 2 GGTTAA 光响应元件
      A-box 1 CCGTCC 顺势调控元件Gap-box 1 CAAATGAA 光响应元件的一部分
      ABRE 4 ACGTG 脱落酸响应元件LTR 1 CCGAAA 低温响应元件
      AE-box 1 AGAAACTT 光响应元件的一部分MYC 1 CATGTG MYC结合位点
      AT~TATA-box 1 TATATA 一般元件Myb 1 TAACTG MYB结合位点
      AuxRR-core 1 GGTCCAT 生长素响应元件TATA 1 TATAAAAT 一般元件
      CAAT-box 20 CAAT 一般元件TATA-box 6 TATA 一般元件
      CCGTCC motif 1 CCGTCC TCCC-motif 1 TCTCCCT 光响应元件的一部分
      CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件TCT-motif 2 TCTTAC 光响应元件的一部分
      ERE 1 ATTTTAAA 乙烯响应元件Unnamed_1 1 GAATTTAATTAA 60K蛋白质结合位点
      G-box 2 TACGTG 光响应元件的一部分Unnamed_4 9 CTCC
      G-Box 1 CACGTT 光响应元件的一部分WRE3 1 CCACCT
      GC-motif 1 CCCCCG 参与缺氧特异性诱导的元件
    • 重组载体瞬时表达的荧光成像结果显示:注射了含重组载体农杆菌的烟草叶片均显现出荧光(图4),表明OfPSYPOfPDSPOfHYBP均能够驱动LUC报告基因的表达,具有启动子活性。相对于25 ℃处理的烟草叶片,在37 ℃处理下,注射了OfPSYP::LUC、OfPDSP::LUC和OfHYBP::LUC的烟草叶片呈现出更强的荧光信号;在200 mg·L−1脱落酸处理下,注射了OfPDSP::LUC和OfHYBP::LUC的烟草叶片呈现出更强的荧光信号。结果表明:相对高温胁迫上调了OfPSYOfPDSOfHYB的启动子活性,脱落酸上调了OfPDSOfHYB的启动子活性。

      图  4  瞬时表达分析OfPSYOfPDSOfHYB启动子表达特性

      Figure 4.  Transient expression analysis of OfPSY, OfPDS and OfHYB promoter expression characteristics

    • 植物中类胡萝卜素的成分和含量是由一系列酶促反应完成的。研究发现类胡萝卜素代谢关键基因的表达受到各种环境因素和激素的调控。在香蕉Musa nana中,高温可以上调α-胡萝卜素和β-胡萝卜素生物合成途径相关基因的转录水平[17];在蓝莓Vaccinium spp.中,红光和远红光对果实中类胡萝卜素合成和降解基因的表达均起到上调作用[18];在大豆Glycine max中,氯化钠(NaCl)、聚乙二醇(PEG)、高温、低温等胁迫和ABA处理对类胡萝卜素降解基因起明显的上调作用[19]。此外,转录因子对类胡萝卜素代谢关键基因的启动子存在直接调控作用。在柑橘Citrus reticulata中,CsMADS6基因可以结合CsPSYCsPDS基因的启动子[20],从而促进其基因的表达;在番木瓜Carica papaya中,CpEIN3a既可以直接识别并结合CpPDSCpCHYB基因的启动子,也可与CpNAC1/2基因共同促进CpPDS的表达[21],而CpSBP1则对CpPDS基因存在负调控作用[22];在胡萝卜Daucus carota中,DcAREB3可响应盐胁迫和ABA处理,识别并结合DcPSY2启动子的ABRE作用元件,从而促进其表达[23]

      前期通过对桂花进行ABA处理发现,相对于未处理的桂花,经200 mg·L−1 ABA处理的桂花花瓣中的类胡萝卜素含量上升;对花瓣中类胡萝卜素代谢关键基因实时荧光定量表达显示:经ABA处理后OfPSYOfPDSOfHYB等基因的表达量显著上调,推测ABA通过调控这几个基因的表达,从而影响了桂花花色[12]。本研究在OfHYB启动子中发现了4个ABRE作用元件,该作用元件被认为是AREB转录因子的结合位点[24]。研究发现AREB转录因子能够识别并结合2个相距较近的ABRE作用元件[25]。在OfHYB启动子的4个ABRE作用元件中,有3个元件之间相距19和12 bp,表明OfHYB基因极有可能受到ABA调控,与此同时,OfHYB启动子上发现了最多的激素响应元件,除ABA响应元件外,还存在生长素、茉莉酸甲酯和乙烯响应元件,表明OfHYB基因的表达可能受到多种激素的调控。本研究通过高温和外源施加ABA,研究了几个启动子表达特性,进一步验证了相对高温对OfPSYOfHYB基因启动子以及ABA对OfPDSOfHYB启动子表达的调控作用。此外,在3个基因启动子中均存在数个光响应元件,在桂花中已经发现OfCCD1的表达可能受光照影响[2628],说明桂花花色物质的合成与降解均可能与光信号传导有关,但其具体作用机制仍有待进一步研究。本研究克隆得到的启动子经瞬时表达验证均具有启动子活性,下一步可将其构建酵母单杂载体,通过寻找上游的调控因子,明确桂花花瓣类胡萝卜素合成基因转录调控的分子机制。

参考文献 (28)

目录

/

返回文章
返回