本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。
海绵热解炭固定化微生物吸附-降解餐饮废水中油脂的研究
doi: 10.11833/j.issn.2095-0756.20220338
Adsorption-degradation of oil in catering wastewater by the microorganism immobilized on sponge pyrolytic carbon
-
摘要:
目的 随着餐饮行业的迅速发展,餐饮废水油脂对环境的危害日益严重,因此对餐饮废水油脂的治理刻不容缓。 方法 以废弃海绵为原料,经热解炭化制得吸附性能良好的海绵热解炭(SPCx,x为热解温度),利用冷场发射扫描电子显微镜、傅里叶变换红外光谱和X射线光电子能谱对其形貌、结构等理化性质进行表征。利用SPCx吸附废水中大豆油,研究了热解温度、废水pH和温度等对吸附性能的影响;分析了SPC600吸附剂的吸附动力学和吸附等温线,采用Langmuir和Freundlich模型对数据进行分析。基于此,探究了SPC600固定化微生物对模拟废水和实际废水中油脂的吸附-降解规律。 结果 海绵热解炭(SPC600)具有丰富的“网络”结构和断裂分支,且表面含有大量的羟基、羰基和醚键等含氧官能团,进而提高了其对油脂吸附和微生物固定能力。优化的SPC600,在pH 7和吸附温度30 ℃时,吸附容量高达8 093.1 mg·g−1。吸附过程符合准二级动力学方程,且是以化学吸附为主的放热过程。将筛选的降解油脂菌株与SPC600制成固定化微生物吸附剂,对实际油脂废水的降解率可达67.6%,比游离菌株和游离菌株+SPC600分别平均高11.0%和14.4%。 结论 采用海绵热解炭固定化微生物技术,在稳定降解菌株的同时提高了油脂降解率,实现“以废治废”,避免二次污染,具有较好的应用前景。图8表3参42 Abstract:Objective The objective of this study is to explore the effective treatment of catering wastewater, which has become increasingly harmful to the environment with the rapid development of catering industry. Method Sponge pyrolytic carbon (SPCx) with good adsorption performance was prepared from waste sponge by pyrolysis and carbonization. The physical and chemical properties such as the morphology and structure of the materials were characterized by cold field emission scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Through the adsorption of soybean oil in wastewater by SPCx, the effects of pyrolysis temperature, wastewater pH and temperature on the adsorption performance were studied. The adsorption kinetics and adsorption isotherm of SPC600 adsorbent were analyzed, and the Langmuir and Freundlich models were used to analyze the data. Based on this, the oil adsorption-degradation law of SPC600 immobilized microorganisms in simulated wastewater and actual wastewater was explored. Result Sponge pyrolytic carbon (SPC600) had abundant “network” structure and fracture branches, and contained a large number of hydroxyl, carbonyl, ether bonds, and other oxygen-containing functional groups on its surface, which improved its ability to adsorb oil and immobilize microoganism. The optimized SPC600 had an adsorption capacity of 8 093.1 mg·g−1 at pH 7 and adsorption temperature of 30 ℃. The adsorption process of oil conformed to the pseudo-second-order kinetic equation, and was an exothermic process dominated by chemical adsorption. The screened oil-degrading strains and SPC600 were made into immobilized microbial adsorbents, and the degradation rate of actual oil wastewater reached 67.6%, which was 11.0% and 14.4% higher than that of free strain and free strain+SPC600 respectively. Conclusion The sponge pyrolytic carbon immobilized microbial technology can stabilize the degrading strain and improve the oil degradation rate, so as to achieve the effect of “treating waste with waste” and avoid secondary pollution, which has a good application prospect. [Ch, 8 fig. 3 tab. 42 ref.] -
表 1 SPC600的吸附动力学方程式及拟合参数
Table 1. Adsorption kinetics equations and correlation coefficients for SPC600
准一级动力方程 准二级动力方程 k1 qe1/(mg·g−1) R2 k2 qe2/(mg·g−1) R2 0.112 1 7 785.6 0.869 6 0.002 6 8 027.1 0.981 1 表 2 不同吸附材料对油脂的吸附容量对比
Table 2. Comparison of oil adsorption capacity of different adsorption materials
序号 吸附材料 吸附容量/
(mg·g−1)参考
文献序号 吸附材料 吸附容量/
(mg·g−1)参考
文献序号 吸附材料 吸附容量/
(mg·g−1)参考
文献1 壳聚糖 99.9 [30] 5 甘蔗渣 6 650.0 [33] 9 松木屑生物炭 1 960.0 [36] 2 不可溶膳食纤维 1 270.0 [31] 6 萝藦种毛纤维 81 520.0 [34] 10 水稻生物炭 10 880.0 [37] 3 新鲜粽叶 1 766.4 [32] 7 辣木种子活性炭 111.1 [35] 11 磁性活性炭 1 900.0 4 改性花生壳 166.7 [28] 8 豆荚活性炭 104.2 [35] 12 海绵热解炭 8 093.1 本研究 说明:松木屑生物炭和磁性活性炭吸附石油;水稻生物炭吸附石蜡油;其余均吸附植物油脂 表 3 不同温度下SPC600吸附等温方程及拟合参数
Table 3. Adsorption isotherm equations and correlation coefficients for SPC600 at different temperatures
温度/℃ Langmuir模型 Freundlich模型 qm/(mg·g−1) kL R2 n kF R2 20 15 495.40 0.004 9 0.998 4 3.46 5.48 0.984 9 30 17 374.08 0.004 5 0.991 5 3.38 5.46 0.986 6 40 14 085.93 0.006 2 0.989 6 3.93 5.82 0.990 7 -
[1] 于志强. 餐饮业含油废水污染现状及防治对策[J]. 中国环保产业, 2015(7): 47 − 49. doi: 10.3969/j.issn.1006-5377.2015.07.012 YU Zhiqiang. Pollution status and prevention countermeasures of oily waste water in catering trade [J]. China Environmental Protection Industry, 2015(7): 47 − 49. doi: 10.3969/j.issn.1006-5377.2015.07.012 [2] 俞骞, 刘勇. 餐饮废水处理方法的研究进展[J]. 工程建设与设计, 2017(11): 114 − 116. YU Qian, LIU Yong. Research progress of treatment methods for restaurant wastewater [J]. Construction &Design For Project, 2017(11): 114 − 116. [3] YU Li, HAN Mei, HE Fang. A review of treating oily wastewater[J/OL]. Arabian Journal of Chemistry, 2017, 10(2): S1913-S1922[2022-04-05]. doi: 10.1016/j.arabjc.2013.07.020. [4] 周俊, 焦赟仪, 陈翔宇, 等. 餐饮废水处理方法的研究现状与展望[J]. 湖南城市学院学报(自然科学版), 2016, 25(6): 73 − 75, 78. ZHOU Jun, JIAO Yunyi, CHEN Xiangyu, et al. Introduction and prospect of treatment technique for restaurant wastewater [J]. Journal of Hunan City University (Natural Science) , 2016, 25(6): 73 − 75, 78. [5] 史航, 李兵, 郭建忠. 功能化枝状复合吸附材料的制备及吸附Cr(Ⅵ)的性能[J]. 浙江农林大学学报, 2022, 39(2): 396 − 404. doi: 10.11833/j.issn.2095-0756.20200119 SHI Hang, LI Bing, GUO Jianzhong. Preparation of functional dendritic composite adsorbents and their adsorption properties for Cr(Ⅵ) [J]. Journal of Zhejiang A&F University, 2022, 39(2): 396 − 404. doi: 10.11833/j.issn.2095-0756.20200119 [6] 杨瑞, 张翻. 含油废水处理技术进展[J]. 当代化工, 2018, 47(8): 1695 − 1701. doi: 10.3969/j.issn.1671-0460.2018.08.043 YANG Rui, ZHANG Fan. Development of oily wastewater treatment technology [J]. Contemporary Chemical Industry, 2018, 47(8): 1695 − 1701. doi: 10.3969/j.issn.1671-0460.2018.08.043 [7] SONGSAENG S, THAMYONGKIT P, POOMPRADUB S. Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills [J]. Journal of Advanced Research, 2019, 20: 79 − 89. doi: 10.1016/j.jare.2019.05.007 [8] 肖继波, 赵委托, 褚淑祎, 等. 薯类淀粉废水处理技术及资源化利用研究进展[J]. 浙江农林大学学报, 2013, 30(2): 292 − 298. doi: 10.11833/j.issn.2095-0756.2013.02.022 XIAO Jibo, ZHAO Weituo, CHU Shuyi, et al. Research progress on treatment technology and resource utilization of potato starch wastewater [J]. Journal of Zhejiang A&F University, 2013, 30(2): 292 − 298. doi: 10.11833/j.issn.2095-0756.2013.02.022 [9] 范金石, 王超, 郝延颖, 等. 表面活性剂废水处理技术浅述[J]. 日用化学工业, 2020, 50(6): 413 − 418. doi: 10.3969/j.issn.1001-1803.2020.06.010 FAN Jinshi, WANG Chao, HAO Yanying, et al. Brief overview of wastewater treatment technologies used for removal of surfactants [J]. China Surfactant Detergent &Cosmetics, 2020, 50(6): 413 − 418. doi: 10.3969/j.issn.1001-1803.2020.06.010 [10] 王亚军, 蔡文娟, 耿冲冲, 等. 1株油脂降解菌的筛选及其降解条件优化[J]. 生态环境学报, 2020, 29(5): 1031 − 1038. WANG Yajun, CAI Wenjuan, GENG Chongchong, et al. Screening of a oil-degrading strain and optimization of its degradation conditions [J]. Ecology and Environmental Sciences, 2020, 29(5): 1031 − 1038. [11] 包木太, 巩元娇. 微生物固定法降解含油污水的研究进展[J]. 化工进展, 2009, 28(3): 511 − 517. BAO Mutai, GONG Yuanjiao. Treatment of oil-containing wastewater by immobilized microorganism [J]. Chemical Industry and Engineering Progress, 2009, 28(3): 511 − 517. [12] 陈爽, 王良恺, 文涛, 等. 新型粉煤灰陶粒固定化有效微生物群落对模拟水产养殖废水净化效果[J]. 浙江农林大学学报, 2020, 37(4): 761 − 768. CHEN Shuang, WANG Liangkai, WEN Tao, et al. Purification effect of immobilized effective microorganism community of fly ash ceramsite on aquaculture wastewater [J]. Journal of Zhejiang A&F University, 2020, 37(4): 761 − 768. [13] 张太平, 肖嘉慧, 胡凤洁. 生物炭固定化微生物技术在去除水中污染物的应用研究进展[J]. 生态环境学报, 2021, 30(5): 1084 − 1093. doi: 10.16258/j.cnki.1674-5906.2021.05.022 ZHANG Taiping, XIAO Jiahui, HU Fengjie. Research progress in the removal of contaminants from water by immobilized microorganisms combined with biochar [J]. Ecology and Environmental Sciences, 2021, 30(5): 1084 − 1093. doi: 10.16258/j.cnki.1674-5906.2021.05.022 [14] 杨振生, 张阳阳, 李春利, 等. 疏水聚氨酯海绵吸油材料研究进展[J]. 化工新型材料, 2019, 47(8): 34 − 38. YANG Zhensheng, ZHANG Yangyang, LI Chunli, et al. Progress of hydrophobic polyurethane sponge used as oil sorbent material [J]. New Chemical Materials, 2019, 47(8): 34 − 38. [15] 周志国, 陈文亮, 滕东晓, 等. 不同改性剂对聚氨酯海绵亲油疏水改性研究[J]. 化工新型材料, 2019, 47(12): 210 − 214. ZHOU Zhiguo, CHEN Wenliang, TENG Dongxiao, et al. Analysis of different hydrophobic modification methods for polyurethane sponge [J]. New Chemical Materials, 2019, 47(12): 210 − 214. [16] 胡蝶, 李文奇, 张利萍, 等. 废报纸生物质炭的制备及对铜离子的吸附性能[J]. 浙江农林大学学报, 2020, 37(2): 325 − 334. doi: 10.11833/j.issn.2095-0756.2020.02.018 HU Die, LI Wenqi, ZHANG Liping, et al. Biochar derived from waste newspapers for removing copper ions from aqueous solution [J]. Journal of Zhejiang A&F University, 2020, 37(2): 325 − 334. doi: 10.11833/j.issn.2095-0756.2020.02.018 [17] 杨智博, 李晓红, 张丹丹, 等. 高效油脂降解混合菌株筛选及降解条件的优化[J]. 水处理技术, 2021, 47(7): 36 − 41. YANG Zhibo, LI Xiaohong, ZHANG Dandan, et al. Screening of high-efficiency oil-degrading mixed strains and optimzation of degradation conditions [J]. Technology of Water Treatment, 2021, 47(7): 36 − 41. [18] 刘兴赋, 程盛勇, 陈慧, 等. 大孔树脂对蜘蛛香总酚酸的吸附热力学和动力学研究[J]. 离子交换与吸附, 2020, 36(5): 443 − 450. LIU Xingfu, CHENG Shengyong, CHEN Hui, et al. Study on thermodynamics and dynamics of adsorption of AB-8 resin to total phenolic from Valerianae jatamansi rhizoma et radix [J]. Ion Exchange and Adsorption, 2020, 36(5): 443 − 450. [19] 黄茜, 蒋梦莹, 王丽晓, 等. 竹炭固定化微生物对水中壬基酚的降解效率[J]. 应用生态学报, 2018, 29(5): 1677 − 1685. HUANG Qian, JIANG Mengying, WANG Lixiao, et al. Degradation of nonylphenol in water by microorganisms immobilized on bamboo charcoal [J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1677 − 1685. [20] FRANKEL M L, BHUIYAN T I, VEKSHA A, et al. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals [J]. Bioresource Technology, 2016, 216: 352 − 361. doi: 10.1016/j.biortech.2016.05.084 [21] LI Kexin, DING Dong, FANG Dezhen, et al. Hydrothermal deposition of titanate on biomass carbonaceous aerogel to prepare novel biomass adsorbents for Rb+ and Cs+ [J]. Colloids and Surface A Physicochemical and Engineering Aspects, 2020, 590: 1 − 11. [22] 胡楠. 改性丝瓜络纤维素对污染物的吸附性能研究[D]. 郑州: 河南师范大学, 2013. HU Nan. Adsorption Properties of Modified Luffa Celluloses for Pollutants[D]. Zhengzhou: Henan Normal University, 2013. [23] 郑华楠, 宋晴, 朱义, 等. 芦苇生物炭复合载体固定化微生物去除水中氨氮[J]. 环境工程学报, 2019, 13(2): 310 − 318. doi: 10.12030/j.cjee.201807179 ZHENG Huanan, SONG Qing, ZHU Yi, et al. Removing ammonia nitrogen from wastewater by immobilized microorganism with reed biochar composite carrier [J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 310 − 318. doi: 10.12030/j.cjee.201807179 [24] YOUSAF A B, IMRAN M, ZEB A, et al. Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid [J]. Catalysis Science and Technology, 2016, 6(13): 4794 − 4801. doi: 10.1039/C5CY02217G [25] 王娟, 施辰阳, 谢超亚, 等. 生物炭水凝胶固定微生物处理含酚废水[J]. 浙江师范大学学报(自然科学版), 2021, 44(1): 44 − 50. doi: 10.16218/j.issn.1001-5051.2021.01.007 WANG Juan, SHI Chengyang, XIE Chaoya, et al. Study on the treatment of phenolic wastewater by carbonaceous hydrogels immobilized microorganisms [J]. Journal of Zhejiang Normal University (Natural Sciences) , 2021, 44(1): 44 − 50. doi: 10.16218/j.issn.1001-5051.2021.01.007 [26] NAYAK A, BHUSHAN B, GUPTA V, et al. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: effect of activation conditions [J]. Journal of Colloid and Interface Science, 2017, 493: 228 − 240. doi: 10.1016/j.jcis.2017.01.031 [27] 杜勇. 生物炭固定化微生物去除水中苯酚的研究[D]. 重庆: 重庆大学, 2012. DU Yong. Study of Biochar Immobilized Bacteria and its Phenol Removal[D]. Chongqing: Chongqing University, 2012. [28] 卢静静, 张银, 侯艺艺, 等. 改性花生壳在油脂脱酸中的应用及其吸附平衡研究[J]. 食品科技, 2018, 43(4): 53 − 64. doi: 10.13684/j.cnki.spkj.2018.04.012 LU Jingjing, ZHANG Yin, HOU Yiyi, et al. Application and adsorption equilibrium of modified peanut shells in adsorption of free fatty acids from oil [J]. Food Science and Technology, 2018, 43(4): 53 − 64. doi: 10.13684/j.cnki.spkj.2018.04.012 [29] HO Y S. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods [J]. Water Research, 2006, 40: 119 − 125. doi: 10.1016/j.watres.2005.10.040 [30] SRINIVASAN A, VIRARAGHAVAN T. Oil removal from water using biomaterials [J]. Bioresource Technology, 2010, 101(17): 6594 − 6600. doi: 10.1016/j.biortech.2010.03.079 [31] 刘秉书, 吴淑华, 孙谕莹, 等. 挤压豌豆纤维粉制备的不可溶膳食纤维油脂吸附能力研究[J]. 食品研究与开发, 2020, 41(9): 50 − 55. doi: 10.12161/j.issn.1005-6521.2020.09.009 LIU Bingshu, WU Shuhua, SUN Yuying, et al. Study on theadsorption capacity of insoluble dietary fiber oil prepared from extruded pea fiber powder [J]. Food Research and Development, 2020, 41(9): 50 − 55. doi: 10.12161/j.issn.1005-6521.2020.09.009 [32] 李静, 蔡征昊, 周仕林, 等. 不同粽叶对油脂的吸附性能研究[J]. 实验室科学, 2016, 19(6): 8 − 14. doi: 10.3969/j.issn.1672-4305.2016.06.003 LI Jing, CAI Zhenghao, ZHOU Shilin, et al. Study on the oil adsorption properties of different indocalamus leaves [J]. Laboratory Science, 2016, 19(6): 8 − 14. doi: 10.3969/j.issn.1672-4305.2016.06.003 [33] BONI H T, DE OLIVEIRA D, ULSON DE SOUZA A A, et al. Bioadsorption by sugarcane bagasse for the reduction in oil and grease content in aqueous effluent [J]. International Journal of Environmental Science and Technology, 2016, 13(4): 1169 − 1176. doi: 10.1007/s13762-016-0962-y [34] WANG Zhonqian, WANG Dengfeng, LI Zuguang, et al. Metaplexis japonica seed hair fiber: a hydrophobic natural fiber with robust oil-water separation properties [J]. Cellulose, 2020, 27(5): 2427 − 2435. doi: 10.1007/s10570-020-02976-3 [35] SANTOS T M, DE JESUS F A, da SILVA G F, et al. Synthesis of activated carbon from oleifera moringa for removal of oils and greases from the produced water [J]. Environmental Nanotechnology,Monitoring and Management, 2020, 14: 1 − 11. [36] 孟蒙蒙, 夏文香, 许如康, 等. 盐酸改性松木屑生物炭吸附海洋溢油的模拟研究[J]. 海洋环境科学, 2022, 41(3): 474 − 481. doi: 10.12111/j.mes.20210024 MENG Mengmeng, XIA Wenxiang, XU Rukang, et al. Study on adsorption of marine oil spill by hydrochloric acid modified pine sawdust biochar [J]. Marine Environmental Science, 2022, 41(3): 474 − 481. doi: 10.12111/j.mes.20210024 [37] HUANG Xiaoye, JIANG Ying, YU Ruobing. Popped rice biochar and superhydrophobic SiO2/popped rice biochar for oil adsorption [J]. Silicon, 2020, 13: 1 − 9. [38] LIN Chen, GAN Li, CHEN Zuliang. Biodegradation of naphthalene by strain Bacillus fusiformis (BFN) [J]. Journal of Hazardous Materials, 2010, 182: 771 − 777. doi: 10.1016/j.jhazmat.2010.06.101 [39] TENG Zedong, SHAO Wen, ZHANG Keyao, et al. Enhanced passivation of lead with immobilized phosphate solubilizing bacteria beads loaded with biochar/ nanoscale zero valent iron composite [J]. Journal of Hazardous Materials, 2020, 384: 1 − 26. [40] 董程. 磁性辣木籽壳生物炭的制备及其吸附性能研究[D]. 太原: 山西大学, 2021. DONG Cheng. Preparation and Adsorption Properties of Magnetic Moringa oleifera Seed Shell Biochar[D]. Taiyuan: Shanxi University, 2021. [41] 李琋, 王雅璇, 罗廷, 等. 利用生物炭负载微生物修复石油烃-镉复合污染土壤[J]. 环境工程学报, 2021, 15(2): 677 − 687. doi: 10.12030/j.cjee.202003093 LI Xi, WANG Yaxuan, LUO Ting, et al. Remediation of petroleum hydrocarbon-cadmium co-contaminated soil by biochar loaded microorganisms [J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 677 − 687. doi: 10.12030/j.cjee.202003093 [42] 吴梦莉, 李洁, 智燕彩, 等. 微生物固定化生物炭对水体铵态氮去除效果的研究[J]. 农业环境科学学报, 2021, 40(5): 1071 − 1078. doi: 10.11654/jaes.2020-1368 WU Mengli, LI Jie, ZHI Yancai, et al. Synthesis of microbial immobilized biochar for the removal of ammonia nitrogen from aqueous solutions [J]. Journal of Agro-Environment Science, 2021, 40(5): 1071 − 1078. doi: 10.11654/jaes.2020-1368 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220338

计量
- 文章访问数: 29
- 被引次数: 0