留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛竹Ph-TElncRNA1的鉴定及对靶基因的调控

赵佳敏 余璐 丁一倩 周明兵

赵佳敏, 余璐, 丁一倩, 周明兵. 毛竹Ph-TElncRNA1的鉴定及对靶基因的调控[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220396
引用本文: 赵佳敏, 余璐, 丁一倩, 周明兵. 毛竹Ph-TElncRNA1的鉴定及对靶基因的调控[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220396
ZHAO Jiamin, YU Lu, DING Yiqian, ZHOU Mingbing. Identification of Ph-TElncRNA1 in Phyllostachys edulis and its regulation of target genes[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220396
Citation: ZHAO Jiamin, YU Lu, DING Yiqian, ZHOU Mingbing. Identification of Ph-TElncRNA1 in Phyllostachys edulis and its regulation of target genes[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220396

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

毛竹Ph-TElncRNA1的鉴定及对靶基因的调控

doi: 10.11833/j.issn.2095-0756.20220396
基金项目: 国家自然科学基金资助项目(31870656);浙江自然科学基金重点资助项目(LZ19C160001)
详细信息
    作者简介: 赵佳敏(ORCID: 0000-0002-7894-4787),从事生物学研究。E-mail: 1160273180@qq.com
    通信作者: 周明兵(ORCID: 0000-0001-5674-4410),教授,博士,从事竹类植物基因组进化研究。E-mail: zhoumingbing@zafu.edu.cn
  • 中图分类号: Q943.2;S722.3

Identification of Ph-TElncRNA1 in Phyllostachys edulis and its regulation of target genes

  • 摘要:   目的   旨在探究毛竹Phyllostachys edulis Ph-TElncRNA1及靶基因的表达模式,初步分析lncRNA的功能。   方法   基于高温、低温、紫外、高盐胁迫处理毛竹实生苗全转录组测序数据,筛选在胁迫下差异表达的lncRNA。通过CNCI、Pfam、CPC2、PLEK等4个软件对lncRNA的编码特性进行分析,用LncRNATar软件鉴定lncRNA的靶基因,通过实时荧光定量PCR分析lncRNA和靶基因在紫外胁迫下和叶片着色过程中的表达模式。   结果   筛选到1个在紫外胁迫下差异表达的lncRNA,此lncRNA来源于LARD转座子序列(large retrotransposons derivatives),命名为Ph-TElncRNA1(Phyllostachys edulis transposable element derived lncRNA1)。Ph-TElncRNA1是一个典型的非编码RNA,全长为342 bp,其中,185个碱基来源于外显子,157个碱基来源于内含子。Ph-TElncRNA1的靶基因为psbA,编码photosystem Ⅱprotein D1。实时荧光定量结果表明:Ph-TElncRNA1与psbA的相对表达量呈完全相同的趋势,说明在紫外胁迫下Ph-TElncRNA1与psbA呈正相关。通过Ph-TElncRNA1和psbA在不同着色时期的毛竹叶片的相对表达量分析,发现在叶绿体形成期,Ph-TElncRNA1和psbA表达量达到峰值。   结论   Ph-TElncRNA1和psbA在紫外胁迫下协同表达,Ph-TElncRNA1可以通过调控靶基因psbA参与毛竹叶片发育。图7参33
  • 图  1  黄色、淡黄、淡绿、绿色4种颜色的叶片

    Figure  1  Leaves with yellow, light yellow, light green and green color

    图  2  转座子LARD和Ph-TElncRNA1位置关系结构图

    Figure  2  2Positional relationship between the LARD transposon and Ph-TElncRNA1

    图  3  Ph-TElncRNA1的组成结构及序列

    Figure  3  Composition and sequence of Ph-TElncRNA1

    图  4  Ph-TElncRNA1的电泳图

    Figure  4  Electropherogram of Ph-TElncRNA1

    图  5  Ph-TElncRNA1的测序结果比对

    Figure  5  Alignment of sequencing results of Ph-TElncRNA1

    图  6  Ph-TElncRNA1与psbA在紫外胁迫处理下的相对表达量

    Figure  6  Relative expression of Ph-TElncRNA1and psbA under UV treatment    

    图  7  Ph-TElncRNA1与psbA在叶片着色4个时期的相对表达量

    Figure  7  Relative expression of Ph-TElncRNA1and psbA in four periods of leaves colorization

  • [1] ZHANG Xiaopei, DONG Jie, DENG Fenni,et al. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress [J]. BMC Plant Biology, 2019, 19(1): 443 − 459. doi:  10.1186/s12870-019-2054-x
    [2] HEO J B, LEE Y S, SUNG S. Epigenetic regulation by long noncoding RNAs in plants [J]. Chromosome Research, 2013, 21(6/7): 685 − 693.
    [3] DERRIEN T, JOHNSON R, BUSSOTTI G,et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression [J]. Genome Reseach, 2012, 22(9): 1775 − 1789.
    [4] CHEKANOVA J A. Long non-coding RNAs and their functions in plants [J]. Current Opinion Plant Biology, 2015, 27: 207 − 216.
    [5] KOPP F, MENDELL J T. Functional classification and experimental dissection of long noncoding RNAs [J]. Cell, 2018, 172(3): 393 − 407. doi:  10.1016/j.cell.2018.01.011
    [6] ENGREITZ J M, PANDYA-JONES A, MCDONEL P, et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X-chromosome[J/OL]. Science, 2013, 341(6147): 1237973[2022-05-10]. doi:  10.1126/science.1237973.
    [7] YUAN Tingting, ZHU Chenglei, LI Guangzhu, et al. An integrated regulatory network of mRNAs, microRNAs, and lncRNAs involved in nitrogen metabolism of moso bamboo[J]. Frontiers in Genetics, 2022, 13: 854346. doi: 10.3389/fgene.2022.854346.
    [8] GUIL S, ESTELLER M. Cis-acting noncoding RNAs: friends and foes [J]. Nature Structural&Molecular Biology, 2012, 19(11): 1068 − 1075.
    [9] ZHANG Yuchan, LIAO Jianyou, LI Zeyuan,et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice [J]. Genome Biology, 2014, 15(12): 512 − 528. doi:  10.1186/s13059-014-0512-1
    [10] ARIEL F, JEGU T, LATRASSE D,et al. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop [J]. Molecular Cell, 2014, 55(3): 383 − 396. doi:  10.1016/j.molcel.2014.06.011
    [11] BERRY S, DEAN C. Environmental perception and epigenetic memory: mechanistic insight through FLC [J]. The Plant Journal, 2015, 83(1): 133 − 148.
    [12] MOISON M, PACHECO J M, LUCERO L,et al. The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold [J]. Moleclar Plant, 2021, 14(6): 937 − 948. doi:  10.1016/j.molp.2021.03.008
    [13] MATZKE M A, MOSHER R A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity [J]. Nature Reviews Genetics, 2014, 15(6): 394 − 408. doi:  10.1038/nrg3683
    [14] WANG Jiongliang, HOU Yinguang, WANG Yu, et al. Integrative lncRNA landscape reveals lncRNA-coding gene networks in the secondary cell wall biosynthesis pathway of moso bamboo (Phyllostachys edulis)[J/OL]. BMC Genomics, 2021, 22(1): 638[2022-05-10]. doi:  10.1186/s12864-021-07953-z.
    [15] GOLICZ A A, SINGH M B, BHALLA P L. The long intergenic noncoding RNA (LincRNA) landscape of the soybean genome [J]. Plant Physiology, 2018, 176(3): 2133 − 2147. doi:  10.1104/pp.17.01657
    [16] WANG Dong, QU Zhipeng, YANG Lan,et al. Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants [J]. The Plant Journal, 2017, 90(1): 133 − 146. doi:  10.1111/tpj.13481
    [17] ZHAO Ting, TAO Xiaoyuan, FENG Shouli, et al. LncRNAs in polyploid cotton interspecific hybrids are derived from transposon neofunctionalization[J/OL]. Genome Biology, 2018, 19(1): 195[2022-05-10]. doi:  10.1186/s13059-018-1574-2.
    [18] LÜ Yuanda, HU Fengqin, ZHOU Yongfeng, et al. Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response[J/OL]. BMC, 2019, 20(1): 864[2022-05-10]. doi:  10.1186/s12864-019-6245-5.
    [19] 王益军, 王亚丽, 陈煜东. 转座子来源的植物长链非编码RNA[J]. 植物学报, 2020, 55(6): 768 − 776. doi:  10.11983/CBB20098

    WANG Yijun, WANG Yali, CHEN Yudong. Transposon-derived long noncoding RNA in plants [J]. Chinese Bulletin of Botany, 2020, 55(6): 768 − 776. doi:  10.11983/CBB20098
    [20] 彭忠明, 徐克凡, 周凯, 等. 毛竹DNA甲基转移酶家族的鉴定与生物信息学分析[J/OL]. 分子植物育种, 2022-04-26[2022-05-10]. https://kns.cnki.net/kcms/detail/46.1068.S.20220426.0814.002.html.

    PENG Zhongming, XU Kefan, ZHOU Kai, et al. Identification and biological information analysis of Phyllostachys edulis DNMT genefamily [J/OL]. Molecular Plant Breeding, 2022-04-26[2022-0510]. https://kns.cnki.net/kcms/detail/46.1068.S.20220426.0814.002.html.
    [21] 吴佳军. 毛竹转座子来源的非编码RNA在非生物胁迫中的响应机制[D]. 杭州: 浙江农林大学, 2019.

    WU Jiajun. The Response Mechanism of Phyllostachys edulisTransposable Non-coding RNA in Abiotic Stress[D]. Hangzhou: Zhejiang A&F University, 2019.
    [22] HUNTER K W, AMIN R, DEASY S,et al. Genetic insights into the morass of metastatic heterogeneity [J]. Nature Reviews Cancer, 2018, 18(4): 211 − 223. doi:  10.1038/nrc.2017.126
    [23] JIA Hui, OSAK M, BOGU G K,et al. Genome-wide computational identification and manual annotation of human long noncoding RNA genes [J]. RNA, 2010, 16(8): 1478 − 1487. doi:  10.1261/rna.1951310
    [24] 刘琳营, 苏晓俊, 闵玲. 植物中长链非编码RNA研究进展综述[J]. 江苏农业科学, 2021, 49(12): 12 − 19. doi:  10.15889/j.issn.1002-1302.2021.12.002

    LIU Linying, SU Xiaojun, MIN Ling. Research progress of long non-coding RNA in plants: a review [J]. Jiangsu Agricultural Science, 2021, 49(12): 12 − 19. doi:  10.15889/j.issn.1002-1302.2021.12.002
    [25] 张玉婵, 陈月琴. 长链非编码RNA在植物生殖发育中的调控作用[J]. 生命科学, 2016, 28(6): 640 − 644. doi:  10.13376/j.cbls/2016082

    ZHANG Yuchan, CHEN Yueqin. Long non-coding RNAs in plant reproductive growth [J]. Chinese Bulletin of Life Sciences, 2016, 28(6): 640 − 644. doi:  10.13376/j.cbls/2016082
    [26] 吕秉哲, 马东江, 魏成, 等. LncRNA对胃癌表型的影响及诊疗潜力[J]. 生命的化学, 2022, 42(3): 64 − 73.

    LÜ Bingzhe, MA Dongjiang, WEI Cheng,et al. Emerging impact of long noncoding RNA and its molecular mechanisms in gastric cancer [J]. Chemistry of Life, 2022, 42(3): 64 − 73.
    [27] 林诗晗, 邹璐宁, 林雪梅, 等. 基于TCGA/GEO数据库对lncRNA在口腔鳞状细胞癌中甲基化水平及预后相关性的分析[J/OL]. 实用口腔医学杂志, 2022-04-01[2022-05-10]. http://kns.cnki.net/kcms/detail/61.6012.r.20220330.1121.002.html.

    LIN Shihan, ZOU Ling, LIN Xuemei, et al. Identification of DNA methylationoflnc RNA for predicting prognosis of oral squamous cell carcinoma based on TCGA/GEO database[J/OL]. Journal of Practical Stomatology, 2022-04-01[2022-05-10]. http://kns.cnki.net/kcms/detail/61.6012.r.20220330.1121.002.html.
    [28] 王益玲, 王留珍, 冯海燕. 生物信息学分析长链非编码RNA在变应性鼻炎中的作用[J]. 中国耳鼻咽喉颅底外科杂志, 2022, 28(1): 51 − 57.

    WANG Yiling, WANG Liuzhen, FENG Haiyan. Role analysis of long non-coding RNA in allergic rhinitis based on bioinformatics [J]. The Chinese Journal of Otolaryngology-Cranial Bottom Surgery, 2022, 28(1): 51 − 57.
    [29] 赵雷. 拟南芥长链非编码RNA调控高温胁迫响应的机理研究[D]. 泰安: 山东农业大学, 2017.

    ZHAO Lei. Functional Analysis of Long Nocoding RNA for Heat Stress Tolerance in Arabidopsis[D]. Ti’an: Shanddong Agricultural University, 2017.
    [30] MA Peng, ZHANG Xiao, LUO Bowen, et al. Transcriptomic and genome-wide association study reveal long noncoding RNAs responding to nitrogen deficiency in maize[J/OL]. BMC Plant Biology, 2021, 21(1): 93[2022-05-10]. doi:  10.1186/s12870-021-02847-4.
    [31] 张晓佩. 陆地棉长链非编码RNAs-lncRNA354和lncRNA973的功能和作用机制研究[D]. 泰安: 山东农业大学, 2022.

    ZHANG Xiaopei. Function and Mechanism Studies of Upland Cotton Long Non-coding RNAs-lncRNA354 and lncRNA973[D]. Ti’an: Shandong Agricultural University, 2022.
    [32] FERREIRA K N, IVERSON T M, MAGHLAOUI K,et al. Architecture of the photosynthetic oxygen-evolving center [J]. Science, 2004, 303(5665): 1831 − 1838. doi:  10.1126/science.1093087
    [33] SIROHIWAL A, NEESE F, PANTAZIS D A. Protein matrix control of reaction center excitation in photosystem Ⅱ [J]. Journal of American Chemical Society, 2020, 142(42): 18174 − 18190. doi:  10.1021/jacs.0c08526
  • [1] 王绍良, 张雯宇, 高志民, 周明兵, 杨克彬, 宋新章.  毛竹磷转运蛋白Ⅰ家族基因鉴定及表达模式 . 浙江农林大学学报, 2022, 39(3): 486-494. doi: 10.11833/j.issn.2095-0756.20210471
    [2] 娄永峰, 高志民.  毛竹早期光诱导蛋白基因克隆及功能分析 . 浙江农林大学学报, 2021, 38(1): 93-102. doi: 10.11833/j.issn.2095-0756.20200237
    [3] 傅卢成, 卜柯丽, 王灵杰, 栗青丽, 高培军, 高岩, 张汝民.  毛竹茎秆快速生长期类囊体膜蛋白复合物BN-PAGE分析 . 浙江农林大学学报, 2020, 37(4): 664-672. doi: 10.11833/j.issn.2095-0756.20190398
    [4] 卜柯丽, 傅卢成, 王灵杰, 栗青丽, 王柯杨, 马元丹, 高岩, 张汝民.  毛竹茎秆快速生长期PeATG1/PeATG4基因表达分析 . 浙江农林大学学报, 2020, 37(1): 43-50. doi: 10.11833/j.issn.2095-0756.2020.01.006
    [5] 李媛媛, 张双燕, 王传贵, 方徐勤.  毛竹采伐剩余物的化学成分、纤维形态及纸浆性能 . 浙江农林大学学报, 2019, 36(2): 219-226. doi: 10.11833/j.issn.2095-0756.2019.02.002
    [6] 李秀云, 陈晓沛, 徐英武, 曹友志.  毛竹生长过程中纤维素合成酶基因的时空表达和功能预测 . 浙江农林大学学报, 2017, 34(4): 565-573. doi: 10.11833/j.issn.2095-0756.2017.04.001
    [7] 张磊, 谢锦忠, 张玮, 冀琳珂, 陈胜, 丁中文.  模拟干旱环境下毛竹对伐桩注水的生理响应 . 浙江农林大学学报, 2017, 34(4): 620-628. doi: 10.11833/j.issn.2095-0756.2017.04.007
    [8] 李黎, 宋帅杰, 方小梅, 杨丽芝, 邵珊璐, 应叶青.  高温干旱及复水对毛竹实生苗保护酶和脂质过氧化的影响 . 浙江农林大学学报, 2017, 34(2): 268-275. doi: 10.11833/j.issn.2095-0756.2017.02.010
    [9] 温星, 程路芸, 李丹丹, 许馨露, 高岩, 张汝民.  毛竹叶片发育过程中光合生理特性的变化特征 . 浙江农林大学学报, 2017, 34(3): 437-442. doi: 10.11833/j.issn.2095-0756.2017.03.008
    [10] 李丹丹, 许馨露, 翟建云, 孙建飞, 曹友志, 高岩, 张汝民.  毛竹笋竹快速生长期可溶性糖质量分数与PeTPS1/PeSnRK1基因表达分析 . 浙江农林大学学报, 2017, 34(6): 1016-1023. doi: 10.11833/j.issn.2095-0756.2017.06.007
    [11] 黄梦雪, 张文标, 张晓春, 余文军, 李文珠, 刘贤淼, 戴春平, 汪孙国.  毛竹材玻璃化转变温度的影响因素 . 浙江农林大学学报, 2015, 32(6): 897-902. doi: 10.11833/j.issn.2095-0756.2015.06.011
    [12] 王超莉, 张智俊, 屈亚平, 王蕾.  毛竹丙酮酸磷酸双激酶调节蛋白基因克隆、原核表达及纯化 . 浙江农林大学学报, 2015, 32(5): 749-755. doi: 10.11833/j.issn.2095-0756.2015.05.014
    [13] 顾鸿昊, 翁俊, 孔佳杰, 叶小猛, 刘永军, 漆良华, 宋新章.  粗放和集约经营毛竹林叶片的生态化学计量特征 . 浙江农林大学学报, 2015, 32(5): 661-667. doi: 10.11833/j.issn.2095-0756.2015.05.002
    [14] 张凤雪, 徐英武, 张智俊, 肖冬长, 王超莉, 屈亚平.  毛竹KDO8PS的原核表达纯化及晶体生长 . 浙江农林大学学报, 2014, 31(4): 515-520. doi: 10.11833/j.issn.2095-0756.2014.04.004
    [15] 许改平, 刘芳, 吴兴波, 温国胜, 王玉魁, 高岩, 高荣孚, 张汝民.  低温胁迫下毛竹叶片色素质量分数与反射光谱的相关性 . 浙江农林大学学报, 2014, 31(1): 28-36. doi: 10.11833/j.issn.2095-0756.2014.01.005
    [16] 董大川, 孔振, 杨伟晰, 李爽爽, 高荣孚, 高培军.  基于四阶导数毛竹冠层叶片反射光谱特性分析 . 浙江农林大学学报, 2011, 28(6): 893-899. doi: 10.11833/j.issn.2095-0756.2011.06.009
    [17] 宋艳冬, 金爱武, 金晓春, 胡元斌, 杜亮亮, 江志友.  施肥对毛竹叶片光合生理的影响 . 浙江农林大学学报, 2010, 27(3): 334-339. doi: 10.11833/j.issn.2095-0756.2010.03.003
    [18] 林琼影, 陈建新, 杨淑贞, 温国胜.  毛竹气体交换特征 . 浙江农林大学学报, 2008, 25(4): 522-526.
    [19] 徐秋芳, 姜培坤.  有机肥对毛竹林间及根区土壤生物化学性质的影响 . 浙江农林大学学报, 2000, 17(4): 364-368.
    [20] 袁亚平, 萧江华, 陈汉林, 朱文圣.  毛竹林新型经营模式 . 浙江农林大学学报, 1999, 16(3): 270-273.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220396

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/1/1

计量
  • 文章访问数:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 录用日期:  2022-10-17
  • 修回日期:  2022-10-10

毛竹Ph-TElncRNA1的鉴定及对靶基因的调控

doi: 10.11833/j.issn.2095-0756.20220396
    基金项目:  国家自然科学基金资助项目(31870656);浙江自然科学基金重点资助项目(LZ19C160001)
    作者简介:

    赵佳敏(ORCID: 0000-0002-7894-4787),从事生物学研究。E-mail: 1160273180@qq.com

    通信作者: 周明兵(ORCID: 0000-0001-5674-4410),教授,博士,从事竹类植物基因组进化研究。E-mail: zhoumingbing@zafu.edu.cn
  • 中图分类号: Q943.2;S722.3

摘要:    目的   旨在探究毛竹Phyllostachys edulis Ph-TElncRNA1及靶基因的表达模式,初步分析lncRNA的功能。   方法   基于高温、低温、紫外、高盐胁迫处理毛竹实生苗全转录组测序数据,筛选在胁迫下差异表达的lncRNA。通过CNCI、Pfam、CPC2、PLEK等4个软件对lncRNA的编码特性进行分析,用LncRNATar软件鉴定lncRNA的靶基因,通过实时荧光定量PCR分析lncRNA和靶基因在紫外胁迫下和叶片着色过程中的表达模式。   结果   筛选到1个在紫外胁迫下差异表达的lncRNA,此lncRNA来源于LARD转座子序列(large retrotransposons derivatives),命名为Ph-TElncRNA1(Phyllostachys edulis transposable element derived lncRNA1)。Ph-TElncRNA1是一个典型的非编码RNA,全长为342 bp,其中,185个碱基来源于外显子,157个碱基来源于内含子。Ph-TElncRNA1的靶基因为psbA,编码photosystem Ⅱprotein D1。实时荧光定量结果表明:Ph-TElncRNA1与psbA的相对表达量呈完全相同的趋势,说明在紫外胁迫下Ph-TElncRNA1与psbA呈正相关。通过Ph-TElncRNA1和psbA在不同着色时期的毛竹叶片的相对表达量分析,发现在叶绿体形成期,Ph-TElncRNA1和psbA表达量达到峰值。   结论   Ph-TElncRNA1和psbA在紫外胁迫下协同表达,Ph-TElncRNA1可以通过调控靶基因psbA参与毛竹叶片发育。图7参33

English Abstract

赵佳敏, 余璐, 丁一倩, 周明兵. 毛竹Ph-TElncRNA1的鉴定及对靶基因的调控[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220396
引用本文: 赵佳敏, 余璐, 丁一倩, 周明兵. 毛竹Ph-TElncRNA1的鉴定及对靶基因的调控[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220396
ZHAO Jiamin, YU Lu, DING Yiqian, ZHOU Mingbing. Identification of Ph-TElncRNA1 in Phyllostachys edulis and its regulation of target genes[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220396
Citation: ZHAO Jiamin, YU Lu, DING Yiqian, ZHOU Mingbing. Identification of Ph-TElncRNA1 in Phyllostachys edulis and its regulation of target genes[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220396

返回顶部

目录

    /

    返回文章
    返回