-
茄子Solanum melongena是茄科Solanaceae茄属Solanum的 1年生草本植物,以浆果为产品器官,作为重要的蔬菜,在中国南北方广泛栽培[1]。茄子果实营养丰富,其富含的多酚、花色苷和芦丁等营养物质,还具有较高的食用价值与医疗保健功效[2−7]。茄子种质资源十分丰富,中国目前已建立了较成熟的国家茄子种质资源数据库管理系统和地方茄子种质资源数据库[8]。王佳慧[9]基于表型性状对142份茄子进行遗传多样性分析,发现不同茄子种质资源农艺性状存在较大差异,并从中筛选出了品质佳、抗寒性强的优良种质。张念等[10]采用形态标记对76 份茄子种质资源进行遗传多样性分析,发现种质资源间形态性状差异明显,基于Pearson系数聚类将其分为3类7组。陈雪平[11]利用形态标记对133份茄子种质及其近缘种进行分析,发现茄子形态遗传变异丰富,可作为植物学分类的重要依据。齐东霞等[12]利用表型性状对105份中俄茄子种质材料进行分析,发现材料间表现出不同程度多样性,表型聚类发现类群划分与地理来源没有直接关系,但与茄子果实性状存在一定相关性。
主成分分析法是通过降维方法将数量多且相关的变量重新组合,形成个数少、彼此独立并能尽量反映原变量相关信息的综合变量,简化了多个指标,为资源的评价和选择提供科学依据[13]。目前,主成分分析法被广泛应用于水稻Oryza sativa、玉米Zea mays、小麦Triticum aestivum、南瓜Cucurbita moschata等多种作物[14−18],而中国在茄子农艺性状和品质评价方法及评价指标方面的研究较少,影响了茄子资源利用、新品种选育及市场竞争力。
本研究以10份茄子种质资源为材料,通过测定并分析不同茄子品种农艺性状及果实品质等,采用主成分分析法对12个指标进行综合分析,构建科学的评价体系,以期为优质茄子资源或品种的快速筛选及新品种选育提供依据。
-
由表1可知:10个品种茄子的植株高度为91.00~114.00 cm,其中‘Z2’最高,其次是‘亮紫7号’,‘杭茄718’最矮。各品种间株幅差异较大,株幅最大的是‘紫龙7号’,为100.00 cm,其次是‘紫龙5号’‘浙茄10号’‘杭茄718’,这3个品种间无显著差异。‘亮紫7号’的株幅最小,只有‘紫龙7号’的62.67%。10个品种茄子的植株茎粗为1.74~2.42 cm,其中‘杭茄716’最粗,显著高于其他品种(P<0.05),茎粗最小的是‘Z3’。
表 1 不同茄子品种的农艺性状比较
Table 1. Agronomic characteristics comparison of 10 eggplant cultivars
品种 株高/cm 株幅/cm 茎粗/cm 品种 株高/cm 株幅/cm 茎粗/cm 紫龙5号 101.33±2.73 c 97.00±5.48 b 2.04±0.18 bcd 杭茄718 91.00±1.90 e 96.00±3.41 b 2.17±0.13 b 紫龙7号 95.17±1.83 d 100.00±3.35 a 1.92±0.17 cde Z1 98.67±4.55 cd 82.17±3.49 c 1.86±0.14 de 亮紫7号 112.33±4.63 a 62.67±3.33 f 2.13±0.25 bc Z2 114.00±7.97 a 73.50±3.02 e 2.00±0.13 bcd 浙茄10号 107.33±3.72 b 97.00±1.90 b 1.97±0.21 bcd Z3 100.67±9.20 c 77.00±3.46 d 1.74±0.14 e 杭茄716 102.33±2.25 c 83.67±4.97 c 2.42±0.37 a 杭茄2020 96.00±4.20 d 76.67±4.27 d 2.15±0.24 b 说明:同列不同小写字母表示同一指标不同品种间差异显著(P<0.05)。 -
10个茄子品种均为紫色品种。由表2可知:‘杭茄718’的L值最高,说明其果实表面光泽度最好,‘Z3’的L最低。10个茄子品种的a为9.20~14.33。‘Z1’果皮的a最大,色泽最深,达14.33, ‘杭茄718’次之,‘Z3’的a最小,只有‘Z1’的64.20%。b均为负数,说明所有果实都没有偏黄的。
表 2 不同茄子品种果实性状比较
Table 2. Comparison of fruit traits of 10 eggplant cultivars
品种 皮色 长度/cm 横径/cm 单果质量/g L a b 紫龙5号 −0.45±0.10 bc 10.20±1.48 ef −4.55±0.87 a 33.87±1.48 de 2.48±0.10 c 101.82±7.96 bcd 紫龙7号 −0.35±0.13 b 13.25±0.50 bc −7.28±0.26 e 29.47±0.40 h 2.35±0.16 d 98.08±5.84 d 亮紫7号 −0.40±0.12 bc 11.45±1.04 d −5.78±0.78 c 35.10±2.47 c 2.43±0.10 c 113.55±10.42 a 浙茄10号 0.03±0.03 a 12.60±0.14 c −6.78±0.62 d 33.42±1.29 ef 2.30±0.15 d 103.99±5.10 bcd 杭茄716 −0.40±0.08 bc 12.68±0.92 c −6.70±0.93 d 32.37±1.84 g 2.75±0.14 a 109.08±8.49 abc 杭茄718 0.08±0.05 a 13.55±0.25 ab −7.03±0.46 de 34.67±2.25 cd 2.48±0.10 c 109.98±16.86 ab Z1 0.05±0.06 a 14.33±1.10 a −7.45±0.49 e 37.87±1.54 a 2.62±0.18 b 106.51±7.58 abcd Z2 −0.48±0.17 c 9.73±0.59 fg −5.53±0.94 bc 34.57±1.33 cd 2.70±0.09 a 105.65±4.20 abcd Z3 −0.63±0.10 d 9.20±0.84 g −4.48±0.46 a 36.47±1.12 b 2.70±0.18 a 105.90 ±2.29 abcd 杭茄2020 −0.38±0.05 bc 10.90±0.60 de −5.15±0.44 b 32.80±2.60 fg 2.45±0.10 c 100.61 ±7.16 cd 说明:同列不同字母表示同一指标不同品种间差异显著(P<0.05)。 各茄子品种的果实长度为29.47~37.87 cm,其中‘Z1’果实最长,显著高于其他品种(P<0.05)。果实最短的品种是‘紫龙7号’,显著低于其他品种(P<0.05)。果实横径最大的3个品种是‘杭茄716’‘Z2’‘Z3’,显著高于其他品种(P<0.05)。果实最细的品种为‘浙茄10号’,仅为2.30 cm。不同品种茄子的单果质量存在一定差异,其中‘亮紫7号’单果质量最大,‘紫龙5号’单果质量最小。
-
茄子果皮和果肉的穿刺试验发现(图1A):各品种间果皮硬度存在差异,‘杭茄716’果皮硬度最大,显著高于其他品种(P<0.05),‘杭茄2020’次之,‘Z3’果皮硬度最小,仅为‘杭茄716’果皮硬度的55.05%;‘紫龙5号’‘紫龙7号’‘亮紫7号’‘杭茄718’的果皮硬度相近,无显著差异。各茄子品种果肉硬度的变化规律跟果皮硬度一致(图1B)。‘杭茄716’果肉硬度最大,‘杭茄2020’次之,‘Z3’果肉硬度最小,仅为‘杭茄716’果肉硬度的53.97%;‘紫龙5号’‘紫龙7号’‘亮紫7号’‘杭茄718’的果肉硬度相近,无显著差异。‘浙茄10号’‘Z1’‘Z2’果肉硬度差异不大。不同茄子品种间果皮韧性差异较大(图1C)。‘亮紫7号’果皮韧性最大,‘杭茄718’和‘浙茄10号’果皮韧性最小。‘紫龙5号’‘Z1’‘Z2’的果皮韧性差异不大。‘杭茄716’和‘杭茄2020’的果皮韧性最小,且两者之间无显著差异。
-
由表3可知:茄子果实可溶性糖质量分数最高的品种为‘Z2’,达38.04 mg·g−1,其次是‘浙茄10号’,为35.35 mg·g−1,‘杭茄718’可溶性糖质量分数最低,只有25.01 mg·g−1,显著低于其他品种(P<0.05)。茄子果实可溶性蛋白质量分数较高的3个品种为‘Z1’‘Z2’‘Z3’,显著高于另外7个品种(P<0.05)。‘亮紫7号’和‘紫龙5号’果实游离氨基酸质量分数最高,达到1.7 mg·g−1,‘杭茄2020’游离氨基酸质量分数最低,仅为0.73 mg·g−1,显著低于其他品种(P<0.05)。‘紫龙7号’‘亮紫7号’‘杭茄718’‘杭茄2020’的总酚质量分数最高,显著高于其他品种(P<0.05),‘Z1’总酚质量分数最低,只有2.21 mg·g−1。
表 3 10个茄子品种果实品质指标比较
Table 3. Comparison of fruit quality of 10 eggplant cultivars
品种 可溶性糖/(mg·g−1) 可溶性蛋白/(mg·g−1) 游离氨基酸/(mg·g−1) 总酚/(mg·g−1) 紫龙5号 30.04±2.59 cd 3.53±0.65 b 1.69±0.06 a 4.08±0.67 bc 紫龙7号 34.53±2.91 abc 3.79±0.69 b 1.42±0.13 b 5.26±0.74 a 亮紫7号 32.62±1.04 bcd 3.54±0.42 b 1.76±0.26 a 5.19±0.88 a 浙茄10号 35.35±2.69 ab 3.66±0.27 b 1.09±0.15 c 3.60±0.91 bc 杭茄716 33.88±2.65 abc 3.14±0.55 b 1.17±0.12 bc 2.94±0.38 cd 杭茄718 25.01±1.03 e 3.90±0.65 b 1.36±0.13 bc 4.78±0.68 a Z1 35.19±2.67 ab 5.03±0.38 a 1.12±0.19 c 2.21±0.72 d Z2 38.04±2.73 a 4.68±0.25 a 1.19±0.23 bc 3.24±0.58 cd Z3 32.14±3.45 bcd 4.79±0.20 a 1.27±0.23 bc 4.44±0.62 ab 杭茄2020 28.09±3.40 de 3.64±0.26 b 0.73±0.13 d 4.78±0.68 a 说明:同列不同字母表示同一指标不同品种间差异显著(P<0.05)。 -
对10个茄子品种的16个性状指标进行主成分分析,得到了特征值大于l的5个主成分,反映了总信息量的87.126% (表4)。第1主成分的方差贡献率为28.125%,其中可溶性蛋白、长度、株高、果皮韧性、可溶性糖、横径等具有较大的载荷值,综合反映了茄子产量、果实、品质等各方面的性状,因此,第1主成分能作为选择综合性状较好的优质茄子种质资源的有效指标。第2主成分的方差贡献率为21.098%,果肉硬度、果皮硬度、茎粗、株高等具有较大的载荷值,主要反映了茄子植株的生长性状。第3主成分的方差贡献率为16.474%,特征向量值较大的是单果质量、横径、色差a、茎粗等,主要反映了茄子的商品性状。第4主成分的方差贡献率为11.444%,特征向量值较大的是游离氨基酸、单果质量和果皮韧性。第5主成分特征向量值中较大的是长度和单果质量,其他指标的载荷值不突出,但增加了整个模型的信息表达量,更能全面反映茄子的综合性状。
表 4 茄子性状评价因子的特征值和累积方差贡献率
Table 4. Characteristic value and cumulative variance contribution rate of eggplant evaluation factors
主成分 特征值 方差贡献率/% 累计方差贡献率/% 1 4.500 28.125 28.125 2 3.376 21.098 49.224 3 2.636 16.474 65.697 4 1.831 11.444 77.141 5 1.598 9.985 87.126 为了消除不同单位及数据量纲的影响,对各性状指标的原始数据进行了无量纲化处理。根据表5构建了主成分与茄子各生物学性状间的线性关系式:
表 5 主成分在各性状指标上的因子载荷矩阵
Table 5. Rotated component matrix of the principal component analysis
性状 主成分 性状 主成分 1 2 3 4 5 1 2 3 4 5 茎粗(X1) −0.663 0.56 0.407 0.132 0.052 b (X9) 0.431 0.589 −0.525 −0.21 0.253 株高(X2) 0.573 0.402 0.18 0.254 −0.47 果皮硬度(X10) −0.755 0.579 0.237 −0.123 −0.025 株幅(X3) −0.546 −0.573 −0.284 −0.096 −0.155 果皮韧性(X11) 0.509 0.311 0.144 0.422 −0.267 长度(X4) 0.698 −0.168 0.377 0.083 0.529 果肉硬度(X12) −0.66 0.603 0.363 −0.208 −0.022 横径(X5) 0.402 0.376 0.513 −0.443 0.21 可溶性糖(X13) 0.475 −0.05 0.3 −0.115 −0.797 单果质量(X6) 0.191 0.261 0.585 0.539 0.404 可溶性蛋白(X14) 0.766 −0.457 0.125 −0.274 0.162 L (X7) −0.328 −0.758 0.398 0.241 0.132 游离氨基酸(X15) 0.163 0.172 −0.246 0.787 −0.056 a (X8) −0.531 −0.587 0.492 0.257 −0.078 总酚(X16) −0.261 0.178 −0.748 0.366 0.198 $$ \begin{split} {F} _{ {1}}=& {-0.312} {X} _{ {1}} {+0.270} {X} _{ {2}} {-0.258} {X} _{ {3}} {+0.329} {X} _{ {4}} {+0.190} {X} _{ {5}} {+0.090} {X} _{ {6}} {-0.155} {X} _{ {7}} {-0.250} {X} _{ {8}} {+0.203} {X} _{ {9}} {-0.356} {X} _{ {10}} {+0.240} {X} _{ {11}}-\\ &{0.311} {X} _{ {12}} {+0.224} {X} _{ {13}} {+0.361} {X} _{ {14}} {+0.077} {X} _{ {15}} {-0.123} {X} _{ {16}} {;}\\ {F} _{ {2}}= &{0.306} {X} _{ {1}} {+0.220} {X} _{ {2}} {-0.313} {X} _{ {3}} {-0.092} {X} _{ {4}} {+0.205} {X} _{ {5}} {+0.143} {X} _{ {6}} {-0.414} {X} _{ {7}} {-0.321} {X} _{ {8}} {+0.322} {X} _{ {9}} {+0.316} {X} _{ {10}} {-0.170} {X} _{ {11}} +\\ &{0.329} {X} _{ {12}} {-0.027} {X} _{ {13}} {-0.250} {X} _{ {14}} {+0.094} {X} _{ {15}} {+0.097} {X} _{ {16}} {;}\\ {F} _{ {3}}=& {0.251} {X} _{ {1}} {+0.111} {X} _{ {2}} {-0.175} {X} _{ {3}} {+0.233} {X} _{ {4}} {+0.317} {X} _{ {5}} {+0.361} {X} _{ {6}} {+0.246} {X} _{ {7}} {+0.304} {X} _{ {8}} {-0.324} {X} _{ {9}} {+0.146} {X} _{ {10}} {+0.089} {X} _{ {11}}+\\ &{0.224} {X} _{ {12}} {+0.185} {X} _{ {13}} {+0.077} {X} _{ {14}} {-0.152} {X} _{ {15}} {-0.462} {X} _{ {16}} {;}\\ {F} _{ {4}}= &{0.098} {X} _{ {1}} {+0.188} {X} _{ {2}} {-0.071} {X} _{ {3}} {+0.061} {X} _{ {4}} {-0.328} {X} _{ {5}} {+0.399} {X} _{ {6}} {+0.179} {X} _{ {7}} {+0.190} {X} _{ {8}} {-0.156} {X} _{ {9}} {-0.091} {X} _{ {10}} {+0.313} {X} _{ {11}}-\\ &{0.154} {X} _{ {12}} {-0.085} {X} _{ {13}} {-0.203} {X} _{ {14}} {+0.583} {X} _{ {15}} {+0.271} {X} _{ {16}} {;}\\ {F} _{ {5}}= &{0.078} {X} _{ {1}} {+0.149} {X} _{ {2}} {-0.056} {X} _{ {3}} {+0.049} {X} _{ {4}} {-0.260} {X} _{ {5}} {+0.317} {X} _{ {6}} {+0.142} {X} _{ {7}} {+0.151} {X} _{ {8}} {-0.123} {X} _{ {9}} {-0.072} {X} _{ {10}} {+0.248} {X} _{ {11}}-\\ &{0.122} {X} _{ {12}} {-0.068} {X} _{ {13}} {-0.161} {X} _{ {14}} {+0.463} {X} _{ {15}} {+0.215} {X} _{ {16}} {。} \end{split} $$ 在主成分分析基础上,以5个主成分和每个主成分对应特征值占提取主成分总特征值之和的比例作为权重,计算主成分综合模型:F=0.28F1+0.21F2+0.16F3+0.11F4+0.10F5,根据综合模型计算不同茄子品种的综合性状得分(表6)。结果表明,‘亮紫7号’的综合性状最好,其次是‘Z1’,‘紫龙7号’的综合性状最差。
表 6 不同茄子品种性状预测评价结果
Table 6. Characteristics prediction results of different eggplant varieties
品种 F1 F2 F3 F4 F5 F综 排名 紫龙5号 0.08 0.66 −1.81 0.44 0.35 −0.05 6 紫龙7号 −1.87 −1.36 −1.88 0.18 0.14 −1.08 10 亮紫7号 1.19 1.54 0.2 3.08 2.45 1.27 1 浙茄10号 −0.62 −1.72 −0.16 0.08 0.06 −0.55 7 杭茄716 −2.58 2.68 2.64 −0.87 −0.69 0.1 5 杭茄718 −2.19 −1.22 0.24 0.99 0.78 −0.64 8 Z1 2.98 0.63 0.59 −0.75 −0.59 0.92 2 Z2 2.96 0.47 −1.44 −1.29 −1.02 0.45 3 Z3 −1.72 1.38 −0.94 −1.69 −1.34 −0.66 9 杭茄2020 1.76 −3.06 2.57 −0.17 −0.13 0.23 4
Comprehensive evaluation of Solanum melongena cultivars
-
摘要:
目的 对不同茄子Solanum melongena品种农艺性状及品质等指标进行分析,旨在建立适用于茄子资源的评价方法,为优质茄子资源快速筛选及品种选育提供理论参考。 方法 以‘紫龙5号’‘紫龙7号’‘亮紫7号’‘浙茄7号’‘杭茄716’‘杭茄718’‘Z1’‘Z2’‘杭茄2020’等10个茄子品种为试材,测定与植株生长、果实等相关的16个指标,并利用主成分分析法进行综合评价。 结果 不同茄子品种的农艺性状及品质指标等存在差异。‘Z2’植株最高,‘紫龙7号’株幅最大,‘杭茄716’最粗。‘Z1’果实最长,‘紫龙7号’最短。‘Z1’果皮颜色最深,而‘Z3’果皮颜色最浅。‘杭茄716’果皮和果实硬度最高,显著高于其他9个品种(P<0.05),而‘亮紫7号’果皮韧性最大,显著大于其他品种(P<0.05)。‘Z2’的可溶性糖和可溶性蛋白质量分数均最高,‘亮紫7号’和‘紫龙5号’果实的游离氨基酸质量分数最高。主成分分析共提取了5个主成分,累积贡献率达87.126%。 结论 以5个主成分及单个主成分所对应的特征值占提取主成分特征值和的比例作为权重,构建了茄子综合评价模型,综合得分最好的品种为‘亮紫7号’,最差的是‘紫龙7号’。图1表6参29 Abstract:Objective In order to establish a suitable evaluation methods for eggplant resources, the agronomic characters and quality indexes of different eggplant cultivars are analyzed, which will provide a theoretical reference for rapid screening of germplasm resources and eggplant breeding. Method 10 eggplant varieties ‘Zilong No.5’ ‘Zilong No.7’ ‘Liangzi No.7’ ‘Zheqie No.10’ ‘Hangqie No.716’ ‘Hangqie No.718’ ‘Z1’ ‘Z2’ ‘Z3’ ‘Hangqie No.2020’ were used to determine 16 indicators relevant with plant growth and fruit characteristics. The principal component analysis method was used for comprehensive evaluation. Result There were differences among different eggplant cultivars. Plant of ‘Z2’ was the highest. The highest plant breadth and stem diameter was found in ‘Zilong No. 7’ and ‘Hangqie No. 716’, respectively. For fruit length, ‘Z1’ was the longest, while ‘Zilong No. 7’ was the shortest. The highest and lowest chroma value was found in fruit of ‘Z1’ and ‘Z3’, respectively. The hardness of fruit peel and pulp for ‘Hangqie No. 716’ was significantly higher than those of the other 9 cultivars (P<0.05). The pericarp toughness of ‘Liangzi No. 7’ was significantly higher than others (P<0.05). Soluble sugar and protein contents of ‘Z2’ were the highest. Fruits of ‘Liangzi No. 7’ and ‘Zilong No. 5’ showed the highest levels of amino acid. Principal component analysis extracted a total of 5 principal components with a cumulative contribution rate of 87.126%. Conclusion A comprehensive evaluation model of eggplant was constructed by taking the eigenvalues corresponding to the five principal components and the ratio of single principal component to the extracted principal components. The best comprehensive score was found from ‘Liangzi No. 7’, while the worst was found from ‘Zilong No. 7’. [Ch, 1 fig. 6 tab. 29 ref.] -
Key words:
- eggplant /
- cultivars /
- principal component analysis /
- comprehensive evaluation
-
表 1 不同茄子品种的农艺性状比较
Table 1. Agronomic characteristics comparison of 10 eggplant cultivars
品种 株高/cm 株幅/cm 茎粗/cm 品种 株高/cm 株幅/cm 茎粗/cm 紫龙5号 101.33±2.73 c 97.00±5.48 b 2.04±0.18 bcd 杭茄718 91.00±1.90 e 96.00±3.41 b 2.17±0.13 b 紫龙7号 95.17±1.83 d 100.00±3.35 a 1.92±0.17 cde Z1 98.67±4.55 cd 82.17±3.49 c 1.86±0.14 de 亮紫7号 112.33±4.63 a 62.67±3.33 f 2.13±0.25 bc Z2 114.00±7.97 a 73.50±3.02 e 2.00±0.13 bcd 浙茄10号 107.33±3.72 b 97.00±1.90 b 1.97±0.21 bcd Z3 100.67±9.20 c 77.00±3.46 d 1.74±0.14 e 杭茄716 102.33±2.25 c 83.67±4.97 c 2.42±0.37 a 杭茄2020 96.00±4.20 d 76.67±4.27 d 2.15±0.24 b 说明:同列不同小写字母表示同一指标不同品种间差异显著(P<0.05)。 表 2 不同茄子品种果实性状比较
Table 2. Comparison of fruit traits of 10 eggplant cultivars
品种 皮色 长度/cm 横径/cm 单果质量/g L a b 紫龙5号 −0.45±0.10 bc 10.20±1.48 ef −4.55±0.87 a 33.87±1.48 de 2.48±0.10 c 101.82±7.96 bcd 紫龙7号 −0.35±0.13 b 13.25±0.50 bc −7.28±0.26 e 29.47±0.40 h 2.35±0.16 d 98.08±5.84 d 亮紫7号 −0.40±0.12 bc 11.45±1.04 d −5.78±0.78 c 35.10±2.47 c 2.43±0.10 c 113.55±10.42 a 浙茄10号 0.03±0.03 a 12.60±0.14 c −6.78±0.62 d 33.42±1.29 ef 2.30±0.15 d 103.99±5.10 bcd 杭茄716 −0.40±0.08 bc 12.68±0.92 c −6.70±0.93 d 32.37±1.84 g 2.75±0.14 a 109.08±8.49 abc 杭茄718 0.08±0.05 a 13.55±0.25 ab −7.03±0.46 de 34.67±2.25 cd 2.48±0.10 c 109.98±16.86 ab Z1 0.05±0.06 a 14.33±1.10 a −7.45±0.49 e 37.87±1.54 a 2.62±0.18 b 106.51±7.58 abcd Z2 −0.48±0.17 c 9.73±0.59 fg −5.53±0.94 bc 34.57±1.33 cd 2.70±0.09 a 105.65±4.20 abcd Z3 −0.63±0.10 d 9.20±0.84 g −4.48±0.46 a 36.47±1.12 b 2.70±0.18 a 105.90 ±2.29 abcd 杭茄2020 −0.38±0.05 bc 10.90±0.60 de −5.15±0.44 b 32.80±2.60 fg 2.45±0.10 c 100.61 ±7.16 cd 说明:同列不同字母表示同一指标不同品种间差异显著(P<0.05)。 表 3 10个茄子品种果实品质指标比较
Table 3. Comparison of fruit quality of 10 eggplant cultivars
品种 可溶性糖/(mg·g−1) 可溶性蛋白/(mg·g−1) 游离氨基酸/(mg·g−1) 总酚/(mg·g−1) 紫龙5号 30.04±2.59 cd 3.53±0.65 b 1.69±0.06 a 4.08±0.67 bc 紫龙7号 34.53±2.91 abc 3.79±0.69 b 1.42±0.13 b 5.26±0.74 a 亮紫7号 32.62±1.04 bcd 3.54±0.42 b 1.76±0.26 a 5.19±0.88 a 浙茄10号 35.35±2.69 ab 3.66±0.27 b 1.09±0.15 c 3.60±0.91 bc 杭茄716 33.88±2.65 abc 3.14±0.55 b 1.17±0.12 bc 2.94±0.38 cd 杭茄718 25.01±1.03 e 3.90±0.65 b 1.36±0.13 bc 4.78±0.68 a Z1 35.19±2.67 ab 5.03±0.38 a 1.12±0.19 c 2.21±0.72 d Z2 38.04±2.73 a 4.68±0.25 a 1.19±0.23 bc 3.24±0.58 cd Z3 32.14±3.45 bcd 4.79±0.20 a 1.27±0.23 bc 4.44±0.62 ab 杭茄2020 28.09±3.40 de 3.64±0.26 b 0.73±0.13 d 4.78±0.68 a 说明:同列不同字母表示同一指标不同品种间差异显著(P<0.05)。 表 4 茄子性状评价因子的特征值和累积方差贡献率
Table 4. Characteristic value and cumulative variance contribution rate of eggplant evaluation factors
主成分 特征值 方差贡献率/% 累计方差贡献率/% 1 4.500 28.125 28.125 2 3.376 21.098 49.224 3 2.636 16.474 65.697 4 1.831 11.444 77.141 5 1.598 9.985 87.126 表 5 主成分在各性状指标上的因子载荷矩阵
Table 5. Rotated component matrix of the principal component analysis
性状 主成分 性状 主成分 1 2 3 4 5 1 2 3 4 5 茎粗(X1) −0.663 0.56 0.407 0.132 0.052 b (X9) 0.431 0.589 −0.525 −0.21 0.253 株高(X2) 0.573 0.402 0.18 0.254 −0.47 果皮硬度(X10) −0.755 0.579 0.237 −0.123 −0.025 株幅(X3) −0.546 −0.573 −0.284 −0.096 −0.155 果皮韧性(X11) 0.509 0.311 0.144 0.422 −0.267 长度(X4) 0.698 −0.168 0.377 0.083 0.529 果肉硬度(X12) −0.66 0.603 0.363 −0.208 −0.022 横径(X5) 0.402 0.376 0.513 −0.443 0.21 可溶性糖(X13) 0.475 −0.05 0.3 −0.115 −0.797 单果质量(X6) 0.191 0.261 0.585 0.539 0.404 可溶性蛋白(X14) 0.766 −0.457 0.125 −0.274 0.162 L (X7) −0.328 −0.758 0.398 0.241 0.132 游离氨基酸(X15) 0.163 0.172 −0.246 0.787 −0.056 a (X8) −0.531 −0.587 0.492 0.257 −0.078 总酚(X16) −0.261 0.178 −0.748 0.366 0.198 表 6 不同茄子品种性状预测评价结果
Table 6. Characteristics prediction results of different eggplant varieties
品种 F1 F2 F3 F4 F5 F综 排名 紫龙5号 0.08 0.66 −1.81 0.44 0.35 −0.05 6 紫龙7号 −1.87 −1.36 −1.88 0.18 0.14 −1.08 10 亮紫7号 1.19 1.54 0.2 3.08 2.45 1.27 1 浙茄10号 −0.62 −1.72 −0.16 0.08 0.06 −0.55 7 杭茄716 −2.58 2.68 2.64 −0.87 −0.69 0.1 5 杭茄718 −2.19 −1.22 0.24 0.99 0.78 −0.64 8 Z1 2.98 0.63 0.59 −0.75 −0.59 0.92 2 Z2 2.96 0.47 −1.44 −1.29 −1.02 0.45 3 Z3 −1.72 1.38 −0.94 −1.69 −1.34 −0.66 9 杭茄2020 1.76 −3.06 2.57 −0.17 −0.13 0.23 4 -
[1] 刘丹, 崔彦玲, 潜宗伟. 茄子种业现状及遗传育种研究进展[J]. 北方园艺, 2019(1): 165 − 170. LIU Dan, CUI Yanling, QIAN Zongwei. Research advances in the seed industry and breeding of eggplant [J]. Northern Horticulture, 2019(1): 165 − 170. [2] 周宝利, 张琦, 叶雪凌, 等. 不同品种茄子果皮花青素含量及其稳定性研究[J]. 食品科学, 2011, 32(1): 99 − 103. ZHOU Baoli, ZHANG Qi, YE Xueling, et al. Different cultivars of eggplants: a comparative study of anthocyanidin content and stability in fruit skin [J]. Food Science, 2011, 32(1): 99 − 103. [3] KAUSHIK P, GRAMAZIO P, VILANOVA S, et al. Phenolics content, fruit flesh colour and browning in cultivated eggplant, wild relatives and interspecific hybrids and implications for fruit quality breeding [J]. Food Research International, 2017, 102: 392 − 401. [4] FRIEDMAN M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes [J]. Journal of Agricultural and Food Chemistry, 2015, 63(13): 3323 − 3337. [5] SHARMA M, KAUSHIK P. Biochemical composition of eggplant fruits: a review [J/OL]. Applied Sciences, 2021, 11 (15): 7078[2024-06-01]. doi: 10.3390/app11157078. [6] PEREIRA J A M, BERENGUER C V, ANDRADE C F P, et al. Unveiling the bioactive potential of fresh fruit and vegetable waste in human health from a consumer perspective [J/OL]. Applied Sciences, 2022, 12 (5): 2747[2024-06-01]. doi: 10.3390/app12052747. [7] BANWO K, OLOJEDE A O, ADESULU-DAHUNSI A T, et al. Functional importance of bioactive compounds of foods with potential health benefits: a review on recent trends [J/OL]. Food Bioscience, 2021, 43: 101320[2024-06-01]. doi: 10.1016/j.fbio.2021.101320. [8] 陈灵芝, 王兰兰, 魏兵强. 茄子种质资源数据库的建立[J]. 长江蔬菜, 2010(10 ) : 11 − 12. CHEN Lingzhi, WANG Lanlan, WEI Bingqiang. Establishment of database of eggplant germplasm resource [J]. Journal of Changjiang Vegetables, 2010(10): 11 − 12. [9] 王佳慧. 国外茄子种质资源主要农艺性状鉴定与评价[D]. 保定: 河北农业大学, 2012. WANG Jiahui. Identification and Evaluation of the Main Agronomic Traits on Foreign Eggplant Germplasm Resources [D]. Baoding: Hebei Agricultural University, 2012. [10] 张念, 王志敏, 于晓虎, 等. 茄子种质资源遗传多样性的形态标记分析[J]. 中国蔬菜, 2013(14): 46 − 52. ZHANG Nian, WANG Zhimin, YU Xiaohu, et al. Establishment of database of eggplant germplasm resource [J]. China Vegetables, 2013(14): 46 − 52. [11] 陈雪平. 茄子遗传多样性研究与遗传连锁图谱构建[D]. 保定: 河北农业大学, 2015. CHEN Xueping. Study on Genetic Diversity and Genetic Linkage Map Construction in Eggplant [D]. Baoding: Hebei Agricultural University, 2015. [12] 齐东霞, 张映, 刘富中, 等. 中俄茄子种质资源遗传多样性研究[J]. 植物遗传资源学报, 2017, 18(3): 404 − 412. QI Dongxia, ZHANG Ying, LIU Fuzhong, et al. Genetic diversity among Chinese and Russian eggplant (Solanum melongena) germplasm resources [J]. Journal of Plant Genetic Resources, 2017, 18(3): 404 − 412. [13] 颜惠琴, 牛万红, 韩惠丽. 基于主成分分析构建指标权重的客观赋权法[J]. 济南大学学报(自然科学版), 2017, 31(6): 519 − 523. YAN Huiqin, NIU Wanhong, HAN Huili. Objective method for determination of index weight based on principal component analysis [J]. Journal of University of Jinan (Science and Technology), 2017, 31(6): 519 − 523. [14] VALIENTE-GONZÁLEZ J M, ANDREU-GARCÍA G, POTTER P, et al. Automatic corn (Zea mays) kernel inspection system using novelty detection based on principal component analysis [J]. Biosystems Engineering, 2014, 117: 94 − 103. [15] 边嘉宾, 施利利, 张欣, 等. 稻米主要品质性状的相关及主成分分析[J]. 中国农学通报, 2012, 28 (24): 8 − 12. BIAN Jiabin, SHI Lili, ZHANG Xin, et al. Correlation and principal component analysis on the major quality traits of rice lines [J]. Chinese Agricultural Science Bulletin, 2012, 28 (24): 8 − 12. [16] 何文铸, 杨勤, 高强, 等. 主成分分析对青贮玉米材料综合评价与筛选的研究[J]. 玉米科学, 2008, 16(3): 26 − 29. HE Wenzhu, YANG Qin, GAO Qiang, et al. Screening and evaluation for the silage maize inbred lines by using PCA [J]. Journal of Maize Sciences, 2008, 16(3): 26 − 29. [17] 郭笃发, 王秋兵. 主成分分析法对土壤养分与小麦产量关系的研究[J]. 土壤学报, 2005, 42(3): 523 − 527. GUO Dufa, WANG Qiubing. Principal component analysis of relationship between various nutrients in albiudic cambosols profile and wheat yield [J]. Acta Pedologica Sinica, 2005, 42(3): 523 − 527. [18] 滕芝妍, 崔雨同, 应学兵, 等. 不同南瓜品种的综合评价[J]. 浙江农林大学学报, 2020, 37(1): 143 − 150. TENG Zhiyan, CUI Yutong, YING Xuebing, et al. Comprehensive evaluation of pumpkin cultivars based on a principal component analysis [J]. Journal of Zhejiang A&F University, 2020, 37(1): 143 − 150. [19] BENIC G I, SCHERRER D, PUCHADES M S, et al. Spectrophotometric and visual evaluation of peri-implant soft tissue color [J]. Clinical Oral Implants Research, 2017, 28(2): 192 − 200. [20] NAGENDRA R, RAO S V. An improved colorimetric method for the estimation of lactulose in lactose-lactulose mixtures [J]. Food Chemistry, 1992, 43(5): 399 − 402. [21] 韩烨, 马永强, 王鑫, 等. 微量滴定蒽酮法测定甜玉米芯可溶性糖含量方法的建立[J]. 食品科技, 2019, 44(11): 327 − 334. HAN Ye, MA Yongqiang, WANG Xin, et al. Determination of soluble sugar from sweet corn cob by microtiter method of the anthrone-sulfuric acid colorimetric assay [J]. Food Science and Technology, 2019, 44(11): 327 − 334. [22] BRADFORD M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(1/2): 248 − 254. [23] 黄松, 吴月娜, 刘梅, 等. 茚三酮比色法测定青天葵中总游离氨基酸的含量[J]. 中国中医药信息杂志, 2010, 17(12): 50 − 52. HUANG Song, WU Yuena, LIU Mei, et al. Quantitative determination of total free-amino acid in Nervilia fordii (Hance) Schltr. by ninhydrin colorimetric method [J]. Chinese Journal of Information on TCM, 2010, 17(12): 50 − 52. [24] 李佩璇, 陈法志, 李秀丽, 等. 凤丹牡丹多酚提取及其抗氧化活性研究[J]. 湖北农业科学, 2019, 58(24): 187 − 193. LI Peixuan, CHEN Fazhi, LI Xiuli, et al. Determination of in vitro antibacterial activity of antioxidant and the extraction of Fengdan peony polyphenols [J]. Hubei Agricultural Sciences, 2019, 58(24): 187 − 193. [25] 易金鑫. 亚洲部分茄子品种资源数量分类[J]. 园艺学报, 2000, 27(5): 345 − 350. YI Jinxin. A numerical classification on eggplant germplasm [J]. Acta Horticulturae Sinica, 2000, 27(5): 345 − 350. [26] 连勇, 刘富中, 陈钰辉, 等. 我国茄子地方品种类型分布及种质资源研究进展[J]. 中国蔬菜, 2006(增刊): 9 − 14. LIAN Yong, LIU Fuzhong, CHEN Yuhui, et al. Chinese eggplant cultivars (Solanum melogena L.) distribution and germplasm resources research advancement [J]. China Vegetables, 2006(suppl.): 9 − 14. [27] 房超, 李跃建, 刘独臣, 等. 茄子种质资源SSR鉴定及遗传多样性分析[J]. 四川大学学报, 2011, 48(1): 179 − 185. FANG Chao, LI Yuejian, LIU Duchen, et al. SSR analysis of genetic diversity in eggplant [J]. Journal of Sichuan University, 2011, 48(1): 179 − 185. [28] 赵德新. 应用形态学和ISSR标记分析茄子遗传多样性[D]. 郑州: 河南农业大学, 2009. ZHAO Dexin. Clustering Analysis of Genetic Diversity in Eggplant Based on Morphological and ISSR Marker [D]. Zhengzhou: Henan Agricultural University, 2009. [29] 李伟, 郜海燕, 陈杭君, 等. 基于主成分分析的不同品种杨梅果实综合品质评价[J]. 中国食品学报, 2017, 17(6): 161 − 171. LI Wei, GAO Haiyan, CHEN Hangjun, et al. Evaluation of comprehensive quality of different varieties of bayberry based on principal components analysis [J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(6): 161 − 171. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240394