留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百合原生质体分离与培养研究进展

陈兴旺 韩炘 陈敏敏 杨云尧 聂功平 张永春 明凤 杨柳燕

陈兴旺, 韩炘, 陈敏敏, 等. 百合原生质体分离与培养研究进展[J]. 浙江农林大学学报, 2025, 42(5): 934−943 doi:  10.11833/j.issn.2095-0756.20250422
引用本文: 陈兴旺, 韩炘, 陈敏敏, 等. 百合原生质体分离与培养研究进展[J]. 浙江农林大学学报, 2025, 42(5): 934−943 doi:  10.11833/j.issn.2095-0756.20250422
CHEN Xingwang, HAN Xin, CHEN Minmin, et al. A review on isolation and culture of lily protoplasts[J]. Journal of Zhejiang A&F University, 2025, 42(5): 934−943 doi:  10.11833/j.issn.2095-0756.20250422
Citation: CHEN Xingwang, HAN Xin, CHEN Minmin, et al. A review on isolation and culture of lily protoplasts[J]. Journal of Zhejiang A&F University, 2025, 42(5): 934−943 doi:  10.11833/j.issn.2095-0756.20250422

百合原生质体分离与培养研究进展

DOI: 10.11833/j.issn.2095-0756.20250422
基金项目: 上海市农业科技创新项目(沪农科K2023-02-08-00-12-F04593);上海市专业技术服务平台能力提升项目(21DZ2292300);上海市科技兴农项目(沪农科推字〔2022〕第4-1号)
详细信息
    作者简介: 陈兴旺(ORCID: 0009-0007-9516-4735),从事植物学研究。E-mail: chenxwbio@163.com
    通信作者: 杨柳燕(ORCID: 0000-0002-4970-344X),研究员,博士,从事花卉栽培与育种研究。E-mail: yangliuyan61@163.com
  • 中图分类号: S68

A review on isolation and culture of lily protoplasts

  • 摘要: 百合Lilium spp.高度杂合的遗传背景导致性状分离复杂,优良基因型固定困难,加之较长的生长周期和普遍存在的种间及属间远缘杂交不亲和障碍,严重制约了传统杂交育种方法在百合遗传改良中的效率。开展百合原生质体分离与培养研究可为体细胞杂交育种提供技术支撑,绕过有性生殖障碍,创造种间甚至属间体细胞杂种,为远缘基因资源的利用开辟新途径。本研究综述了近几十年来百合原生质体分离和培养的研究进展,已有研究集中于:①百合原生质体分离与纯化的影响因素,包括原生质体分离的组织来源、分离材料的预处理、原生质体的酶解条件、酶解液的渗透压和pH、原生质体纯化方式等;②百合原生质体培养的影响因素,包括原生质体培养基成分、原生质体培养方式、原生质体培养密度等;③国内外百合原生质体再生案例及分析。目前,百合原生质体在分离纯化体系建立方面已相对成熟,但能够实现从培养到完整植株再生的案例有限,再生体系的建立仍存在明显瓶颈。未来研究应致力于系统优化百合原生质体培养条件,包括培养基的类型、碳源种类、植物生长调节剂的组合与配比等,在建立稳定高效的再生体系基础上,通过原生质体融合技术将远缘物种的优良性状引入栽培品种,同时开展再生与稳定遗传的机制解析并应用于体细胞杂交、基因编辑等育种技术。表1参59
  • 表  1  百合原生质体培养条件及效果比较

    Table  1.   Comparison of culture conditions and effects of lily protoplasts

    参试植物 材料 培养基 培养方式 激素及其质量浓度 培养效果 参考文献
    ‘卡萨布兰卡’百合
    ‘西伯利亚’百合
    ‘阿卡波克’百合
    悬浮细胞 改良MS (1/8NH4NO3) 看护培养 1.0 mg·L−1 PIC 再生 [18]
    ‘伯尼尼’百合
    ‘精粹’百合
    卷丹百合
    叶片 改良MS (1/8NH4NO3) 固液结合培养 1.0 mg·L−1 2,4-D 5 d第1次分裂,15 d
    形成细胞团,随后
    逐渐死亡
    [21]
    薄层漂浮培养 1.0 mg·L−1 2,4-D 14 d第1次分裂,30 d
    形成细胞团,随后逐渐死亡
    ‘索邦’百合 叶片 MS、改良MS和NLN 液体浅层培养 (MS)2.0 mg·L−1 6-BA
    (改良MS)1.0 mg·L−1 6-BA
    (NLN)0.5 mg·L−1 2,4-D+
    0.5 mg·L−1 6-BA+
    0.5 mg·L−1 2,4-D
    细胞几乎无分裂,
    少数分裂1~2次后
    解体
    [22]
    愈伤组织 MS、改良MS和NLN 液体浅层培养 (MS)2.0 mg·L−1 6-BA
    (改良MS)1.0 mg·L−1 6-BA
    (NLN)0.5 mg·L−1 2,4-D+
    0.5 mg·L−1 6-BA+
    0.5 mg·L−1 2,4-D
    7 d第1次分裂,14 d
    后形成2~3个细胞团,最后逐渐解体
    ‘索邦’百合 胚性愈伤组织 MS(1/8NH4NO3) 看护培养 2.0 mg·L−1 PIC 40~45 d形成细胞团 [24]
    ‘阿祖萨’百合 悬浮细胞 MS 固体培养 1.0 mg·L−1 PIC 再生 [25]
    ‘白天堂’百合 叶片 MS 固体培养
    液体培养
    固液双层培养
    固体培养原生质体存
    活,液体培养形成细胞壁,固液培养形成小细胞团
    [35]
    岷江百合 悬浮细胞和
    愈伤组织
    MS(1/8NH4NO3) 液体浅层培养 1.0 mg·L−1 PIC 10 d后形成8~16个细
    胞的细胞团
    [38]
    新铁炮百合 悬浮细胞 MS 固体培养 1.0 mg·L−1 PIC 再生 [47]
    莉黛柏蕊百合 叶片 MS 液体培养 1.0 mg·L−1 2,4-D+
    0.2 mg·L−1 Kin
    再生 [48]
    云南大百合
    ‘索邦’百合
    愈伤组织 MS(1/8NH4NO3) 看护培养 2.0 mg·L−1 PIC+
    1.5 mg·L−1 6-BA+
    0.1 mg·L−1 NAA+
    0.1 mg·L−1 2,4-D
    50 d后获得再生细胞
    团但未发育成愈伤组织
    [46]
    日本百合 悬浮细胞 改良MS (1/8NH4NO3) 看护培养 1.0 mg·L−1 PIC 再生 [50]
    细叶百合 叶片 MS(1/8NH4NO3) 固液双层培养 1.0 mg·L−1 PIC 28 d形成细胞团然后
    停止分裂并解体
    [51]
    胚性愈伤组织 MS(1/8NH4NO3) 固液双层培养 1.0 mg·L−1 PIC 30 d天形成细胞团然
    后停止分裂并解体
    新铁炮百合 叶片 MS(1/8NH4NO3) 固液双层培养 1.0 mg·L−1 PIC 28 d形成细胞团然后
    停止分裂并解体
    胚性愈伤组织 MS(1/8NH4NO3) 固液双层培养 1.0 mg·L−1 PIC 70 d后形成具有旺盛
    分裂能力的愈伤
    组织
    ‘甜蜜记忆’百合
    ‘贝尼苏加塔’百合
    茎尖产生的苗
    条原基
    改良MS
    (1/8 NH4NO3)
    液体培养 0.1 mg·L−1 NAA+
    1.0 mg·L−1 6-BA
    再生 [52]
      说明:‘卡萨布兰卡’百合L. ‘Casablanca’;‘西伯利亚’百合L. ‘Siberia’;‘阿卡波克’百合L. ‘Acapulco’;‘伯尼尼’百合L. ‘Bernini’;‘精粹’百合L. ‘Elite’;卷丹百合L. lancifolium;‘索邦’百合L. ‘Sorbonne’;‘阿祖萨’百合L. × formolongi ‘Azusa’;‘白天堂’百合L. ‘White Heaven’;岷江百合L. regale;新铁炮百合L.× formolongi;莉黛柏蕊百合L. ledebourii;云南大百合Cadiocrinum giganteum;日本百合L. japonicum;细叶百合L. pumilum;‘甜蜜记忆’百合L. speciorubel ‘Sweet-memory’;‘贝尼苏加塔’百合L.× elegans ‘Benisugata’。“-”表示文献未提及相关内容。
    下载: 导出CSV
  • [1] 程金水, 刘青林. 园林植物遗传育种学[M]. 2版. 北京: 中国林业出版社, 2010: 340−350.

    CHENG Jinshui, LIU Qinglin. Genetics and Breeding of Garden Plants[M]. 2nd ed. Beijing: China Forestry Publishing House, 2010: 340−350.
    [2] CHEN Minmin, YANG Yunyao, HAN Xin, et al. Metabolomics integrated with transcriptomics provides insights into the phenylpropanoids biosynthesis pathway in Lilium davidii var. unicolor and L. lancifolium Thunb. [J/OL]. International Journal of Biological Macromolecules, 2024, 279(1): 135103[2025-07-05]. DOI: 10.1016/j.ijbiomac.2024.135103.
    [3] 马莉. 百合属杂交育种的研究[D]. 北京: 北京林业大学, 2008.

    MA Li. Research of Cross-breeding of Lilium [D]. Beijing: Beijing Forestry University, 2008.
    [4] 韩炘, 杨柳燕, 陈敏敏, 等. 百合育种技术研究进展[J]. 植物遗传资源学报, 2024, 25(5): 763−776.

    HAN Xin, YANG Liuyan, CHEN Minmin, et al. Research progress of the techniques applicable in lily breeding [J]. Journal of Plant Genetic Resources, 2024, 25(5): 763−776.
    [5] MUKUNDAN N S, SATYAMOORTHY K, BABU V S. Advancing plant protoplasts: innovative techniques and future prospects[J/OL]. Plant Biotechnology Reports, 2025[2025-07-05]. DOI: 10.1007/s11816-025-00957-1.
    [6] COCKING E C. A method for the isolation of plant protoplasts and vacuoles [J]. Nature, 1960, 187(4741): 962−963.
    [7] NAGATA T, TAKEBE I. Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts [J]. Planta, 1970, 92(4): 301−308.
    [8] LIU Shuping, LI Xiaojie, ZHU Jiani, et al. Modern technologies provide new opportunities for somatic hybridization in the breeding of woody plants[J/OL]. Plants, 2024, 13(18): 2539[2025-07-05]. DOI: 10.3390/plants13182539.
    [9] MOON K B, PARK J S, PARK S J, et al. A more accessible, time-saving, and efficient method for in vitro plant regeneration from potato protoplasts[J/OL]. Plants, 2021, 10(4): 781[2025-07-05]. DOI: 10.3390/plants10040781.
    [10] CAI Xiaodong, FU Jing, GUO Wenwu. Mitochondrial genome of callus protoplast has a role in mesophyll protoplast regeneration in Citrus: evidence from transgenic GFP somatic Homo-fusion [J]. Horticultural Plant Journal, 2017, 3(5): 177−182.
    [11] KAZMI S K, KAYANI H A, RAZIQ M, et al. Protoplast isolation and regeneration from leaves and nucellar embryos of Kinnow mandarin (Citrus reticulata Blanco)[J/OL]. Pakistan Journal of Botany, 2022, 54(4)[2025-07-05]. DOI: 10.30848/pjb2022-4(27).
    [12] YAJI C, KAWAGUCHI R, YASUHARA H. Caffeine inhibits cell-wall regeneration in protoplasts isolated from tobacco BY-2 cells [J]. Cytologia, 2023, 88(4): 313−319.
    [13] 赵小强, 鹿金颖, 陈瑜, 等. 马铃薯原生质体培养与体细胞杂交研究进展[J]. 江苏农业科学, 2020, 48(22): 6−14.

    ZHAO Xiaoqiang, LU Jinying, CHEN Yu, et al. Research progress on protoplast culture and somatic hybridization of potato [J]. Jiangsu Agricultural Sciences, 2020, 48(22): 6−14.
    [14] 章志宏, 张晓国, 朱英国. 应用生物技术创建植物雄性不育新种质[J]. 武汉植物学研究, 1999, 17(增刊): 45−51.

    ZHANG Zhihong, ZHANG Xiaoguo, ZHU Yingguo. Using biotechnology to construct new male sterile germplasm of plant [J]. Journal of Wuhan Botanical Research, 1999, 17(suppl): 45−51.
    [15] 解凯东, 方燕妮, 伍小萌, 等. 无核柚新品种‘华柚2号’[J]. 园艺学报, 2020, 47(S2): 2946−2947.

    XIE Kaidong, FANG Yanni, WU Xiaomeng, et al. A new seedless pummelo cultivar‘Huayou 2’ [J]. Acta Horticulturae Sinica, 2020, 47(S2): 2946−2947.
    [16] 解凯东, 伍小萌, 方燕妮, 等. 无核柚新品种‘华柚3号’[J]. 园艺学报, 2021, 48(增刊2): 2815−2816.

    XIE Kaidong, WU Xiaomeng, FANG Yanni, et al. A new seedless pummelo cultivar ‘Huayou 3’ [J]. Acta Horticulturae Sinica, 2021, 48(suppl 2): 2815−2816.
    [17] 何珊珊, 李宏宇, 马月, 等. 百合原生质体分离培养和瞬时转化[J]. 浙江大学学报(农业与生命科学版), 2025, 51(1): 67−79.

    HE Shanshan, LI Hongyu, MA Yue, et al. Isolation, cultivation, and transient transformation of lily protoplasts [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2025, 51(1): 67−79.
    [18] HORITA M, MOROHASHI H, KOMAI F. Regeneration of flowering plants from difficile lily protoplasts by means of a nurse culture [J]. Planta, 2002, 215(5): 880−884.
    [19] SIMMONDS J A, SIMMONDS D H, CUMMING B G. Isolation and cultivation of protoplasts from morphogenetic callus cultures of Lilium [J]. Canadian Journal of Botany, 1979, 57(5): 512−516.
    [20] TANAKA I, KITAZUME C, ITO M. The isolation and culture of lily pollen protoplasts [J]. Plant Science, 1987, 50(3): 205−211.
    [21] 柳玉晶. 百合原生质体分离及培养研究[D]. 哈尔滨: 东北农业大学, 2006.

    LIU Yujing. Studies on Protoplast Islation and Culture of Lilium spp. [D]. Harbin: Northeast Agricultural University, 2006.
    [22] 孙晓梅, 王晶, 罗凤霞, 等. ‘索蚌’ 百合原生质体分离及培养的研究[J]. 北方园艺, 2007(10): 170−172.

    SUN Xiaomei, WANG Jing, LUO Fengxia, et al. Isolation and culture of lily ‘Sorbonne’ protoplasts [J]. Northern Horticulture, 2007(10): 170−172.
    [23] 韩炘, 吴若楠, 李心, 等. 兰州百合原生质体的分离纯化和应用[J]. 植物研究, 2024, 44(6): 936−944.

    HAN Xin, WU Ruonan, LI Xin, et al. Protoplast isolation, purification and application of Lilium davidii var. unicolor [J]. Bulletin of Botanical Research, 2024, 44(6): 936−944.
    [24] 秦晓杰, 段华金, 朱永平, 等. 东方百合‘Sorbonne’原生质体培养初步研究[J]. 分子植物育种, 2013, 11(5): 600−604.

    QIN Xiaojie, DUAN Huajin, ZHU Yongping, et al. Preliminary study on protoplast culture of Lilium oriental hybrids ‘Sorbonne’ [J]. Molecular Plant Breeding, 2013, 11(5): 600−604.
    [25] MII M, YUZAWA Y, SUETOMI H, et al. Fertile plant regeneration from protoplasts of a seed-propagated cultivar of Lilium × formolongi by utilizing meristematic nodular cell clumps [J]. Plant Science, 1994, 100(2): 221−226.
    [26] 陈曼, 涂艺声, 叶丽婻. 食用百合试管苗原生质体制备条件的优化[J]. 中国蔬菜, 2015(3): 54−57.

    CHEN Man, TU Yisheng, YE Linan. Optimization of edible lily seedling protoplasts preparation [J]. China Vegetables, 2015(3): 54−57.
    [27] 李悦, 宋慧云, 王志, 等. 植物原生质体分离与瞬时表达体系研究进展[J]. 植物生理学报, 2023, 59(1): 21−32.

    LI Yue, SONG Huiyun, WANG Zhi, et al. Research progress of plant protoplast isolation and transient expression system [J]. Plant Physiology Journal, 2023, 59(1): 21−32.
    [28] 石雪珺, 陈俊通, 钟剑, 等. 东方百合‘索邦’原生质体分离与纯化[C]//张启翔. 中国观赏园艺研究进展2018. 沈阳: 中国林业出版社, 2018: 543−548.

    SHI Xuejun, CHEN Juntong, ZHONG Jian, et al. Protoplasts isolation of Lilium oriental hybrids ‘Sorbonne’ [C]//ZHANG Qixiang. Advances in Ornamental Horticulture of China 2018. Shenyang: China Foresty Publishing House, 2018: 543−548.
    [29] 王珺华. 山丹丹原生质体分离初探[D]. 延安: 延安大学, 2020.

    WANG Junhua. Study on Protoplast Isolation of Lilium pumilum DC. [D]. Yan’an: Yan’an University, 2020.
    [30] WU Fuhui, SHEN Shuchen, LEE Lanying, et al. Tape-Arabidopsis Sandwich-a simpler Arabidopsis protoplast isolation method[J/OL]. Plant Methods, 2009, 5: 16[2025-07-05]. DOI: 10.1186/1746-4811-5-16.
    [31] 霍信屹, 陈欣晨, 赵慧敏, 等. 郁金香叶肉原生质体的分离纯化与瞬时转化方法[J]. 浙江大学学报(农业与生命科学版), 2025, 51(1): 80−88.

    HUO Xinyi, CHEN Xinchen, ZHAO Huimin, et al. A method for isolation, purification and transient transformation of mesophyll protoplasts from tulip (Tulipa gesneriana) [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2025, 51(1): 80−88.
    [32] CHAMANI E, TAHAMI S K, ZARE N, et al. Effect of different cellulase and pectinase enzyme treatments on protoplast isolation and viability in Lilium ledebeourii bioss[J/OL]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40(2): 123[2025-07-05]. DOI: 10.15835/nbha4028055.
    [33] 张良波, 李培旺, 黄振, 等. 木本植物原生质体制备体系的研究进展[J]. 中南林业科技大学学报, 2011, 31(8): 102−107.

    ZHANG Liangbo, LI Peiwang, HUANG Zhen, et al. Advances in preparation system of woody plants protoplast [J]. Journal of Central South University of Forestry & Technology, 2011, 31(8): 102−107.
    [34] 徐是雄. 百合花粉原生质体中肌动蛋白微丝的荧光共焦镜观察[J]. 植物学报, 1992, 34(12): 907−911.

    XU Shixiong. Confocal microscopic observations on actin filament distribution in lily pollen protoplasts [J]. Acta Botanica Sinica, 1992, 34(12): 907−911.
    [35] 李炆岱, 张琪, 王英姿, 等. ‘白天堂’百合原生质体的分离纯化与培养[J]. 北京农学院学报, 2023, 38(1): 76−81.

    LI Wendai, ZHANG Qi, WANG Yingzi, et al. Solation, purification and culture of protoplast of Lilium ‘White Heaven’ [J]. Journal of Beijing University of Agriculture, 2023, 38(1): 76−81.
    [36] GODO T, KAZUHIKO M, KIDA T, et al. Improved plating efficiency of lily (Lilium×formolongi Hort. ) protoplasts by silver thiosulfate added to enzyme solution [J]. Japanese Journal of Breeding, 1998, 48(2): 159−161.
    [37] CHEN Kebin, CHEN Jiali, PI Xin, et al. Isolation, purification, and application of protoplasts and transient expression systems in plants[J/OL]. International Journal of Molecular Sciences, 2023, 24(23): 16892[2025-07-05]. DOI: 10.3390/ijms242316892.
    [38] 张宁. 岷江百合原生质体的分离与培养[D]. 武汉: 华中农业大学, 2011.

    ZHANG Ning. The Protoplast Isolation and Culture of Lilium regale Wilson[D]. Wuhan: Huazhong Agricultural University, 2011.
    [39] REED K M, BARGMANN B O R. Protoplast regeneration and its use in new plant breeding technologies[J/OL]. Frontiers in Genome Editing, 2021, 3: 734951[2025-07-05]. DOI: 10.3389/fgeed.2021.734951.
    [40] NAING A H, ADEDEJI O S, KIM C K. Protoplast technology in ornamental plants: current progress and potential applications on genetic improvement[J/OL]. Scientia Horticulturae, 2021, 283: 110043[2025-07-05]. DOI: 10.1016/j.scienta.2021.110043.
    [41] 王梦茹. 矮牵牛愈伤组织诱导及原生质体分离培养[D]. 上海: 上海交通大学, 2018.

    WANG Mengru. Induction of Petunia Callus and Isolation and Cultivation of Petunia Protoplasts [D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [42] 刘聪莉, 张志芬, 徐丽娟, 等. 甘薯叶柄原生质体有效植株再生[J]. 植物学通报, 1999, 16(4): 420−424.

    LIU Congli, ZHANG Zhifen, XU Lijuan, et al. Efficient plant regeneration from petiole protoplasts of sweet potato [J]. Chinese Bulletin of Botany, 1999, 16(4): 420−424.
    [43] 王令刚. 棉花原生质体培养与融合[D]. 武汉: 华中农业大学, 2007.

    WANG Linggang. Protoplast Culture and Protoplast Symmetric Fusion in Cotton [D]. Wuhan: Huazhong Agricultural University, 2007.
    [44] 熊海军. 栽培烟草原生质体培养再生植株的研究和烟草抗病相关基因 NtEIF4ENtTOM3 的敲除和鉴定[D]. 重庆: 西南大学, 2016.

    XIONG Haijun. Study on Construction of Protoplast Isolation, Purification and Regeneration System and Knockout of Disease Related Genes (NtEIF4E and NtTOM3) in Nicotiana tabacum [D]. Chongqing: Southwest University, 2016.
    [45] EECKHAUT T, van HOUTVEN W, BRUZNICAN S, et al. Somaclonal variation in Chrysanthemum × morifolium protoplast regenerants[J/OL]. Frontiers in Plant Science, 2020, 11: 607171[2025-07-05]. DOI: 10.3389/fpls.2020.607171.
    [46] 秦晓杰, 王园媛, 和凤美. 云南大百合与‘索蚌’百合体细胞融合培养初报[J]. 分子植物育种, 2022, 20(18): 6104−6112.

    QIN Xiaojie, WANG Yuanyuan, HE Fengmei. Preliminary report on the somatic cell fusion culture of Cadiocrinum giganteum and Lilium oriental ‘Sorbonne’ [J]. Molecular Plant Breeding, 2022, 20(18): 6104−6112.
    [47] GODO T, MATSUI K, KIDA T, et al. Effect of sugar type on the efficiency of plant regeneration from protoplasts isolated from shoot tip-derived meristematic nodular cell clumps of Lilium × formolongi Hort [J]. Plant Cell Reports, 1996, 15(6): 401−404.
    [48] TAHAMI S K, CHAMANI E, ZARE N. Plant regeneration from protoplasts of Lilium ledebourii (Baker) Boiss [J]. Journal of Agricultural Science and Technology, 2015, 16: 1133−1144.
    [49] 李婧瑶, 刘龙飚, 丁兵, 等. 植物原生质体分离及培养研究进展[J]. 分子植物育种, 2023, 21(2): 620−632.

    LI Jingyao, LIU Longbiao, DING Bing, et al. Research progress on isolation and culture of plant protoplasts [J]. Molecular Plant Breeding, 2023, 21(2): 620−632.
    [50] KOMAI F, MOROHASHI H, HORITA M. Application of nurse culture for plant regeneration from protoplasts of Lilium japonicum Thunb. [J]. In Vitro Cellular & Developmental Biology-Plant, 2006, 42(3): 252−255.
    [51] 何珊珊. 细叶百合和新铁炮百合原生质体分离培养及瞬时转化体系的建立[D]. 沈阳: 沈阳农业大学, 2023.

    HE Shanshan. Protoplast Isolation, Culture and Transient Transformation System in Lilium pumilum DC. Fisch. and Lilium formosanum×Lilium longiflorum var. scabrum [D]. Shenyang: Shenyang Agricultural University, 2023.
    [52] SUGIURA H. Plant regeneration from protoplast of Lilium speciorubel and L. ×elegans [J]. Ikushugaku Zasshi, 1993, 43(3): 429−437.
    [53] 张芬, 郑爱红, 肖楠, 等. 芸薹属植物原生质体培养研究进展[J]. 分子植物育种, 2018, 16(2): 546−551.

    ZHANG Fen, ZHENG Aihong, XIAO Nan, et al. Progress of protoplast culture research on Brassica species [J]. Molecular Plant Breeding, 2018, 16(2): 546−551.
    [54] XU Mengxue, DU Qingwei, TIAN Caihuan, et al. Stochastic gene expression drives mesophyll protoplast regeneration[J/OL]. Science Advances, 2021, 7(33): eabg8466[2025-07-05]. DOI: 10.1126/sciadv.abg8466.
    [55] FAMELAER I, ENNIK E, van TUYL J M, et al. The establishment of suspension and meristem cultures for the development of a protoplast regeneration and fusion system in lily [J]. Acta Horticulturae, 1996, 414: 161−168.
    [56] HORITA M, MOROHASHI H, KOMAI F. Production of fertile somatic hybrid plants between oriental hybrid lily and Lilium × formolongi [J]. Planta, 2003, 217(4): 597−601.
    [57] JEONG Y Y, LEE H Y, KIM S W, et al. Optimization of protoplast regeneration in the model plant Arabidopsis thaliana[J/OL]. Plant Methods, 2021, 17(1): 21[2025-07-05]. DOI: 10.1186/s13007-021-00720-x.
    [58] CHEN Chunli, HU Yuxin, IKEUCHI M, et al. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications [J]. Science China Life Sciences, 2024, 67(7): 1338−1367.
    [59] NAJAFI S, BERTINI E, D’INCÀ E, et al. DNA-free genome editing in grapevine using CRISPR/Cas9 ribonucleoprotein complexes followed by protoplast regeneration[J/OL]. Horticulture Research, 2022, 10(1): uhac240[2025-07-05]. DOI: 10.1093/hr/uhac240.
  • [1] 刘惠玉, 刘一洁, 谭博毫, 马小鸥, 董钦金, 蒙敏, 魏启森, 孙明.  兰州百合远缘杂交亲和性及后代真实性检验 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20250420
    [2] 徐成成, 刘锦, 吴恩, ZHANG Donglin, 许璐, 向理理, 廖震坤, 于晓英, 李炎林.  基于组织培养的木本植物器官发生型再生研究进展 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20250455
    [3] 叶如梅, 汪长天, 韩潇, 张俊红, 杨琪.  闽楠叶片原生质体分离及瞬时转化体系的建立 . 浙江农林大学学报, 2025, 42(3): 592-600. doi: 10.11833/j.issn.2095-0756.20240584
    [4] 张晓琳, 纵丹, 李嘉其, 杨玲, 余进德, 何承忠.  滇杨组织培养再生及遗传转化体系建立 . 浙江农林大学学报, 2024, 41(2): 314-321. doi: 10.11833/j.issn.2095-0756.20230304
    [5] 叶雯, 袁超群, 秦伟, 王振涛, 朱玉球.  火焰南天竹茎段离体培养再生体系的优化 . 浙江农林大学学报, 2020, 37(2): 391-396. doi: 10.11833/j.issn.2095-0756.2020.02.026
    [6] 闵芮涵, 孙敏译, 吴昀, 李世琦, 夏宜平.  离体百合鳞茎发育及淀粉合成酶基因LohGBSSI的克隆与表达 . 浙江农林大学学报, 2020, 37(2): 201-208. doi: 10.11833/j.issn.2095-0756.2020.02.002
    [7] 雷凌华, 朱强根, 夏更寿, 肖悠, 于晓英.  黄心夜合不同组织挥发油成分分析 . 浙江农林大学学报, 2019, 36(1): 193-199. doi: 10.11833/j.issn.2095-0756.2019.01.024
    [8] 潘丽琴, 郝建, 徐建民, 陈建全, 卢立华, 刘志龙.  灰木莲二次开合开花动态与雌雄异熟特征 . 浙江农林大学学报, 2018, 35(1): 96-103. doi: 10.11833/j.issn.2095-0756.2018.01.013
    [9] 阮慧泽, 李珍, 任燕燕, 邬枭楠, 邵于豪, 潘飞翔, 夏国华.  半蒴苣苔的叶片组织培养及植株再生 . 浙江农林大学学报, 2014, 31(1): 162-166. doi: 10.11833/j.issn.2095-0756.2014.01.025
    [10] 朱秀勤, 范弢, 官威, 覃娜.  滇中岩溶高原滇青冈原生林植物水分利用来源的稳定同位素分析 . 浙江农林大学学报, 2014, 31(5): 690-696. doi: 10.11833/j.issn.2095-0756.2014.05.005
    [11] 冯青, 高群英, 张汝民, 高岩, 侯平.  3种百合科植物挥发物成分分析 . 浙江农林大学学报, 2011, 28(3): 513-518. doi: 10.11833/j.issn.2095-0756.2011.03.026
    [12] 张莹, 王雁, 李振坚.  报春石斛再生体系的建立 . 浙江农林大学学报, 2009, 26(4): 603-606.
    [13] 李根有, 陈征海, 颜福彬.  产于浙江温岭的百合属一新变种——巨球百合 . 浙江农林大学学报, 2007, 24(6): 767-768.
    [14] 马丹丹, 李根有, 石柏林, 叶喜阳.  浙江植物分布新记录———有斑百合 . 浙江农林大学学报, 2007, 24(1): 119-120.
    [15] 吴祝华, 施季森, 席梦利, 刘光欣.  百合种质资源花粉形态及亲缘关系研究 . 浙江农林大学学报, 2007, 24(4): 406-412.
    [16] 余晓丽, 王正德, 刘慧娟, 杨珂金.  白木香离体培养及高频率植株的再生 . 浙江农林大学学报, 2005, 22(4): 410-413.
    [17] 唐东芹, 钱虹妹, 黄丹枫, 唐克轩.  百合基因转化胚性愈伤组织受体系统的建立 . 浙江农林大学学报, 2003, 20(3): 273-276.
    [18] 吴鸿, 徐一忠, 陈德良, 余久华, 马海泉.  浙江百山祖自然保护区昆虫区系研究 . 浙江农林大学学报, 1997, 14(3): 267-272.
    [19] 吴鸿, 陈德良, 余久华.  浙江百山祖自然保护区昆虫群落生态研究 . 浙江农林大学学报, 1997, 14(1): 22-28.
    [20] 吴鸿, 薛万琦.  浙江百山祖秽蝇属4新种记述* . 浙江农林大学学报, 1996, 13(4): 418-426.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20250422

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2025/5/934

表(1)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  48
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-05
  • 修回日期:  2025-09-30
  • 录用日期:  2025-10-05
  • 刊出日期:  2025-10-20

百合原生质体分离与培养研究进展

doi: 10.11833/j.issn.2095-0756.20250422
    基金项目:  上海市农业科技创新项目(沪农科K2023-02-08-00-12-F04593);上海市专业技术服务平台能力提升项目(21DZ2292300);上海市科技兴农项目(沪农科推字〔2022〕第4-1号)
    作者简介:

    陈兴旺(ORCID: 0009-0007-9516-4735),从事植物学研究。E-mail: chenxwbio@163.com

    通信作者: 杨柳燕(ORCID: 0000-0002-4970-344X),研究员,博士,从事花卉栽培与育种研究。E-mail: yangliuyan61@163.com
  • 中图分类号: S68

摘要: 百合Lilium spp.高度杂合的遗传背景导致性状分离复杂,优良基因型固定困难,加之较长的生长周期和普遍存在的种间及属间远缘杂交不亲和障碍,严重制约了传统杂交育种方法在百合遗传改良中的效率。开展百合原生质体分离与培养研究可为体细胞杂交育种提供技术支撑,绕过有性生殖障碍,创造种间甚至属间体细胞杂种,为远缘基因资源的利用开辟新途径。本研究综述了近几十年来百合原生质体分离和培养的研究进展,已有研究集中于:①百合原生质体分离与纯化的影响因素,包括原生质体分离的组织来源、分离材料的预处理、原生质体的酶解条件、酶解液的渗透压和pH、原生质体纯化方式等;②百合原生质体培养的影响因素,包括原生质体培养基成分、原生质体培养方式、原生质体培养密度等;③国内外百合原生质体再生案例及分析。目前,百合原生质体在分离纯化体系建立方面已相对成熟,但能够实现从培养到完整植株再生的案例有限,再生体系的建立仍存在明显瓶颈。未来研究应致力于系统优化百合原生质体培养条件,包括培养基的类型、碳源种类、植物生长调节剂的组合与配比等,在建立稳定高效的再生体系基础上,通过原生质体融合技术将远缘物种的优良性状引入栽培品种,同时开展再生与稳定遗传的机制解析并应用于体细胞杂交、基因编辑等育种技术。表1参59

English Abstract

陈兴旺, 韩炘, 陈敏敏, 等. 百合原生质体分离与培养研究进展[J]. 浙江农林大学学报, 2025, 42(5): 934−943 doi:  10.11833/j.issn.2095-0756.20250422
引用本文: 陈兴旺, 韩炘, 陈敏敏, 等. 百合原生质体分离与培养研究进展[J]. 浙江农林大学学报, 2025, 42(5): 934−943 doi:  10.11833/j.issn.2095-0756.20250422
CHEN Xingwang, HAN Xin, CHEN Minmin, et al. A review on isolation and culture of lily protoplasts[J]. Journal of Zhejiang A&F University, 2025, 42(5): 934−943 doi:  10.11833/j.issn.2095-0756.20250422
Citation: CHEN Xingwang, HAN Xin, CHEN Minmin, et al. A review on isolation and culture of lily protoplasts[J]. Journal of Zhejiang A&F University, 2025, 42(5): 934−943 doi:  10.11833/j.issn.2095-0756.20250422
  • 百合Lilium spp.是百合科Liliaceae百合属Lilium多年生球根花卉,有“球根花卉之王”的美誉,其种球由多片白色的鳞片层层合抱而成,因而得名“百合”。中国是百合属植物的故乡,全世界百合属植物约有90种,其中起源于中国的有47种和18个变种,占世界百合属植物一半以上[1]。目前,广泛种植的百合主要为亚洲百合、麝香百合、喇叭百合和东方百合4个类群及其杂交种。观赏百合应用方式多样,既可用于园林花坛、花境布置,也可盆栽观赏或用作切花。除观赏价值外,百合在食用和药用领域也有重要价值。百合富含甾体皂苷、酚类、生物碱和多糖等多种活性成分,具有抗氧化、降血糖以及抗癌等功效,是中国第1批药食同源植物之一[2]

    百合的育种历史悠久,传统方法以杂交为主[3]。然而,不同品系的百合之间亲缘关系较远,导致组间或品种群之间杂交通常比较困难,杂交不亲和的程度在不同组合之间表现各异,与亲本之间的亲缘关系远近、胚囊发育状况、雄配子育性、授粉受精方式等有关[4]。体细胞杂交技术通过人工诱导融合不同种、属植物的原生质体并再生杂种植株,可有效克服远缘杂交不亲和的障碍。

    原生质体是去除了细胞壁被质膜所包围的、具有生活力的“裸露细胞”[5]。原生质体的研究可追溯到20世纪60年代,COCKING[6]用酶解方法降解细胞壁获得了番茄Solanum lycopersicum根尖原生质体,推动了该技术的迅速发展。1970年,NAGATA等[7]首次报道烟草Nicotiana tabacum叶肉原生质体经分离、培养得到再生植株。体细胞杂交技术将2个不同物种或品种的体细胞(非生殖细胞)融合,形成含有双亲遗传物质的杂交细胞[8]。这项技术可以有效克服有性杂交不亲和及雌/雄性不育等传统杂交育种所遇到的难题,被广泛应用于植物的育种和改良。目前,马铃薯Solanum tuberosum [9]、柑橘Citrus reticulata [1011]、烟草[12]等植物的原生质体技术相对成熟,所获得的杂种后代在产量、抗性[13]、胞质雄性不育等性状上有明显的改良[1416]。因此,应用体细胞杂交开展百合育种,突破远缘杂交障碍,选育优良新品种,具有广阔的应用前景。

    高质量的原生质体是体细胞杂交的关键。百合中已有多个种(品种)建立了原生质体分离体系,并应用于亚细胞定位、瞬时转基因等分子生物学研究[17]。然而,百合原生质体的培养和再生的研究还不够深入,仅有少数研究报道成功获得杂种植株[18]。由此可见,原生质体的培养和再生仍然是制约百合体细胞杂交育种的主要瓶颈。本文旨在对百合原生质体分离、培养及再生研究进展进行综述与讨论。

    • 在植物细胞原生质体制备过程中,初始材料的选择对分离效率至关重要。20世纪80年代,已有研究者对百合鳞茎诱导的愈伤组织[19]、百合的花粉[20]进行了原生质体的分离,为百合原生质体的研究奠定了基础。基因型是影响原生质体分离和再生的重要因素。大量研究显示:不同百合品种的原生质体的产量差异明显[21]。其中,因叶片取材便捷,具有较多的代谢活跃细胞,常作为分离原生质体的初始材料,通常选用幼叶,这在卷丹百合L. lancifolium [21]、‘索邦’百合L.‘Sorbonne’[22]、细叶百合L. pumilum [17]等品种中均有应用。组培苗苗龄也影响分离效率。韩炘等[23]发现:继代30 d左右的兰州百合L. davidii var. unicolor无菌苗叶片原生质体分离效果最佳。在相关的研究中,愈伤组织也是获取原生质体的重要组织来源,如‘索邦’百合[24],新铁炮百合L. formolongi [25]使用胚性愈伤组织分离原生质体。此外,也有报道利用试管再生小鳞茎为材料进行百合原生质体的分离[26]。在百合原生质体制备过程中,外植体的选择需依据实验目的灵活调整。

    • 在原生质体制备过程中,酶解可能对细胞造成损伤,因此,需依据植物材料的生物学特性进行差异化预处理。这些预处理的操作通过调控起始材料的代谢活动,改变细胞壁结构特征,增强质膜稳定性,不仅能提高细胞壁酶解效率,还能增强原生质体对分离培养环境的适应性,同时减轻酶解过程中产生的机械损伤与渗透压冲击,从而最大限度维持原生质体活性[27]。在报道中,对百合进行的常用预处理方法包括黑暗处理、低温处理和甘露醇预处理等。石雪珺等[28]在进行‘索邦’百合原生质体分离与纯化中发现:0.71 mol·L−1的甘露醇处理30 min以及黑暗处理叶片48 h、黑暗处理花瓣72 h均可显著提升原生质体的产量。王珺华[29]发现:相较于常温处理和冷处理,暗处理能够显著促进细叶百合原生质体的产量,增加其活性,原生质体产量从5.17×108个·L−1增加至9.67×108个·L−1,原生质体活性从21.21%增加至76.54%。柳玉晶[21]研究表明:0.71 mol·L−1甘露醇处理90 min,‘伯尼尼’百合L. ‘Bernini’、‘精粹’百合L. ‘Elite’和卷丹百合的原生质体产量和活性均有显著提高。对愈伤组织、悬浮细胞等材料进行酶解分离时,也可采用培养基预处理的方法[21]

      此外,在其他植物中也有一些有效的预处理方式可供参考,如预先撕去表皮。该技术最早用于拟南芥Arabidopsis thaliana (胶带-拟南芥三明治法)[30],后被推广至烟草和大豆Glycine max,其原理是通过去除下表皮,扩大酶液接触面积,从而提升原生质体的产量和质量。在郁金香Tulipa×gesneriana[31],添加撕表皮的步骤能够使原生质体的产量提高4倍左右,效果显著。这为提高百合原生质体分离效率提供了参考。

    • 百合原生质体的分离通常采用酶解法。由于不同百合品种细胞壁的组成不同,需要选取相应的酶组合进行原生质体酶解。一般而言,纤维素酶和果胶酶的配合使用可有效分离百合原生质体[32]。为减轻对细胞的损伤,也可用离析酶代替果胶酶[33]。在百合中,纤维素酶、果胶酶和离析酶是最常使用的酶类型。徐是雄[34]在进行百合原生质体中肌动蛋白微丝的荧光共聚焦观察时使用10 g·L−1纤维素酶+1 g·L−1果胶酶分离得到原生质体;孙晓梅等[22]分离‘索邦’百合使用的酶组合为20 g·L−1纤维素酶+5 g·L−1离析酶,得到了1.39×106个·g−1的原生质体产量。在使用2种酶不能很好地分离出百合原生质体的时候,可尝试将纤维素酶、离析酶和果胶酶联合使用,以达到更好的分离效果。用10 g·L−1纤维素酶+5 g·L−1离析酶+1 g·L−1果胶酶分离‘白天堂’百合L.‘White Heaven’得到的原生质体产量为6.4×108个·L−1,活力为78%[35]。酶种类及浓度需要根据材料特性进行优化,以确定最适合参试百合品种原生质体分离的酶组合方案。

      酶解液的渗透压对原生质体分离至关重要。渗透压过高不利于原生质体的分离,渗透压过低也容易使分离的原生质体破碎。通常采用甘露醇、山梨醇或葡萄糖等作为酶解液的渗透压调节剂,浓度一般为0.3~1.0 mol·L−1,其中甘露醇的应用最为广泛。GODO等[36]分离新铁炮百合原生质体时使用0.6 mol·L−1葡萄糖作为渗透压调节剂,HORITA等[18]分离‘西伯利亚’百合L.‘Siberia’原生质体时使用0.9 mol·L−1山梨醇作为渗透压调节剂,韩炘等[23]在分离兰州百合原生质体时使用0.4 mol·L−1甘露醇作为渗透压调节剂。可见,渗透压调节剂的浓度需要根据品种差异进行调整。

      pH同样显著影响原生质体分离的效率和质量。百合原生质体分离的适宜pH范围一般为5.4~5.8。为了稳定酶解过程中的pH,需在酶液中添加适量2-吗啉乙磺酸 (MES)缓冲剂。此外,酶解时间也直接影响原生质体的提取效果。酶解时间过短会导致原生质体产量不足,而酶解时间过长则易引发细胞结构损伤。百合原生质体的酶解时间通常为2~24 h,同一植物不同取材部位的酶解时间差异较大,愈伤组织酶解需要的时间最长,其次为叶片,而悬浮细胞在2 h内即可酶解完成[18]

    • 原生质体酶解完成后,酶解混合液中除原生质体外还含有大量的细胞碎片及未完全解离的大细胞团等杂质,不利于后续培养,因此,纯化是原生质体进入培养阶段前的关键步骤。除去植物组织残渣的方法主要是用40~400目的细胞筛过滤原生质体粗提液[37],获得的滤液需通过离心进行进一步纯化。目前,植物原生质体纯化方法主要有离心沉淀法、密度梯度离心法和界面法。

      离心沉淀法是百合原生质体纯化的常用方法。研究表明:选用180目的细胞筛、离心转速为300 r·min−1,时间为5 min对岷江百合L. regale原生质体的纯化效果最好,沉降到底部的原生质体最多,杂质最少,上清液的原生质体最少,杂质最多[38]。密度梯度离心法通常能获得更高纯度的原生质体。在兰州百合的研究中,比较了不同质量浓度的蔗糖溶液的纯化效果,结果显示:230 g·L−1的蔗糖溶液纯化效果最好,可获得产量达2.72×106个·g−1,细胞活性为96%的原生质体,且视野中无明显杂质[23]。界面法因操作相对烦琐应用较少,MII等[25]在分离得到百合悬浮细胞来源的原生质体时,利用不同浓度的蔗糖和山梨醇进行纯化,最终使原生质体富集在2层溶液的界面处。

    • 原生质体在培养过程中,首先经历细胞壁重建和细胞分裂,随后进行分化和组织器官建成,最终再生成完整植株。适宜的培养条件是细胞分化和器官形态建成的关键。一般而言,从原生质体到芽的培养再生过程包含5个阶段:细胞壁再生、细胞分裂、微细胞团形成、愈伤组织形成以及芽再生[39]。原生质体通常在分离后1周内的第1次细胞分裂前完成细胞壁再生。持续的细胞分裂产生小细胞群落(微细胞团),在培养3~4周后长成肉眼可见的细胞团。将这些细胞团转移至不含渗透压的培养基中,可以实现细胞团生长和愈伤组织形成。随后,将愈伤组织转移至再生培养基中培养,通过器官发生或胚胎发生途径完成形态建成,最终再生形成完整植株[40]

    • 植物原生质体培养常用的基本培养基包括Murashige and Skoog medium (MS)、Kao & Miclayluk medium (KM8P)、Vladimir Kluyver medium (VKM)和改良MS (1/8NH4NO3)[4145],其中,KM8P应用最为广泛,因其富含养分、维生素和氨基酸,有利于原生质体细胞壁再生并启动细胞分裂。百合在原生质体培养方面取得一定进展,但不同品种之间的培养条件与效果存在差异。为减轻高浓度${\mathrm{NH}}_4^+ $的毒害作用,改良MS(1/8 NH4NO3)被应用于‘索邦’百合等的原生质体培养中(表1)[24, 46]。蔗糖和葡萄糖是原生质体培养最常用的碳源,低浓度的甘露醇或山梨醇也有一定应用。在多个百合品种原生质体培养的研究中,均发现以葡萄糖为碳源时效果最好[35, 47],在‘白天堂’百合原生质体培养中,蔗糖导致死亡而葡萄糖支持生长;新铁炮百合以葡萄糖为碳源时植板率最高,为13.7%。植物生长调节剂具有促进细胞分裂和形态建成的作用,是植物原生质体再生的关键,在百合原生质体培养的不同研究中,生长调节剂的种类与添加量均有差异。秦晓杰等[46]在培养基中添加了2.0 mg·L−1毒莠定(PIC)+1.5 mg·L−1 6-苄氨基嘌呤(6-BA)+0.1 mg·L−1萘乙酸(NAA)+0.1 mg·L−12,4-二氯苯氧乙酸(2,4-D)促使融合原生质体形成细胞团。TAHAMI等[48]分离得到的莉黛柏蕊百合L. ledebourii原生质体分别在含有1.0 mg·L−12,4-D+0.2 mg·L−1 激动素(KT)和0.5 mg·L−1 NAA+1.5 mg·L−16-BA的MS培养基中培养时愈伤增殖和植株再生的效率最高。除了植物生长调节剂外,添加抗坏血酸、水解酪蛋白等有机成分也可以减少细胞褐化,并促进原生质体分裂及形成小愈伤组织。

      表 1  百合原生质体培养条件及效果比较

      Table 1.  Comparison of culture conditions and effects of lily protoplasts

      参试植物 材料 培养基 培养方式 激素及其质量浓度 培养效果 参考文献
      ‘卡萨布兰卡’百合
      ‘西伯利亚’百合
      ‘阿卡波克’百合
      悬浮细胞 改良MS (1/8NH4NO3) 看护培养 1.0 mg·L−1 PIC 再生 [18]
      ‘伯尼尼’百合
      ‘精粹’百合
      卷丹百合
      叶片 改良MS (1/8NH4NO3) 固液结合培养 1.0 mg·L−1 2,4-D 5 d第1次分裂,15 d
      形成细胞团,随后
      逐渐死亡
      [21]
      薄层漂浮培养 1.0 mg·L−1 2,4-D 14 d第1次分裂,30 d
      形成细胞团,随后逐渐死亡
      ‘索邦’百合 叶片 MS、改良MS和NLN 液体浅层培养 (MS)2.0 mg·L−1 6-BA
      (改良MS)1.0 mg·L−1 6-BA
      (NLN)0.5 mg·L−1 2,4-D+
      0.5 mg·L−1 6-BA+
      0.5 mg·L−1 2,4-D
      细胞几乎无分裂,
      少数分裂1~2次后
      解体
      [22]
      愈伤组织 MS、改良MS和NLN 液体浅层培养 (MS)2.0 mg·L−1 6-BA
      (改良MS)1.0 mg·L−1 6-BA
      (NLN)0.5 mg·L−1 2,4-D+
      0.5 mg·L−1 6-BA+
      0.5 mg·L−1 2,4-D
      7 d第1次分裂,14 d
      后形成2~3个细胞团,最后逐渐解体
      ‘索邦’百合 胚性愈伤组织 MS(1/8NH4NO3) 看护培养 2.0 mg·L−1 PIC 40~45 d形成细胞团 [24]
      ‘阿祖萨’百合 悬浮细胞 MS 固体培养 1.0 mg·L−1 PIC 再生 [25]
      ‘白天堂’百合 叶片 MS 固体培养
      液体培养
      固液双层培养
      固体培养原生质体存
      活,液体培养形成细胞壁,固液培养形成小细胞团
      [35]
      岷江百合 悬浮细胞和
      愈伤组织
      MS(1/8NH4NO3) 液体浅层培养 1.0 mg·L−1 PIC 10 d后形成8~16个细
      胞的细胞团
      [38]
      新铁炮百合 悬浮细胞 MS 固体培养 1.0 mg·L−1 PIC 再生 [47]
      莉黛柏蕊百合 叶片 MS 液体培养 1.0 mg·L−1 2,4-D+
      0.2 mg·L−1 Kin
      再生 [48]
      云南大百合
      ‘索邦’百合
      愈伤组织 MS(1/8NH4NO3) 看护培养 2.0 mg·L−1 PIC+
      1.5 mg·L−1 6-BA+
      0.1 mg·L−1 NAA+
      0.1 mg·L−1 2,4-D
      50 d后获得再生细胞
      团但未发育成愈伤组织
      [46]
      日本百合 悬浮细胞 改良MS (1/8NH4NO3) 看护培养 1.0 mg·L−1 PIC 再生 [50]
      细叶百合 叶片 MS(1/8NH4NO3) 固液双层培养 1.0 mg·L−1 PIC 28 d形成细胞团然后
      停止分裂并解体
      [51]
      胚性愈伤组织 MS(1/8NH4NO3) 固液双层培养 1.0 mg·L−1 PIC 30 d天形成细胞团然
      后停止分裂并解体
      新铁炮百合 叶片 MS(1/8NH4NO3) 固液双层培养 1.0 mg·L−1 PIC 28 d形成细胞团然后
      停止分裂并解体
      胚性愈伤组织 MS(1/8NH4NO3) 固液双层培养 1.0 mg·L−1 PIC 70 d后形成具有旺盛
      分裂能力的愈伤
      组织
      ‘甜蜜记忆’百合
      ‘贝尼苏加塔’百合
      茎尖产生的苗
      条原基
      改良MS
      (1/8 NH4NO3)
      液体培养 0.1 mg·L−1 NAA+
      1.0 mg·L−1 6-BA
      再生 [52]
        说明:‘卡萨布兰卡’百合L. ‘Casablanca’;‘西伯利亚’百合L. ‘Siberia’;‘阿卡波克’百合L. ‘Acapulco’;‘伯尼尼’百合L. ‘Bernini’;‘精粹’百合L. ‘Elite’;卷丹百合L. lancifolium;‘索邦’百合L. ‘Sorbonne’;‘阿祖萨’百合L. × formolongi ‘Azusa’;‘白天堂’百合L. ‘White Heaven’;岷江百合L. regale;新铁炮百合L.× formolongi;莉黛柏蕊百合L. ledebourii;云南大百合Cadiocrinum giganteum;日本百合L. japonicum;细叶百合L. pumilum;‘甜蜜记忆’百合L. speciorubel ‘Sweet-memory’;‘贝尼苏加塔’百合L.× elegans ‘Benisugata’。“-”表示文献未提及相关内容。
    • 原生质体培养方法主要包括液体培养、固体培养、固液结合培养、看护培养等,不同植物原生质体最适培养方式存在差异[49]。已有报道的百合原生质体培养方法主要是液体培养和看护培养,而且看护培养的效果相对较好。液体培养操作简便且对原生质体伤害小,但不利于代谢废物的排出,且原生质体容易产生粘连现象,从而影响分化效果。研究表明:‘索邦’百合原生质体在液体浅层培养中的分裂效果受材料来源影响,仅愈伤组织来源的原生质体观察到细胞分裂,幼叶来源的几乎没有分裂[22]。看护培养一般是将愈伤组织或悬浮细胞包埋于含低熔点琼脂糖的培养基中,放在培养体系下部,将原生质体层放在上部培养。HORITA等[18]首次以处于增殖状态的新铁炮百合细胞系为看护细胞进行原生质体的培养,不仅成功诱导百合顽拗性原生质体分裂发育成细胞团,而且获得了较高的原生质体分裂频率。KOMAI等[50]以日本百合L. japonicum的悬浮细胞为材料,利用看护培养进行原生质体培养,经愈伤组织阶段后,成功再生出完整植株。‘索邦’百合的原生质体培养中发现看护培养是最佳的培养方法,并在改良MS+ 2.0 mg·L−1 PIC的培养基中培养2~3 d,观察到长细胞壁的原生质体;培养4~6 d,可见原生质体的第1次分裂;培养40~45 d,观察到原生质体分化成的细胞团[24]。原生质体培养初期需要黑暗或弱光培养,小愈伤形成后诱导分化时需要光照条件[53]

    • 培养过程中,还需要注意原生质体的密度。原生质体密度对原生质体活力具有直接与长期的作用,同时也影响着细胞间的群体效应。培养密度过低,原生质体难以启动分裂;培养密度过高,则易导致有害物质的过度累积,抑制原生质体的活性。一般情况下,原生质体的最适培养密度为107~108个·L−1。现有研究显示:不同品种的百合原生质体培养密度存在差异。岷江百合原生质体培养的密度为7×108个·L−1[38],而细叶百合原生质体培养密度为2×108个·L−1[51]

    • 当原生质体发育形成肉眼可见的微细胞团或愈伤组织后,应及时转移至分化培养基中,以诱导植株再生,最终实现育种目的[54]。百合原生质体培养的研究工作在20世纪90年代就已大规模开展。然而,获得再生植株的研究报道依然十分有限。1993年,SUGIURA[52]第1次成功获得了L. speciorubelL.× elegans的原生质体再生植株。随后,MII等[25]首次成功地以新铁炮百合的原生质体为材料在添加PIC的培养基中进行培养而再生出可育植株,土培8个月后得到具有正常可育花粉的花朵。1994年,FAMELAER等[55]发现:在培养基中诱导愈伤组织的最佳激素组合为添加PIC、NAA以及6-BA(或不加),并探究了不同组织来源、培养条件对原生质体植板率和再生能力的影响。1996年,GODO等[47]探究了糖种类对百合茎尖分生组织悬浮细胞团来源的原生质体植株再生效率的影响,并发现葡萄糖作为碳源培养原生质体时获得的植板率最高,为13.7%。1998年,GODO等[36]又发现原生质体在添加了10 μmol·L−1硫代硫酸银(STS)的酶溶液中酶解后再培养时得到更高的植板率,推测STS能够抑制细胞壁酶解过程中产生的过量乙烯而积极影响原生质体分裂。2002年,HORITA等[18]通过看护培养的方式获得了东方百合杂交种(‘卡萨布兰卡’‘Casablanca’、‘西伯利亚’‘Siberia’、‘阿卡波克’‘Acapulco’)的原生质体再生植株,这些幼苗在不驯化的情况下可移栽温室并正常开花,解决了部分品种难开花的问题。2003年,HORITA等[56]在此基础上通过电融合方法获得了东方百合杂交种同新铁炮百合品种‘Hakucho’的体细胞杂交种,这也是通过原生质体融合方法获得百合杂交种的首例报道。2014年,TAHAMI等[48]利用液体培养获得了莉黛柏蕊百合的原生质体再生植株。除此之外,也有大量国内外的百合原生质体培养再生研究未获得再生植株[22, 38, 51]

    • 作为遗传改良与分子生物学研究的重要平台,百合的原生质体在分离体系建立方面已相对成熟,但其再生体系的建立仍存在明显瓶颈,制约了该技术在百合遗传育种中的应用。目前,多数研究仍停留在原生质体的分离与初步培养阶段,能够实现完整植株再生的案例局限于少数基因型及特定外植体来源(如悬浮细胞和胚性愈伤组织)。因此,未来研究应聚焦以下方面深入探索:一是系统优化培养条件,包括培养基的类型、碳源种类、植物生长调节剂的配比与组合、渗透压稳定剂的浓度等,尤其需针对不同百合基因型进行培养基配方筛选;二是进一步探索百合原生质体薄层培养、看护培养等高效培养方式,通过改善原生质体微环境(营养供给、信号分子传递等),提升百合原生质体的分裂启动率与分化潜能[9];三是结合组学技术与细胞生物学手段,深入研究百合原生质体再生过程中的关键调控基因与信号通路[10],揭示其再生的分子机制,明确百合原生质体再生过程中关键调控基因(如细胞周期相关基因、特异性转录因子)及信号通路(如激素信号转导、细胞壁重构途径[12]),为开发通用性高的百合原生质体培养与再生技术提供理论基础[5758]

      随着技术的不断完善,百合原生质体在育种上的应用潜力将进一步释放。一方面通过原生质体融合将远缘物种优异性状(如抗病性、抗逆性)引入栽培品种,创制兼具亲本优良性状与遗传稳定性的体细胞杂种,为抗性育种开辟新途径。另一方面,以百合原生质体为受体开展精准基因编辑(如CRISPR/Cas9)或转基因操作[59],靶向调控花青素合成通路(如DFRANS等关键酶基因)、花器官发育过程相关(如MADS-box基因家族)关键模块基因及调控因子,实现花色、花型等观赏性状的精准改良。此外,该技术还有望应用于百合株型调控、花期延长、采后保鲜等重要农艺性状的遗传改良,显著提升百合育种效率。综上所述,百合原生质体研究应以培养体系构建为基础,以再生机制解析为核心,以技术应用为目标。在建立稳定、高效的原生质体培养再生体系的基础上,进一步开展再生与稳定遗传的机制解析,并应用于体细胞杂交、基因编辑等育种技术,实现百合的高效育种。

参考文献 (59)

目录

    /

    返回文章
    返回