留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析

周俊杰 王艺光 董彬 赵宏波

马佳燕, 马嘉伟, 柳丹, 等. 杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价[J]. 浙江农林大学学报, 2021, 38(2): 336-345. DOI: 10.11833/j.issn.20950756.20200309
引用本文: 周俊杰, 王艺光, 董彬, 等. 桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
MA Jiayan, MA Jiawei, LIU Dan, et al. Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu Plain[J]. Journal of Zhejiang A&F University, 2021, 38(2): 336-345. DOI: 10.11833/j.issn.20950756.20200309
Citation: ZHOU Junjie, WANG Yiguang, DONG Bin, et al. Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans[J]. Journal of Zhejiang A&F University, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110

桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析

DOI: 10.11833/j.issn.2095-0756.20220110
基金项目: 国家自然科学基金面上资助项目(32072615);中国博士后科学基金第71批面上资助项目(2022M712828)
详细信息
    作者简介: 周俊杰(ORCID: 0000-0003-3459-6220 ),从事观赏植物遗传育种研究。E-mail: 747782261@qq.com
    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,从事观赏植物遗传育种研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S722.3

Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans

  • 摘要:   目的  探究高温和外源脱落酸对桂花Osmanthus fragrans类胡萝卜素生物合成的3个相关基因,包括八氢番茄红素合成酶基因(PSY)、八氢番茄红素脱氢酶基因(PDS)、β-胡萝卜素羟化酶基因(HYB)的调控作用,为阐释桂花类胡萝卜素代谢调控的机制提供研究基础。  方法  根据桂花基因组数据库的序列,从桂花品种‘堰虹桂’‘Yanhong Gui’中克隆OfPSYOfPDSOfHYB基因的启动子序列,并进行生物信息学分析,再构建PCAMBIA3301-LUC载体在烟草Nicotiana benthamiana中瞬时表达,结合高温(37 ℃)和200 mg·L−1脱落酸处理,分析启动子活性。  结果  获得OfPSYOfPDSOfHYB基因的部分启动子,其长度分别为1 908、1 521及1 830 bp。作用元件分析表明:3个启动子中均存在TATA-box和CAAT-box等启动子基本元件、光响应元件、脱落酸响应元件以及MYB和MYC结合位点。此外,在OfPSY启动子中,存在赤霉素响应元件;在OfPDS启动子中,存在茉莉酸甲酯响应元件、赤霉素响应元件、厌氧诱导型元件参与防御和胁迫的元件;在OfHYB启动子中,存在生长素、乙烯、茉莉酸甲酯等激素响应元件、低温响应元件和厌氧诱导型元件。烟草瞬时转化试验表明:相对高温能激活OfPSYOfPDSOfHYB的启动子活性,脱落酸能激活OfPDSOfHYB的启动子活性。  结论  高温和脱落酸可能通过调控桂花类胡萝卜素合成基因启动子活性,影响桂花类胡萝卜素的积累。图4表5参28
  • 土壤是人类赖以生存的自然环境,也是农业生产的重要资源。然而,随着国民经济的加速发展,城市化、工业化进程的不断加快,农药、化肥的长期使用和污水灌溉等,农田土壤中的重金属不断累积,引发农田土壤重金属污染问题,导致农产品重金属积累和污染,并通过食物链进入人体,威胁人类的健康。农产品重金属污染问题变得越来越严峻[1-4]。土壤重金属污染具有隐蔽性、不可逆性和长期性的特点[5-6],治理难度大。对土壤重金属污染状况进行监测,预防土壤重金属污染,开展土壤重金属污染农产品的风险评价极为重要,这也是国内外研究和社会关注的热点[7-9]。土壤重金属污染状况的正确评价可以为土壤安全利用、保障农产品安全生产及政府制定土壤保护政策等提供科学依据。评价土壤重金属污染的方法较多,常见的有内梅罗综合指数法、富集系数法、地累积指数法、潜在生态危害指数法等,迄今尚未形成一个成熟的方法和统一的标准[10-13]。水稻Oryza sativa是世界第二大粮食作物,也是中国第一大粮食作物。镉容易被水稻吸收,也是目前中国水稻生产中最主要的重金属污染元素[14]。在浙江省农产区不同土地利用类型中,稻田土壤中重金属平均含量最高[15],但对稻米重金属污染状况的调查,特别是土壤和稻米协同采样的调查和污染评价研究却甚少[16]。嘉兴是浙江省杭嘉湖平原区重要产粮基地之一。已有文献报道:嘉兴市稻田土壤重金属总体状况良好,也存在着一些零星分布的土壤重金属超标区域,但尚未开展土壤-水稻系统协同采样和进行风险评价。基于此,本研究于2018年在水稻收获季,以已报道嘉兴市受重金属污染的稻田土壤区域及重点企业周边区域为主要对象,开展土壤-水稻样品协同采样,测定土壤和稻米中镉、铅、铬、砷等4种重金属元素质量分数,结合GB 15618−2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》、GB/T 36869−2018《水稻生产的土壤镉、铅、铬、汞、砷安全阈值》和GB 2762−2017《食品中污染物限量》,对土壤重金属污染状况和对水稻安全生产的污染风险进行评价,旨在进一步保护和利用土壤,为今后嘉兴市水稻土质量安全管理和土壤重金属污染治理方案的确定提供科学依据。

    嘉兴市地处浙江省东北部、长江三角洲杭嘉湖平原腹地,30°21′~31°02′N,120°18′~121°06′E。全市现辖海宁、桐乡、平湖、海盐、嘉善5个县(市)和南湖、秀洲2个区,陆地总面积4275.05 km2,全市户籍人口352.12万人。该市地处北亚热带南缘,属东亚季风区,冬夏季风交替,四季分明,气温适中,雨水丰沛,日照充足,年平均气温15.9 ℃,年平均降水量1168.6 mm,年平均日照2 017.0 h。地势低平。土壤母质主要为浅海沉积物、河流冲积物及湖沼相沉积物。

    以公开报道的嘉兴市土壤重金属信息为导向,并结合实地咨询和调查,本研究试验区域覆盖重金属接近和达到污染的土壤,同时兼顾选取重点行业企业等污染源周围稻田土壤(疑似),并开展土壤和水稻样品协同采集。采用全球定位系统(GPS)定位,于2018年10月水稻收获时期,采集稻田0~20 cm土层土样,同时采集对应的水稻籽粒样品。为确保样品的代表性,在每个取样点以周围5 m×5 m正方形范围内设置6~8个采样点。每个采样点取土约0.5 kg,均匀混合为1份,按四分法保留分析样品约1.0 kg。土壤样品自然风干后混匀磨碎,过2.00 mm筛,用以测定pH和重金属有效态质量分数;取其中一部分过0.15 mm筛,用以测定土壤有机质和重金属全量。水稻样品选取籽粒部分,以自来水冲洗和去离子水洗净,70 ℃烘干至恒量,脱壳粉碎后备用。

    土壤重金属全量采用硝酸-盐酸-高氯酸(HNO3-HCl-HClO4)混合酸微波消解后测定;土壤重金属镉有效态采用0.1 mol·L−1盐酸提取剂提取后测定;水稻籽粒重金属采用硝酸微波消解后测定。待测液中的镉、铅采用石墨炉原子吸收光谱仪测定,铬采用火焰原子吸收光谱仪测定,砷采用原子荧光光谱仪测定。测定时均加入国家标准土壤标样和大米国家标准参比物分别进行质量控制,分析结果符合质量控制要求。土壤pH用pH计按水土比2.5∶1.0浸提测定;土壤有机质采用重铬酸钾氧化-外加热法测定[17]

    目前,对于重金属污染的评价方法有很多,根据评价结果反映的主体可分为2类: 以重金属元素为主体的评价方法和以采样点为主体的评价方法[18]。本研究主要选取以重金属元素为主体的评价方法,单因子指数法和内梅罗综合指数法、富集系数法和地累积指数法、潜在生态指数评价法和生态风险预警指数法对嘉兴市水稻土壤重金属污染及其生态危害做出定量评价和风险预估。

    1.4.1   单因子污染指数评价法和内梅罗综合指数法

    单因子污染指数法[19]针对土壤中单一污染物的污染程度进行评价。其计算公式为:

    $${P_i} = {C_i}/{S_i}{\text{。}}$$ (1)

    式(1)中:Pi为重金属元素i的污染指数;Ci为重金属元素i的实测质量分数(mg·kg−1);Si为重金属元素i的评价标准(mg·kg−1)。Pi的分级标准参见文献[19]。

    内梅罗综合污染指数法[19]是在单因子指数的基础上对重金属污染进行综合评价。其计算公式为:

    $$ P=\sqrt{\frac{{P}_{i\mathrm{m}\mathrm{a}\mathrm{x}}^{2}+{P}_{i\mathrm{a}\mathrm{v}\mathrm{e}}^{2}}{2}}{\text{。}}$$ (2)

    式(2)中:P为土壤污染综合指数;Piave为土壤中各污染指数平均值;Pimax为土壤中各污染指数最大值。P的分级标准参见文献[19]。

    1.4.2   富集系数法和地累积指数法

    采用富集系数法[12]主要是评估和识别污染物来源。富集系数(E)的计算公式如下:

    $$ E=\frac{({C}_{i}/{C}_{{\rm{n}}})_\mathrm{s}}{({C}_{i}/{C}_{{\rm{n}}})_{\rm{r}}}{\text{。}}$$ (3)

    式(3)中:(Ci/Cn)s为土壤样品中重金属元素i与标准化元素n的测量质量分数比值,(Ci/Cn)r为土壤中重金属元素i与标准化元素n的背景值比。本研究选择锰为参比元素[20-21]E值越大,富集程度就越高。E的分级标准参见文献[12]。

    地累积指数(Igeo)法[12]被应用于人为活动产生的重金属对土壤污染的评价。Igeo的计算公式如下:

    $$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}}={\mathrm{log}}_{2}\left[\frac{{C}_{i}}{k {B}_{i}}\right]{\text{。}}$$ (4)

    式(4)中:Igeo为地累积指数;Ci为重金属元素i的实测值(mg·kg−1);Bi为重金属元素i的地球化学背景值(mg·kg−1);k为考虑造岩运动导致重金属背景值存在差异而设定的系数,一般为1.5。Igeo的分级标准参见文献[12]。

    1.4.3   潜在生态风险评价指数法和生态风险预警指数法

    潜在生态风险采用Hakanson提出的生态风险指数法进行评价。潜在生态风险指数IR的计算公式如下:

    $${F_{{\rm{r}}i}} = {C_i}/{C_{\rm{n}}}\text{;}$$ (5)
    $${E_{{\rm{r}}i}} = {T_{{\rm{r}}i}} {F_{{\rm{r}}i}}\text{;}$$ (6)
    $$ {I}_{\mathrm{R}}=\sum\limits_{i=1}^{n}{E}_{\mathrm{r}i}\text{。} $$ (7)

    式(5)~式(7)中:Ci为重金属元素i的实测值;Cn为重金属元素i的参比值(采用浙江省土壤环境背景值)[22]FriTriEri分别为第i种重金属污染系数、毒性响应系数和潜在生态危害指数。镉、铅、铬、砷的毒性响应系数分别为30、10、2、10[23]。潜在生态危害指数(Eri)越高,表明土壤受某个重金属污染的风险越高;IR被称为潜在生态风险指数,为多种重金属元素的潜在生态风险综合值,其值越大,土壤风险越高,据此可以根据ErIR进行分类和风险评价[24]

    采用Rapan提出的生态风险预警指数(IER)对水稻土生态风险进行预警评估。IER的计算公式为:

    $$ {I}_{\mathrm{E}\mathrm{R}}=\sum\limits_{i=1}^{n}{I}_{\mathrm{E}{\mathrm{R}}{i}}=\sum\limits_{i=1}^{n}\left(\frac{{C}_{{\mathrm{A}}{i}}}{{C}_{{\mathrm{R}}{i}}-1}\right)\text{。} $$ (8)

    式(8)中:IER为生态风险预警指数;IERi为重金属元素i的生态风险指数;CAi为重金属元素i的实测质量分数;CRi为重金属元素i的参比值。预警分级标准根据IER进行分类和风险评价[25]

    采用Excel 2018对土壤重金属进行描述性统计分析。采用SPSS 22.0进行Spearman相关性分析。数据统计图表的绘制由Excel 2018和Origin 11.0完成。

    土壤重金属的生物有效性受诸多因子的影响。在水稻生产上,土壤pH和有机质质量分数对土壤重金属有效性的影响极为重要。相同的重金属质量分数,土壤高pH、高有机质有利于重金属有效性的降低,抑制水稻吸收积累重金属,稻米重金属污染风险下降。因此,国家标准中将土壤pH和有机质质量分数状况列为2个参数,制定土壤中重金属元素镉、铅、铬、汞、砷的最大允许质量分数,其允许值(阈值)随土壤pH和有机质质量分数的提高而增大,如当pH<5、有机质质量分数<20 g·kg−1时,土壤镉的安全阈值定为0.2 mg·kg−1;而当土壤pH≥7、有机质质量分数≥20 g·kg−1时,土壤镉的安全阈值定为0.5 mg·kg−1(GB/T 36869−2018《水稻生产的土壤镉、铅、铬、汞、砷安全阈值》)。调研结果显示:本研究所调查的水稻土土壤pH和有机质质量分数的变化都较大,土壤pH为5.0~8.0,pH相差达3个单位,而土壤有机质质量分数为6.8~61.0 g·kg−1,相差近10倍(表1),因而,允许的土壤重金属阈值不同。

    表 1  土壤pH和有机质状况
    Table 1  Soil pH and organic matter content
    项目pH有机质/(g·kg−1)项目pH有机质/(g·kg−1)
    最小值4.96 6.84标准差   0.7414.43
    最大值7.9960.97变异系数/%12.0639.91
    平均值6.1536.15
    下载: 导出CSV 
    | 显示表格

    本研究所调查区域水稻土重金属质量分数变幅较大,因不同元素而异。测定结果及描述性统计分析见表2表3。土壤镉、铅、铬、砷质量分数范围分别为0.01~1.92、17.60~34.80、47.00~123.00、3.97~9.89 mg·kg−1,平均分别为0.36、25.78、72.73、7.55 mg·kg−1。土壤重金属质量分数与浙江省土壤重金属背景值相比,镉、铅、铬、砷分别有68.18%、13.64%、22.73%、54.55%的样品超过浙江省土壤背景值;与土壤环境质量标准[GB 15618−2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》]中农用地土壤污染风险筛选值相比,只有部分稻田土壤镉质量分数有所超标,点位超标率为22.73%,但都低于风险管制值;与水稻安全生产标准(GB/T 36869−2018《水稻生产的土壤镉、铅、汞、砷安全阀值》)的土壤安全阈值相比,也只有镉质量分数超过规定限值,点位超标率为31.82%。

    表 2  水稻土和稻米重金属质量分数
    Table 2  Contents of heavy metals in paddy soils and rice grains
    序号土壤重金属/(mg·kg−1)稻米镉/
    (mg·kg−1)
    序号土壤重金属(mg·kg−1)稻米镉/
    (mg·kg−1)
    11.0728.0069.006.860.056120.1727.7068.007.470.024
    20.1425.6068.007.690.006130.0124.90123.00 7.300.029
    30.2223.8078.007.530.019140.1722.2065.006.950.045
    40.0919.9069.007.640.004150.1127.3069.007.630.061
    50.4517.6063.006.920.024160.1527.6073.007.980.026
    60.3027.9067.008.350.015170.0923.3059.005.890.005
    70.2729.4090.009.640.041180.5623.9061.006.560.030
    80.2429.1069.007.850.018190.0920.3073.007.860.028
    90.1734.2064.007.400.009200.3323.8098.008.190.025
    100.4734.8073.009.890.051210.1821.0047.003.970.049
    110.2924.1061.008.130.009221.9230.7093.008.490.062
    下载: 导出CSV 
    | 显示表格
    表 3  水稻土重金属质量分数空间变异状况及超标率
    Table 3  Variation of heavy metal contents and exceeding standard rate in paddy soils
    重金属重金属/(mg·kg−1)标准差变异系数/%超标率Ⅰ/%超标率Ⅱ/%
    最小值最大值平均值
    0.011.920.360.41120.1031.8222.73
    17.6034.8025.784.3016.7000
    47.00123.0072.7315.6621.5300
    3.979.897.551.1815.5600
      说明:超标率Ⅰ以水稻生产的安全阈值(GB/T 36869−2018)为参比值;超标率Ⅱ以风险筛选值(GB 15618−2018)为参比值。
    下载: 导出CSV 
    | 显示表格

    变异系数可以反映一定区域内重金属元素的分布和污染程度的差异,变异系数越大代表元素质量分数差异越大、离散度越高,重金属质量分数受外界因素影响越大[26]。由表2可以看出:土壤重金属质量分数变异系数最大的是镉,达120.10%,表明土壤中镉的空间分布差异比较大,可能受人类活动及周边环境(企业工厂)的影响所致,其他重金属元素铅、铬、砷的变异系数都很小,为15.56%~21.53%,在空间上存在相似的污染程度。

    表2图1结果表明:除部分样点镉质量分数高于对应的风险筛选值和安全阈值外,土壤镉、铅质量分数水平均未超出对应安全阈值,说明被调查的土壤重金属污染(疑似)区域内水稻土虽然存在普遍的镉、铬、铅富集,但铬、铅未超出国家相关标准限值。土壤砷质量分数均低于水稻生产安全阈值和农用土壤污染风险筛选值。因此,对水稻安全生产而言,土壤镉累积现象最为凸显,可能会影响水稻的安全生产。

    图 1  水稻土重金属质量分数分布箱线图
    Figure 1  Box plot of soil heavy metal content distribution in paddy soils

    虽然研究区域内有部分稻田土壤镉超过国家标准限值,但是稻米测定结果显示所采集的稻谷稻米镉质量分数为0.006~0.062 mg·kg−1,平均为0.029 mg·kg−1,均在安全范围以内,没有超过GB 2762–2017《食品中污染物限量》限额(0.200 mg·kg−1)。说明目前的土壤环境对所栽水稻品种是安全的。除了水稻自身因素外,稻米镉质量分数积累低还可能与重金属镉污染土壤的环境条件特别是土壤pH和有机质质量分数较高有关[27]。但是在本研究中,研究区稻米镉质量分数与土壤全量镉、有效态镉质量分数和土壤pH、有机质质量分数的相关性都不高,显示水稻土中全量镉、有效态镉、有机质质量分数和pH都不是影响稻米中镉质量分数高低的决定性因素(表4)。虽然稻米镉积累与有效态镉、有机质质量分数有一定的正相关性,而与pH呈负相关,但许多研究表明重金属的有效性会随着有机质的增加而降低[28]。说明稻米镉质量分数、土壤镉有效性与土壤环境条件关系复杂,同时这些结果还可能与水稻品种有关。因为水稻基因型是影响土壤-水稻系统中重金属的转移和生物利用度的主要因素,不同的水稻品种对土壤重金属的吸收、转移、富集能力不同,导致籽粒中重金属质量分数的差异。镉低积累水稻品种籽粒吸收积累镉少,在一定的土壤镉污染超标条件下,大米镉不会超标[19, 29]

    表 4  土壤全量镉、有效态镉、稻米镉和土壤pH、有机质的相关性分析
    Table 4  Correlation analysis of total soil Cd, available Cd, rice grain Cd, soil pH and SOM
    项目土壤全量镉土壤有效态镉稻米镉土壤pH有机质
    土壤全量镉1
    土壤有效态镉0.508*1
    稻米镉−0.0900.1381
    pH0.007−0.169−0.0131
    有机质−0.233−0.1070.296−0.3061
      说明:*表示在0.05水平上相关
    下载: 导出CSV 
    | 显示表格
    2.3.1   单因子指数评价和内梅罗综合指数评价

    以国家水稻生产的土壤安全阈值(GB/T 36869−2018《水稻生产的土壤镉、铅、铬、汞、砷安全阈值》)为依据,计算研究区域水稻土土壤重金属的单项污染指数和综合污染指数。从表5可以看出:土壤重金属镉、铅、铬、砷的单项污染指数平均值分别为0.96、0.25、0.42、0.36。所有重金属单因子污染指数均小于1.00,属于清洁水平,说明研究区域水稻土处于安全水平。与稻米重金属质量分数测定结果一致。

    表 5  水稻土重金属污染指数
    Table 5  Heavy metal pollution index of paddy soil
    统计指标单因子污染指数综合指数
    最大值  3.840.460.820.522.84
    最小值  0.040.090.240.200.28
    平均值  0.960.250.420.360.81
    标准差  0.840.100.120.080.57
    变异系数/%86.9240.1528.7221.6670.36
    下载: 导出CSV 
    | 显示表格

    根据各重金属元素不同污染级别样点数占比可知(表6),有68.18%的样点土壤镉单因子污染指数小于1.00,其余31.82%样点的土壤镉超标,其中轻度污染、中度污染、重度污染样点数分别占样点总数的22.73%、4.55%、4.55%。铅、铬、砷等3种元素的单因子污染指数全部都小于1.00,不存在污染情况。由此,镉是4种元素中积累最为严重的重金属元素。从内梅罗综合指数(表5表6)看,研究区域土壤镉、铅、铬、砷重金属综合指数为0.28~2.84,各点位差异较明显。所有点位中63.64%的样点综合污染指数均小于0.70,也说明嘉兴市水稻土环境状况整体良好。处于警戒线的占13.64%,受污染的占22.72%,其中轻度污染的占18.18%,中度污染的占4.54%,无重度污染。对于处于警戒线,特别是部分已处于中、轻度污染的土壤应当引起高度重视。

    表 6  基于污染指数法重金属污染程度占比
    Table 6  Proportion of heavy metal pollution based on pollution index method
    单因子指数污染等级各污染等级点位占比/%综合指数污染等级各污染等级
    点位占比/%
    P≤1清洁  68.18100100100  Pi≤0.7   安全  63.64
    1<P≤2轻度污染22.72 0 0 00.7< Pi≤1.0警戒  13.64
    2<P≤3中度污染 4.55 0 0 01.0< Pi≤2.0轻度污染18.18
    P>3重度污染 4.55 0 0 02.0< Pi≤3.0中度污染 4.54
    下载: 导出CSV 
    | 显示表格
    2.3.2   富集系数评价和地累积指数评价

    以浙江省土壤背景值作为依据,以锰元素作为校准元素进行对比,计算富集系数。对4种重金属元素的富集系数(E)进行分析比较(表7),可以得出:4种重金属元素富集程度从大到小依次为镉、砷、铬、铅。铅、铬、砷区域富集污染程度为Ⅱ级,属于轻微富集、轻微污染;镉区域富集污染程度为Ⅲ级,属于中度富集、中度污染。镉、铅、铬、砷分别有18.18%、36.36%、27.27%、13.64%的采样点呈现无富集、无污染状态;分别有31.82%、59.09%、68.18%、81.82%的采样点表现为重金属轻微富集、轻微污染;分别有31.82%、4.55%、4.55%、4.55%的采样点表现为重金属中度富集、中度污染;还有18.18%的样点存在镉元素显著富集、强污染。

    表 7  水稻土重金属元素富集系数和地累积指数评价特征值统计
    Table 7  Evaluation eigen value statistics of heavy metal element enrichment coefficient and geoaccumulation idex in paddy soil
    重金属EE≤11<E≤22<E≤55<E≤2020<E≤40
    变化范围平均值样品数/个比率/%样品数/个比率/%样品数/个比率/%样品数/个比率/%样品数/个比率/%
    0.10~9.862.81418.18731.82731.82418.1800
    0.60~2.131.23836.361359.091 4.5500 00
    0.84~2.401.33627.271568.181 4.5500 00
    0.87~2.131.41313.641881.821 4.5500 00
    重金属IgeoIgeo≤00<Igeo≤11<Igeo≤22<Igeo≤33<Igeo≤4
    变化范围平均值样品数/个比率/%样品数/个比率/%样品数/个比率/%样品数/个比率/%样品数/个比率/%
    −4.51~3.07 −0.1112 54.55627.2729.0914.5514.55
    −1.37~−0.39−0.8422100.0000 00 00 00
    −1.31~0.08 −0.7121 95.451 4.5500 00 00
    −1.52~−0.20−0.6122100.0000 00 00 00
    下载: 导出CSV 
    | 显示表格

    仍以浙江省土壤背景值进行参比。4种重金属的地累积指数法统计结果如表7所示。可以看出:4种元素Igeo从大到小依次为镉、砷、铬、铅。在所有样点中,砷、铅的地累积指数均小于0,呈现无富集无污染状态。污染最严重的重金属为镉,其平均地累积指数为−0.11,处于轻微污染的边界。但是各样点指数差异悬殊,特别是镉,在研究区中仅有54.55%的样点处于无富集、无污染状态,27.27%的样点处于轻微富集状态,9.09%的样点处于中度富集状态,4.55%的样点处于中强富集状态,4.55%的样点处于强富集状态。总体而言,该地区在人类生产、生活活动的影响下,镉元素积累明显,富集程度高;个别样点存在镉元素轻微富集污染,其他元素富集污染程度均为无污染。

    2.3.3   稻田土壤中重金属潜在生态风险评价分析

    以水稻生产的土壤安全阈值(GB/T 36869−2018《水稻生产的土壤镉、铅、铬、汞、砷安全阈值》)指标为参比值,根据生态风险划分标准,对水稻土重金属污染进行潜在生态风险评价,评价结果(表8)显示:研究区域水稻土不同重金属单项潜在生态危害指数(Er)平均值从大到小表现为镉、砷、铅、铬。所有样点铅、铬、砷的潜在生态风险指数(IR)均小于40,处于轻微风险水平。土壤镉的潜在生态危害程度最高,平均值为28.83,生态危害系数变化幅度大,最高值为115.2,最低值为1.2,变异系数为86.92%。达到中等、较强生态危害的样点数分别占样点总数的18.18%、4.55%。土壤重金属综合潜在生态风险指数(IR)变化范围为9.08~121.36,平均值为35.73,变异系数为70.01%,呈现轻微生态风险水平,主要贡献因子是镉。从变异系数可以看出:研究区域内生态危害分布差异性大。但是所有样点的IR均小于150,全部样点均处于轻微生态风险水平。而土壤生态风险预警指数(IER)变化范围为−2.97~0.73,平均值为−2.01,处于无风险至预警级,仅有1个样点最大的IER为0.73,也在轻度预警级别。因此,采用潜在生态风险评价指数法和生态风险预警指数法都表明:研究区土壤重金属处于安全级别,污染风险较小。

    表 8  水稻土重金属潜在生态风险评价
    Table 8  Potential ecological risk assessment of heavy metals in paddy soil
    统计指标潜在生态危害指数(Er)潜在生态风险
    指数(IR)
    土壤生态风险
    预警指数(IER)
    最大值  115.204.561.645.24121.360.73
    最小值  1.200.900.481.999.08−2.97
    平均值  28.832.470.843.5835.72−2.01
    标准差  25.060.990.240.7825.020.83
    变异系数/%86.9240.1528.7221.6670.01−41.15
    下载: 导出CSV 
    | 显示表格

    采用不同的方法对研究区域稻田土壤重金属污染风险评价的结果都表明:研究区域总体上处于安全水平;就单个重金属而言,土壤铅、铬、砷属于没有污染风险或轻微风险水平,而镉在某些点位稻田土壤中呈显著富集、轻中度污染,对水稻安全生产构成一定的风险。本研究协同采样测定结果显示:稻米各项指标均符合国家粮食安全标准(GB 2762−2017《食品中污染物限量》)。考虑到不同水稻品种对土壤镉吸收积累的差异,以及土壤环境条件特别是pH易受人为施肥管理等措施的影响,对土壤镉质量分数较高的点位,在今后的水稻生产管理中需要加强动态监测,关注土壤镉形态转化和有效性的变化,以保障水稻粮食生产安全[26, 28]

    采用多种方法对研究区域稻田土壤重金属污染风险进行评价,结果显示:研究区域水稻土壤总体上处于安全水平。协同采样测定结果显示:稻米各项指标均符合国家粮食安全标准(GB 2762−2017《食品中污染物限量》)。

    采用EIgeo的评价结果均得出4种元素富集程度从大到小依次为镉、砷、铬、铅,潜在生态危害由强至弱依次为镉、砷、铅、铬。研究区内镉富集(污染)最为明显,个别样点存在镉元素中轻度污染,镉是当前最主要的生态风险因子。

    目前的土壤环境对当地的水稻栽培品种来说是安全的。在今后的水稻生产管理中仍需加强动态监测,关注土壤镉形态转化和有效性的变化,充分保障水稻粮食生产安全。

  • 图  1  OfPSY基因的启动子序列

    Figure  1  Promoter sequence of OfPSY gene

    图  2  OfPDS基因的启动子序列

    Figure  2  Promoter sequence of OfPDS gene

    图  3  OfHYB基因的启动子序列

    Figure  3  Promoter sequence of OfHYB gene

    图  4  瞬时表达分析OfPSYOfPDSOfHYB启动子表达特性

    Figure  4  Transient expression analysis of OfPSY, OfPDS and OfHYB promoter expression characteristics

    表  1  启动子克隆所用引物

    Table  1.   Primers used for promoter cloning

    引物名称序列(5′→3′)
    OfPDSP-F TTAAATGGACGACTCATGTAATA
    OfPDSP-R CTCAAATTAACAGCAGAAACAT
    OfPSYP-F AAGCTTCAAAATTGCTGCTCAACTCATAC
    OfPSYP-R TCTAGAGCTGATACTGAACTATTAACGGTC
    OfHYBP-F AAGCTTTGGGTCTTACCTAACATCTTGGC
    OfHYBP-R TCTAGAGGACGGTAGTTTCAAGGGGGTG
    下载: 导出CSV

    表  2  构建PCAMBIA3301-LUC载体所用引物

    Table  2.   Primers used to construct PCAMBIA3301-LUC vector

    引物名称序列(5′→3′)
    OfPDSP-F GGTACCTTAAATGGACGACTCATGTAATA
    OfPDSP-R CCATGGCTCAAATTAACAGCAGAAACAT
    OfPSYP-F GGTACCAAGCTTCAAAATTGCTGCTCAACTCATAC
    OfPSYP-R CCATGGTCTAGAGCTGATACTGAACTATTAACGGTC
    OfHYBP-F GGTACCAAGCTTTGGGTCTTACCTAACATCTTGGC
    OfHYBP-R CCATGGTCTAGAGGACGGTAGTTTCAAGGGGGTG
    下载: 导出CSV

    表  3  OfPSY启动子中的顺式作用元件

    Table  3.   Cis-acting elements in OfPSY promoters

    元件名称数量序列(5′→3′)功能
    AAGAA-motif 1 GTAAAGAAA
    ABRE 1 ACGTG 脱落酸响应元件
    Box 4 1 ATTAAT 参与光响应的部分保守DNA序列
    CAAT-box 20 CAAT 一般元件
    G-box 1 TACGTG 光响应元件
    GARE-motif 1 TCTGTTG 赤霉素响应元件
    GT1-motif 1 GGTTAAT 光响应元件
    MYB 1 TAACCA MYB 结合位点
    MYC 1 CATGTG MYC 结合位点
    P-box 1 CCTTTTG 赤霉素响应元件
    STRE 1 AGGGG
    TATA-box 14 TATA 一般元件
    TCT-motif 1 TCTTAC 光响应元件的一部分
    Unnamed_1 1 CGTGG
    下载: 导出CSV

    表  4  OfPDS启动子中的顺式作用元件

    Table  4.   Cis-acting elements in OfPDS promoters

    元件名称数量序列(5′→3′)功能
    ARE 3 AAACCA 厌氧诱导相关的顺式调节元件
    AT~TATA-box 1 TATATA 一般元件
    Box 4 1 ATTAAT 参与光响应的部分保守
    DNA序列
    CAAT-box 21 CAAT 一般元件
    CCGTCC motif 1 CCGTCC
    CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件
    G-box 1 TACGTG 光响应元件
    GA-motif 1 ATAGATAA 光响应元件
    MBS 2 CAACTG MYB 结合位点
    MYB 1 TAACCA MYB 结合位点
    MYC 1 CATGTG MYC 结合位点
    P-box 2 CCTTTTG 赤霉素响应元件
    TATA-box 9 TATA 一般元件
    TC-rich repeats 1 ATTCTCTAAC 参与防御和胁迫的元件
    TCT-motif 3 TCTTAC 光响应元件的一部分
    Unnamed_1 1 CGTGG
    Unnamed_4 4 CTCC
    WRE3 1 CCACCT
    下载: 导出CSV

    表  5  OfHYB启动子中的顺式作用元件

    Table  5.   Cis-acting elements in OfHYB promoters

    元件名称数量序列(5′→3′)功能元件名称数量序列(5′→3′)功能
    ARE 2 AAACCA 厌氧诱导相关的顺式调节元件GT1-motif 2 GGTTAA 光响应元件
    A-box 1 CCGTCC 顺势调控元件Gap-box 1 CAAATGAA 光响应元件的一部分
    ABRE 4 ACGTG 脱落酸响应元件LTR 1 CCGAAA 低温响应元件
    AE-box 1 AGAAACTT 光响应元件的一部分MYC 1 CATGTG MYC结合位点
    AT~TATA-box 1 TATATA 一般元件Myb 1 TAACTG MYB结合位点
    AuxRR-core 1 GGTCCAT 生长素响应元件TATA 1 TATAAAAT 一般元件
    CAAT-box 20 CAAT 一般元件TATA-box 6 TATA 一般元件
    CCGTCC motif 1 CCGTCC TCCC-motif 1 TCTCCCT 光响应元件的一部分
    CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件TCT-motif 2 TCTTAC 光响应元件的一部分
    ERE 1 ATTTTAAA 乙烯响应元件Unnamed_1 1 GAATTTAATTAA 60K蛋白质结合位点
    G-box 2 TACGTG 光响应元件的一部分Unnamed_4 9 CTCC
    G-Box 1 CACGTT 光响应元件的一部分WRE3 1 CCACCT
    GC-motif 1 CCCCCG 参与缺氧特异性诱导的元件
    下载: 导出CSV
  • [1] MCQUINN R P, GIOVANNONI J J, POGSON B J. More than meets the eye: from carotenoid biosynthesis, to new insights into apocarotenoid signaling [J]. Current Opinion in Plant Biology, 2015, 27: 172 − 179.
    [2] NISAR N, LI Li, LU Shan, et al. Carotenoid metabolism in plants [J]. Molecular Plant, 2015, 8(1): 68 − 82.
    [3] HAN Y, LI L, DONG M, et al. cDNA cloning of the phytoene synthase (PSY) and expression analysis of PSY and carotenoid cleavage dioxygenase genes in Osmanthus fragrans [J]. Biologia, 2013, 68(2): 258 − 263.
    [4] MCQUINN R P, WONG B, GIOVANNONI J J. AtPDS overexpression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content [J]. Plant Biotechnology Journal, 2017, 16(2): 482 − 494.
    [5] DU Hao, WANG Nili, CUI Fei, et al. Characterization of a β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and ABA synthesis in rice [J]. Plant Physiology, 2010, 154(3): 1304 − 1318.
    [6] WANG Yiguang, ZHANG Chao, DONG Bin, et al. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans[J/OL]. Frontiers in Plant Science, 2018: 1499[2022-01-04]. doi: 10.3389/fpls.2018.01499.
    [7] HAN Yuanji, WANG Hongyun, WANG Xiaodan, et al. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool [J]. Horticulture Research, 2019, 6(1): 432 − 443.
    [8] 侯丹, 付建新, 张超, 等. 桂花品种‘堰虹桂’‘玉玲珑’和‘杭州黄’的香气成分及释放节律[J]. 浙江农林大学学报, 2015, 32(2): 208 − 220.

    HOU Dan, FU Jianxin, ZHANG Chao, et al. Flower scent composition of Osmanthus fragrans ‘Yanhong Gui’‘Yu Linglong’ and ‘Hangzhou Huang’, and their emission patterns [J]. Journal of Zhejiang A&F University, 2015, 32(2): 208 − 220.
    [9] HE Yuan, MA Yafeng, DU Yu, et al. Differential gene expression for carotenoid biosynthesis in a green alga Ulva prolifera based on transcriptome analysis [J]. BMC Genomics, 2018, 19(1): 916 − 930.
    [10] ZHANG Lancui, MA Gang, KATO M, et al. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro [J]. Journal of Experimental Botany, 2012(2): 871 − 886.
    [11] 范敏, 金黎平, 黄三文, 等. 干旱胁迫对马铃薯类黄酮和类胡萝卜素合成关键酶基因表达的影响[J]. 园艺学报, 2008, 35(4): 535 − 542.

    FAN Min, JIN Liping, HUANG Sanwen, et al. Effects of drought stress on gene expression of key enzymes for flavonoid and carotenoid synthesis in potato [J]. Acta Horticulturae Sinica, 2008, 35(4): 535 − 542.
    [12] LIU Yudong, SHI Yuan, SU Deding, et al. SlGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and SlMADS1 in tomato[J/OL]. Horticulture Research, 2021, 8(3)[ 2022-01-02]. doi: 10.1038/S41438-020-00431-9.
    [13] LIU Yudong, DONG Bin, ZHANG Chao, et al. Effects of exogenous abscisic acid (ABA) on carotenoids and petal color in Osmanthus fragrans ‘Yanhonggui’ [J]. Plants, 2020, 9(4): 454 − 466.
    [14] HAN Y, WANG X, CHEN W, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans [J]. Trees Genetics &Genomes, 2014, 10(2): 329 − 338.
    [15] BALDERMANN S, KATO M, FLEISCHMANN P, WATANABE N. Biosynthesis of α-and β-ionone, prominent scent compounds, in flowers of Osmanthus fragrans [J]. Acta Biochimica Polonica, 2012, 59(1): 79 − 81.
    [16] YANG Xiulian, YUE Yuanzheng, LI Haiyan, et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans [J/OL]. Horticulture Research, 2018, 5: 72[2021-12-23]. doi: 10.1038/s41438-018-0108-0.
    [17] FU Xiumin, CHENG Sihua, FENG Chao, et al. Lycopene cyclases determine high α-/β-carotene ratio and increased carotenoids in bananas ripening at high temperatures [J]. Food Chemistry, 2019, 283: 131 − 140.
    [18] KARPPINEN K, ZORATTI L, SARALA M, et al. Carotenoid metabolism during bilberry (Vaccinium myrtillus L. ) fruit development under different light conditions is regulated by biosynthesis and degradation [J]. BMC Plant Biology, 2016, 16(1): 95 − 111.
    [19] WANG Ruikai, WANG Chun’e. Genome-wide identification and transcription analysis of soybean carotenoid oxygenase genes during abiotic stress treatments [J]. Molecular Biology Reports, 2013, 40(8): 4737 − 4745.
    [20] LU Suwen, ZHANG Yin, ZHU Kaijie, et al. The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes [J]. Plant Physiology, 2018, 176(4): 2657 − 2676.
    [21] FU Changchun, HAN Yanchao, KUANG Jianfei, et al. Papaya CpEIN3a and CpNAC2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4, CpLCY-e and CpCHY-b during fruit ripening [J]. Plant and Cell Physiology, 2017, 58(12): 2155 − 2165.
    [22] HAN Yanchao, GAO Haiyan, CHEN Hangjun, et al. The involvement of papaya CpSBP1 in modulating fruit softening and carotenoid accumulation by repressing CpPME1/2 and CpPDS4[J/OL]. Scientia Horticulturae, 2019, 256: 108582[2022-01-02]. doi:10.1016/j.scienta.2019.108582.
    [23] KEVIN S, PAULINA F, FELIPE Q I L, et al. Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota [J]. Journal of Experimental Botany, 2018, 69(16): 4113 − 4126.
    [24] YOSHIDA T, FUJITA Y, SAYAMA H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation [J]. The Plant Journal, 2010, 61(4): 672 − 685.
    [25] CHOI H I, HONG J H, HA J O, et al. ABFs, a family of ABA-responsive element binding factors [J]. Journal of Biological Chemistry, 2000, 275(3): 1723 − 1730.
    [26] BALDERMANN S, KATO M, KUROSAWA M, et al. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. [J]. Journal of Experimental Botany, 2010, 61(11): 2967 − 2977.
    [27] ZHANG Chao, WANG Yiguang, FU Jianxin, et al. Transcriptomic analysis and carotenogenic gene expression related to petal coloration in Osmanthus fragrans ‘Yanhong Gui’ [J]. Trees, 2016, 30(4): 1207 − 1223.
    [28] 刘玉成, 王艺光, 张超, 等. 桂花OfCCD1基因启动子克隆与表达特性[J]. 浙江农林大学学报, 2018, 35(4): 596 − 603.

    LIU Yucheng, WANG Yiguang, ZHANG Chao, et al. Cloning and transient expression assay of OfCCD1 gene promoters from Osmanthus fragrans [J]. Journal of Zhejiang A&F University, 2018, 35(4): 596 − 603.
  • [1] 李莉, 庞天虹, 付建新, 张超.  桂花番茄红素β-环化酶基因LCYB上游B2亚组ERF转录因子的筛选和鉴定 . 浙江农林大学学报, 2025, 42(1): 86-93. doi: 10.11833/j.issn.2095-0756.20240316
    [2] 向玉勇, 张妍, 陶翠玲.  温度对金银花尺蠖幼虫、蛹和成虫4种酶活性的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240471
    [3] 张耀, 王家璇, 蔡璇, 曾祥玲, 杨洁, 陈洪国, 邹晶晶.  桂花OfACOs基因家族鉴定及表达分析 . 浙江农林大学学报, 2023, 40(3): 492-501. doi: 10.11833/j.issn.2095-0756.20220783
    [4] 洪方蕾, 陆瑶, 俞世姣, 胡芷诺, 缪云锋, 钟诗蔚, 赵宏波.  桂花OfABFs基因克隆和表达分析 . 浙江农林大学学报, 2023, 40(3): 481-491. doi: 10.11833/j.issn.2095-0756.20220264
    [5] 向玉勇, 孙星, 殷培峰.  寄主植物、温度对金银花尺蠖幼虫消化酶活性的影响 . 浙江农林大学学报, 2020, 37(2): 311-318. doi: 10.11833/j.issn.2095-0756.2020.02.016
    [6] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [7] 王千千, 蒋琦妮, 付建新, 董彬, 赵宏波.  不同光周期和温度处理下桂花内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 928-934. doi: 10.11833/j.issn.2095-0756.2019.05.011
    [8] 张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙.  凤阳山4种森林土壤在不同温度培养下活性有机碳的变化 . 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
    [9] 刘玉成, 王艺光, 张超, 董彬, 付建新, 胡绍庆, 赵宏波.  桂花OfCCD1基因启动子克隆与表达特性 . 浙江农林大学学报, 2018, 35(4): 596-603. doi: 10.11833/j.issn.2095-0756.2018.04.003
    [10] 王英, 张超, 付建新, 赵宏波.  桂花花芽分化和花开放研究进展 . 浙江农林大学学报, 2016, 33(2): 340-347. doi: 10.11833/j.issn.2095-0756.2016.02.021
    [11] NGUYENThiHuongGiang, 张齐生.  竹集成材高频热压过程中板坯内温度的变化趋势 . 浙江农林大学学报, 2015, 32(2): 167-172. doi: 10.11833/j.issn.2095-0756.2015.02.001
    [12] 杨秀莲, 郝其梅.  桂花种子休眠和萌发的初步研究 . 浙江农林大学学报, 2010, 27(2): 272-276. doi: 10.11833/j.issn.2095-0756.2010.02.018
    [13] 蔡璇, 苏蘩, 金荷仙, 姚崇怀, 王彩云.  四季桂花瓣色素的初步鉴定与提取方法 . 浙江农林大学学报, 2010, 27(4): 559-564. doi: 10.11833/j.issn.2095-0756.2010.04.014
    [14] 李晓平, 周定国.  温度对稻草部分理化性能的影响 . 浙江农林大学学报, 2007, 24(5): 528-532.
    [15] 胡绍庆, 宣子灿, 周煦浪, 吴光洪.  杭州市桂花品种的分类整理 . 浙江农林大学学报, 2006, 23(2): 179-187.
    [16] 周媛, 姚崇怀, 王彩云.  桂花切花品种筛选 . 浙江农林大学学报, 2006, 23(6): 660-663.
    [17] 苏明申, 叶正文, 吴钰良, 李胜源, 钱进, 张均强.  温度对桃品种破眠效应的研究 . 浙江农林大学学报, 2005, 22(1): 12-15.
    [18] 吴光洪, 胡绍庆, 宣子灿, 向其柏.  桂花品种分类标准与应用 . 浙江农林大学学报, 2004, 21(3): 281-284.
    [19] 项文化, 田大伦, 闫文德, 罗勇.  白栎光合特性对二氧化碳浓度增加和温度升高的响应 . 浙江农林大学学报, 2004, 21(3): 247-253.
    [20] 陈国瑞, 李天佑, 俞益武, 蒋秋怡.  杭州常绿阔叶林对林内近地层温度和湿度的调节效应* . 浙江农林大学学报, 1994, 11(2): 151-158.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220110

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/1/64

图(4) / 表(5)
计量
  • 文章访问数:  1526
  • HTML全文浏览量:  241
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-07-10
  • 录用日期:  2022-08-16
  • 网络出版日期:  2022-10-10
  • 刊出日期:  2023-01-17

桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析

doi: 10.11833/j.issn.2095-0756.20220110
    基金项目:  国家自然科学基金面上资助项目(32072615);中国博士后科学基金第71批面上资助项目(2022M712828)
    作者简介:

    周俊杰(ORCID: 0000-0003-3459-6220 ),从事观赏植物遗传育种研究。E-mail: 747782261@qq.com

    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,从事观赏植物遗传育种研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S722.3

摘要:   目的  探究高温和外源脱落酸对桂花Osmanthus fragrans类胡萝卜素生物合成的3个相关基因,包括八氢番茄红素合成酶基因(PSY)、八氢番茄红素脱氢酶基因(PDS)、β-胡萝卜素羟化酶基因(HYB)的调控作用,为阐释桂花类胡萝卜素代谢调控的机制提供研究基础。  方法  根据桂花基因组数据库的序列,从桂花品种‘堰虹桂’‘Yanhong Gui’中克隆OfPSYOfPDSOfHYB基因的启动子序列,并进行生物信息学分析,再构建PCAMBIA3301-LUC载体在烟草Nicotiana benthamiana中瞬时表达,结合高温(37 ℃)和200 mg·L−1脱落酸处理,分析启动子活性。  结果  获得OfPSYOfPDSOfHYB基因的部分启动子,其长度分别为1 908、1 521及1 830 bp。作用元件分析表明:3个启动子中均存在TATA-box和CAAT-box等启动子基本元件、光响应元件、脱落酸响应元件以及MYB和MYC结合位点。此外,在OfPSY启动子中,存在赤霉素响应元件;在OfPDS启动子中,存在茉莉酸甲酯响应元件、赤霉素响应元件、厌氧诱导型元件参与防御和胁迫的元件;在OfHYB启动子中,存在生长素、乙烯、茉莉酸甲酯等激素响应元件、低温响应元件和厌氧诱导型元件。烟草瞬时转化试验表明:相对高温能激活OfPSYOfPDSOfHYB的启动子活性,脱落酸能激活OfPDSOfHYB的启动子活性。  结论  高温和脱落酸可能通过调控桂花类胡萝卜素合成基因启动子活性,影响桂花类胡萝卜素的积累。图4表5参28

English Abstract

马佳燕, 马嘉伟, 柳丹, 等. 杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价[J]. 浙江农林大学学报, 2021, 38(2): 336-345. DOI: 10.11833/j.issn.20950756.20200309
引用本文: 周俊杰, 王艺光, 董彬, 等. 桂花OfPSYOfPDSOfHYB基因启动子克隆及表达特性分析[J]. 浙江农林大学学报, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
MA Jiayan, MA Jiawei, LIU Dan, et al. Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu Plain[J]. Journal of Zhejiang A&F University, 2021, 38(2): 336-345. DOI: 10.11833/j.issn.20950756.20200309
Citation: ZHOU Junjie, WANG Yiguang, DONG Bin, et al. Cloning and expression characterization of OfPSY, OfPDS and OfHYB gene promoters in Osmanthus fragrans[J]. Journal of Zhejiang A&F University, 2023, 40(1): 64-71. DOI: 10.11833/j.issn.2095-0756.20220110
  • 类胡萝卜素是一种亲脂类异戊二烯,是一种自然界中广泛存在的生物色素,主要反射黄色、橙色和红色的光[1]。在植物器官中,类胡萝卜素在质体中的积累对吸收过量光能、清除活性氧、合成植物激素提供前体物质都起重要的作用[2]。八氢番茄红素合成酶(phytoene synthase, PSY)是类胡萝卜素合成途径中的第1个限速酶,它的作用是将2分子的香叶酰香叶酰二磷酸(geranylgeranyl diphosphate,GGPP)合成无色的八氢番茄红素[3]。随后,八氢番茄红素经过包括八氢番茄红素脱氢酶(phytoene desaturase,PDS)在内的4次去饱和反应和2次异构化反应的多顺式转化,最终生成红色的全反式番茄红素[4]。而β-羟化酶(β-carotene hydroxylase,HYB)既可以单独作用使β-胡萝卜素经羟化作用转化为紫黄质,也可与ε-羟化酶(ε-carotene hydroxylase,HYE)协同作用使α-胡萝卜素经羟化作用形成叶黄素[5]。桂花Osmanthus fragrans是重要的观赏植物,花色和花香是其主要观赏性状。已有研究发现:类胡萝卜素既是桂花花瓣中主要色素成分[6],也是桂花香气物质的前体物质[7]。目前已在多种植物中发现,植物器官中的类胡萝卜素含量及相关基因的表达水平受到多种因素的影响,如温度[8]、光照[9]、干旱胁迫[10]、乙烯[11]等。前期研究[12]发现:在200 mg·L−1脱落酸处理下,桂花花色明显加深,花瓣类胡萝卜素含量上升,类胡萝卜素合成关键基因OfPSYOfPDSOfHYB表达水平显著上调。相关基因在前人的研究中均已克隆到[13-15],但对其调控的作用机制仍知之甚少。基因的启动子作为上游调控因子识别并结合的部位,是基因表达调控的重要作用位点。为进一步揭示桂花花色形成及其调控的分子机制,本研究克隆了OfPSYOfPDSOfHYB基因的启动子,通过作用元件分析、表达载体构建和瞬时表达分析,初步明确其作用。

    • 8~10年生丹桂品种‘堰虹桂’Osmanthus fragrans‘Yanhong Gui’栽植于浙江农林大学桂花资源圃;烟草Nicotiana benthamiana栽培于浙江农林大学园林植物实验室。

    • DNA提取试剂盒、Premix Taq聚合酶、质粒载体PMD18-T、大肠埃希菌Escherichia coli DH5α、切胶回收试剂盒、DNA片段纯化试剂盒、限制性内切酶EcoR Ⅰ、Nco Ⅰ、DNA连接酶等购自Takara公司(大连)。

    • 参照DNA提取试剂盒所用方法提取桂花‘堰虹桂’基因组DNA。

    • 根据桂花基因组数据[16]中的OfPSYOfPDSOfHYB基因启动子序列,用Primer Premier 5.0分别设计上下游引物。引物由有康生物公司(杭州)合成(表1)。

      表 1  启动子克隆所用引物

      Table 1.  Primers used for promoter cloning

      引物名称序列(5′→3′)
      OfPDSP-F TTAAATGGACGACTCATGTAATA
      OfPDSP-R CTCAAATTAACAGCAGAAACAT
      OfPSYP-F AAGCTTCAAAATTGCTGCTCAACTCATAC
      OfPSYP-R TCTAGAGCTGATACTGAACTATTAACGGTC
      OfHYBP-F AAGCTTTGGGTCTTACCTAACATCTTGGC
      OfHYBP-R TCTAGAGGACGGTAGTTTCAAGGGGGTG
    • 以桂花‘堰虹桂’基因组DNA为模板,分别用引物OfPSYP-F和OfPSYP-R、OfPDSP-F和OfPDSP-R、OfHYBP-F和OfHYBP-R对其启动子进行扩增。将扩增产物连接至质粒载体PMD18-T并转化大肠埃希菌DH5α,随后鉴定阳性克隆并送至有康公司(杭州)测序。启动子作用元件分析通过在线网站Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)进行。

    • 设计包含酶切位点的引物(表2),用于构建启动子表达载体。使用限制性内切酶EcoR Ⅰ和Nco Ⅰ分别对PCAMBIA3301-LUC载体和添加了酶切位点的启动子进行双酶切。用T4连接酶连接回收的启动子和载体片段。再经转化大肠埃希菌DH5α鉴定,得到重组的PSYP::LUC、PDSP::LUC、HYBP::LUC载体。再将重组质粒转化农杆菌Agrobacterium tumefaciens GV3101。

      表 2  构建PCAMBIA3301-LUC载体所用引物

      Table 2.  Primers used to construct PCAMBIA3301-LUC vector

      引物名称序列(5′→3′)
      OfPDSP-F GGTACCTTAAATGGACGACTCATGTAATA
      OfPDSP-R CCATGGCTCAAATTAACAGCAGAAACAT
      OfPSYP-F GGTACCAAGCTTCAAAATTGCTGCTCAACTCATAC
      OfPSYP-R CCATGGTCTAGAGCTGATACTGAACTATTAACGGTC
      OfHYBP-F GGTACCAAGCTTTGGGTCTTACCTAACATCTTGGC
      OfHYBP-R CCATGGTCTAGAGGACGGTAGTTTCAAGGGGGTG
    • 将含有重组质粒的农杆菌菌液在含有利福平和卡那霉素的LB培养基中振荡培养至D(600)达0.8~1.0,在4 ℃下以4 000 r·min−1离心10 min,收集菌体,随后以2 mL含10 mmol·L−1MES、10 mmol·L−1 MgCl2和150 μmol·L−1的乙酰丁香酮的悬浮液重悬菌体2次。选取长势较好的烟草,将悬浮液用1 mL注射器从叶片下表皮注射到烟草叶片中直至整个叶片呈现水渍状。将烟草置于暗处培养1 d后转移至人工气候室继续培养1~2 d,随后将植株分别进行37 ℃处理和200 mg·L−1脱落酸喷施处理,12 h后将注射后的叶片取下,喷洒1 mmol·L−1的荧光素钠盐溶液,暗处放置5 min后在CCD冷冻发光仪下观察LUC荧光信号。参考Luciferase (Promega)荧光素酶报告系统试剂盒对酶活性进行检测,以对照组的比值为单位1,得到不同处理组的相对Luciferase活性,每组实验均包括3次技术重复和生物学重复。利用SPSS 19.0软件进行数据差异分析。

    • 以桂花‘堰虹桂’基因组DNA为模板,用引物OfPSYP-F和OfPSYP-R、OfPDSP-F和OfPDSP-R、OfHYBP-F和OfHYBP-R对其启动子进行扩增,分别得到OfPSY启动子长度为1 908 bp (图1),OfPDS启动子长度为1521 bp (图2),OfHYB启动子长度为1 830 bp (图3)的序列。利用Plant CARE在线软件对启动子序列的结合位点进行分析。在OfPSYP中,存在TATA-box、CAAT-box等启动子基本元件,和光响应元件、脱落酸(ABA)响应元件、赤霉素响应元件等响应元件,以及MYB、MYC结合位点(表3);在OfPDSP中,存在TATA-box、CAAT-box等启动子基本元件,和脱落酸响应元件、茉莉酸甲酯响应元件、赤霉素响应元件、光响应元件、厌氧诱导型元件、防御和胁迫响应元件等响应元件,以及MYB、MYC结合位点(表4);在OfHYBP中,存在TATA-box、CAAT-box等启动子基本元件,和脱落酸响应元件、生长素响应元件、低温响应元件、乙烯响应元件、茉莉酸甲酯响应元件、光响应元件、厌氧诱导型元件等响应元件,以及MYB、MYC结合位点(表5)。

      图  1  OfPSY基因的启动子序列

      Figure 1.  Promoter sequence of OfPSY gene

      图  2  OfPDS基因的启动子序列

      Figure 2.  Promoter sequence of OfPDS gene

      图  3  OfHYB基因的启动子序列

      Figure 3.  Promoter sequence of OfHYB gene

      表 3  OfPSY启动子中的顺式作用元件

      Table 3.  Cis-acting elements in OfPSY promoters

      元件名称数量序列(5′→3′)功能
      AAGAA-motif 1 GTAAAGAAA
      ABRE 1 ACGTG 脱落酸响应元件
      Box 4 1 ATTAAT 参与光响应的部分保守DNA序列
      CAAT-box 20 CAAT 一般元件
      G-box 1 TACGTG 光响应元件
      GARE-motif 1 TCTGTTG 赤霉素响应元件
      GT1-motif 1 GGTTAAT 光响应元件
      MYB 1 TAACCA MYB 结合位点
      MYC 1 CATGTG MYC 结合位点
      P-box 1 CCTTTTG 赤霉素响应元件
      STRE 1 AGGGG
      TATA-box 14 TATA 一般元件
      TCT-motif 1 TCTTAC 光响应元件的一部分
      Unnamed_1 1 CGTGG

      表 4  OfPDS启动子中的顺式作用元件

      Table 4.  Cis-acting elements in OfPDS promoters

      元件名称数量序列(5′→3′)功能
      ARE 3 AAACCA 厌氧诱导相关的顺式调节元件
      AT~TATA-box 1 TATATA 一般元件
      Box 4 1 ATTAAT 参与光响应的部分保守
      DNA序列
      CAAT-box 21 CAAT 一般元件
      CCGTCC motif 1 CCGTCC
      CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件
      G-box 1 TACGTG 光响应元件
      GA-motif 1 ATAGATAA 光响应元件
      MBS 2 CAACTG MYB 结合位点
      MYB 1 TAACCA MYB 结合位点
      MYC 1 CATGTG MYC 结合位点
      P-box 2 CCTTTTG 赤霉素响应元件
      TATA-box 9 TATA 一般元件
      TC-rich repeats 1 ATTCTCTAAC 参与防御和胁迫的元件
      TCT-motif 3 TCTTAC 光响应元件的一部分
      Unnamed_1 1 CGTGG
      Unnamed_4 4 CTCC
      WRE3 1 CCACCT

      表 5  OfHYB启动子中的顺式作用元件

      Table 5.  Cis-acting elements in OfHYB promoters

      元件名称数量序列(5′→3′)功能元件名称数量序列(5′→3′)功能
      ARE 2 AAACCA 厌氧诱导相关的顺式调节元件GT1-motif 2 GGTTAA 光响应元件
      A-box 1 CCGTCC 顺势调控元件Gap-box 1 CAAATGAA 光响应元件的一部分
      ABRE 4 ACGTG 脱落酸响应元件LTR 1 CCGAAA 低温响应元件
      AE-box 1 AGAAACTT 光响应元件的一部分MYC 1 CATGTG MYC结合位点
      AT~TATA-box 1 TATATA 一般元件Myb 1 TAACTG MYB结合位点
      AuxRR-core 1 GGTCCAT 生长素响应元件TATA 1 TATAAAAT 一般元件
      CAAT-box 20 CAAT 一般元件TATA-box 6 TATA 一般元件
      CCGTCC motif 1 CCGTCC TCCC-motif 1 TCTCCCT 光响应元件的一部分
      CGTCA-motif 1 CGTCA 茉莉酸甲酯响应元件TCT-motif 2 TCTTAC 光响应元件的一部分
      ERE 1 ATTTTAAA 乙烯响应元件Unnamed_1 1 GAATTTAATTAA 60K蛋白质结合位点
      G-box 2 TACGTG 光响应元件的一部分Unnamed_4 9 CTCC
      G-Box 1 CACGTT 光响应元件的一部分WRE3 1 CCACCT
      GC-motif 1 CCCCCG 参与缺氧特异性诱导的元件
    • 重组载体瞬时表达的荧光成像结果显示:注射了含重组载体农杆菌的烟草叶片均显现出荧光(图4),表明OfPSYPOfPDSPOfHYBP均能够驱动LUC报告基因的表达,具有启动子活性。相对于25 ℃处理的烟草叶片,在37 ℃处理下,注射了OfPSYP::LUC、OfPDSP::LUC和OfHYBP::LUC的烟草叶片呈现出更强的荧光信号;在200 mg·L−1脱落酸处理下,注射了OfPDSP::LUC和OfHYBP::LUC的烟草叶片呈现出更强的荧光信号。结果表明:相对高温胁迫上调了OfPSYOfPDSOfHYB的启动子活性,脱落酸上调了OfPDSOfHYB的启动子活性。

      图  4  瞬时表达分析OfPSYOfPDSOfHYB启动子表达特性

      Figure 4.  Transient expression analysis of OfPSY, OfPDS and OfHYB promoter expression characteristics

    • 植物中类胡萝卜素的成分和含量是由一系列酶促反应完成的。研究发现类胡萝卜素代谢关键基因的表达受到各种环境因素和激素的调控。在香蕉Musa nana中,高温可以上调α-胡萝卜素和β-胡萝卜素生物合成途径相关基因的转录水平[17];在蓝莓Vaccinium spp.中,红光和远红光对果实中类胡萝卜素合成和降解基因的表达均起到上调作用[18];在大豆Glycine max中,氯化钠(NaCl)、聚乙二醇(PEG)、高温、低温等胁迫和ABA处理对类胡萝卜素降解基因起明显的上调作用[19]。此外,转录因子对类胡萝卜素代谢关键基因的启动子存在直接调控作用。在柑橘Citrus reticulata中,CsMADS6基因可以结合CsPSYCsPDS基因的启动子[20],从而促进其基因的表达;在番木瓜Carica papaya中,CpEIN3a既可以直接识别并结合CpPDSCpCHYB基因的启动子,也可与CpNAC1/2基因共同促进CpPDS的表达[21],而CpSBP1则对CpPDS基因存在负调控作用[22];在胡萝卜Daucus carota中,DcAREB3可响应盐胁迫和ABA处理,识别并结合DcPSY2启动子的ABRE作用元件,从而促进其表达[23]

      前期通过对桂花进行ABA处理发现,相对于未处理的桂花,经200 mg·L−1 ABA处理的桂花花瓣中的类胡萝卜素含量上升;对花瓣中类胡萝卜素代谢关键基因实时荧光定量表达显示:经ABA处理后OfPSYOfPDSOfHYB等基因的表达量显著上调,推测ABA通过调控这几个基因的表达,从而影响了桂花花色[12]。本研究在OfHYB启动子中发现了4个ABRE作用元件,该作用元件被认为是AREB转录因子的结合位点[24]。研究发现AREB转录因子能够识别并结合2个相距较近的ABRE作用元件[25]。在OfHYB启动子的4个ABRE作用元件中,有3个元件之间相距19和12 bp,表明OfHYB基因极有可能受到ABA调控,与此同时,OfHYB启动子上发现了最多的激素响应元件,除ABA响应元件外,还存在生长素、茉莉酸甲酯和乙烯响应元件,表明OfHYB基因的表达可能受到多种激素的调控。本研究通过高温和外源施加ABA,研究了几个启动子表达特性,进一步验证了相对高温对OfPSYOfHYB基因启动子以及ABA对OfPDSOfHYB启动子表达的调控作用。此外,在3个基因启动子中均存在数个光响应元件,在桂花中已经发现OfCCD1的表达可能受光照影响[2628],说明桂花花色物质的合成与降解均可能与光信号传导有关,但其具体作用机制仍有待进一步研究。本研究克隆得到的启动子经瞬时表达验证均具有启动子活性,下一步可将其构建酵母单杂载体,通过寻找上游的调控因子,明确桂花花瓣类胡萝卜素合成基因转录调控的分子机制。

参考文献 (28)

目录

/

返回文章
返回