-
植食性昆虫通过取食寄主植物来获取生长发育所需的糖类、蛋白质和脂肪等营养物质。昆虫中肠上皮细胞能形成和分泌消化酶,将这些营养物质消化分解成小分子物质供生长发育需要,如纤维素酶可将纤维素水解成葡萄糖[1];α-淀粉酶可将淀粉等多糖水解成为麦芽糖、葡萄糖、果糖等,参与体内的能量代谢[2];蛋白酶能将蛋白质水解为氨基酸,为昆虫的生长和繁殖提供氮源[3];脂肪酶可将三酰基甘油、磷脂、酰基甘油分解生成游离脂肪酸[4]。食性不同的昆虫消化酶种类和活性不同,食性相同的昆虫取食不同的寄主,甚至同种不同生长阶段的寄主,消化酶活性也存在差异[5]。如贾冰等[6]报道:在棉花Gossypium hirsutum和苜蓿Mdicago sativa上饲养牧草盲蝽Lygus pratensis,成虫的淀粉酶活性显著高于其他供试植物。李艺琼等[7]报道:椰心叶甲Brontispa longissima 5龄幼虫取食椰树Cocos nucifera半展叶、展叶后,中肠的蔗糖酶、淀粉酶、蛋白酶及脂肪酶活性均比取食心叶的幼虫显著下降。同时,环境因子的变化也会影响昆虫体内消化酶的活性及随后的生理过程。姜丽娜等[8]报道:随着二氧化碳浓度的升高,四季豆Phaseolus vulgaris、黄瓜Cucumis sativus、辣椒Capsicum annuum和茼蒿Chrysanthemum coronarium饲养的西花蓟马Frankliniella occidentalis和花蓟马Frankliniella intonsa成虫体内的淀粉酶活性均降低,脂肪酶和胰蛋白酶的活性则升高。然而, 有关温度对消化酶活性的影响以鱼类、爬行类、甲壳类动物研究得较多[9-11]。关于温度对昆虫消化酶活性的影响还未见相关报道。消化酶活性的高低决定了昆虫对营养物质消化、吸收的能力,从而影响昆虫生长发育速度。研究寄主植物及环境因子对昆虫消化酶活性的影响,可为深入探讨昆虫与环境适应性的生理生化机制奠定基础。金银花尺蠖Heterolocha jinyinhuaphaga属鳞翅目Lepidoptera尺蛾科Geometridae昆虫,别名拱腰虫,是金银花Lonicera japonica主要食叶害虫之一,常将金银花叶片咬成缺刻或孔洞,甚至全部吃光,常造成金银花的大面积减产,甚至成片死亡,给金银花生产带来严重损失[12-14]。目前,国内关于金银花尺蠖生物学特性及防治已有较多研究[12-16],而寄主植物及环境因子对其幼虫消化酶活性的影响还未见相关报道。本研究探讨了不同寄主植物、温度对金银花尺蠖幼虫淀粉酶、蔗糖酶、蛋白酶和脂肪酶活性的影响,分析金银花尺蠖幼虫对不同环境因子的生理生化适应性,为深入研究金银花尺蠖环境适应性的生理生化机制提供依据。
-
取食不同金银花后,金银花尺蠖各龄幼虫的消化酶活性均不相同(表 1)。取食野生金银花的淀粉酶、蔗糖酶和蛋白酶活性最高,在1龄幼虫中分别为18.37、26.45和22.31 mmol·g-1·min-1。1龄幼虫取食野生金银花、‘九丰1号’和‘响水2号’的淀粉酶活性之间差异不显著(F3, 8=3.147,P=0.954),但与响水1号差异显著(P < 0.05);1龄幼虫取食这4种寄主植物的蔗糖酶活性之间(F3, 8=1.379,P=0.317)、蛋白酶活性(F3, 8=2.455,P=0.138)之间差异不显著。取食‘响水1号’的脂肪酶活性最高,在1龄幼虫中为7.54 mmol·g-1·min-1,取食野生金银花的脂肪酶活性最低,在1龄幼虫中为5.54 mmol·g-1·min-1。1龄幼虫取食‘九丰1号’、‘响水1号’和‘响水2号’的脂肪酶活性之间,以及取食‘响水2号’与野生金银花的脂肪酶活性之间差异不显著(F3, 8=2.238,P=0.061)。
表 1 不同寄主植物下金银花尺蠖幼虫4种消化酶活性的变化
Table 1. Change of host plants on four digestive enzymes activities in H. jinyinhuphagu larva
消化酶 寄主植物 酶活性/(mmol·g-1·min-1) 1龄 2龄 3龄 4龄 5龄 淀粉酶 ‘九丰1号’ 17.58 ± 1.23 ABc 18.28 ± 1.42 ABc 19.73 ± 1.52 Bbc 21.21 ± 1.34 Bab 23.45 ± 1.35 ABa ‘响水1号’ 15.43 ± 1.18 Cc 16.13 ± 0.86 Cbc 16.87 ± 1.64 Cbc 18.35 ± 1.53 Cab 19.67 ± 1.54 Ca ‘响水2号’ 16.24 ± 1.11 ABc 16.95 ± 0.77 Cc 18.11 ± 1.36 BCbc 19.37 ± 1.25 BCb 21.65 ± 1.45 BCa 野生金银花 18.37 ± 1.58 Ac 19.43 ± 1.51 Ac 22.56 ± 1.24 Ab 24.32 ± 1.65 Aab 26.69 ± 2.37 Aa 蔗糖酶 ‘九丰1号’ 25.63 ± 1.22 Ab 26.33 ± 2.21 Ab 27.37 ± 1.59 Aab 28.46 ± 1.61 ABab 30.53 ± 2.41 ABa ‘响水1号’ 24.16 ± 1.77 Ab 25.23 ± 1.74 Aab 26.11 ± 1.79 Aab 27.15 ± 1.89 Bab 27.79 ± 1.66 Ba ‘响水2号’ 24.72 ± 1.57 Ab 25.89 ± 1.66 Aab 26.75 ± 1.63 Aab 27.81 ± 1.67 Bab 28.34 ± 1.67 Ba 野生金银花 26.45 ± 1.33 Ac 27.61 ± 2.38 Ac 29.48 ± 2.37 Abc 31.65 ± 2.43 Aab 34.29 ± 1.41 Aa 蛋白酶 ‘九丰1号’ 21.84 ± 1.72 Ac 22.64 ± 1.43 ABbc 23.73 ± 1.61 ABbc 25.25 ± 1.88 Bab 27.42 ± 1.67 Ba ‘响水1号’ 19.48 ± 0.85 Aa 20.26 ± 1.79 Ba 21.32 ± 1.87 Ba 22.26 ± 1.83 Ba 23.12 ± 2.48 Ca ‘响水2号’ 20.33 ± 1.69 Ac 20.95 ± 1.74 ABc 22.12 ± 1.76 Bab 23.31 ± 1.84 Bab 24.74 ± 1.65 BCa 野生金银花 22.31 ± 1.38 Ac 23.54 ± 1.42 Ac 26.72 ± 1.57 Ab 28.83 ± 1.62 Aab 31.56 ± 2.33 Aa 脂肪酶 ‘九丰1号’ 6.18 ± 0.86 ABd 6.96 ± 0.84 ABcd 8.24 ± 0.78 ABbc 9.31 ± 0.68 Bb 11.43 ± 0.86 ABa ‘响水1号’ 7.54 ± 0.71 Ad 8.16 ± 0.91 Acd 9.23 ± 0.68 Ac 10.74 ± 0.56 Ab 12.67 ± 0.82 Aa ‘响水2号’ 6.87 ± 0.75 ABc 7.55 ± 0.79 ABbc 8.29 ± 0.92 ABbc 8.93 ± 0.76 Bb 11.57 ± 0.94 ABa 野生金银花 5.54 ± 0.78 Bd 6.29 ± 0.71 Bcd 7.32 ± 0.87 Bbc 8.56 ± 0.81 Bab 9.85 ± 0.73 Ba 说明:数据为平均值+标准差。同列数据后不同大写字母和同行数据后不同小写字母均表示差异显著(P < 0.05) 金银花尺蠖幼虫取食‘九丰1号’、‘响水1号’、‘响水2号’和野生金银花的淀粉酶、蔗糖酶、蛋白酶和脂肪酶活性均随着幼虫龄期的增加而增大,5龄幼虫取食这4种金银花的淀粉酶活性分别为23.45、19.67、21.65和26.69 mmol·g-1·min-1,分别比1龄幼虫增加了33.39%、27.48%、33.31%和45.29%。5龄幼虫取食这4种金银花的蔗糖酶活性分别为30.53、27.79、28.34和34.29 mmol·g-1·min-1,分别比1龄幼虫增加了19.12%、15.02%、14.64%和29.64%。5龄幼虫取食这4种金银花的蛋白酶活性分别为27.42、23.12、24.74和31.56 mmol·g-1·min-1,分别比1龄幼虫增加了25.55%、18.69%、21.69%和41.46%。5龄幼虫取食这4种金银花的脂肪酶活性分别为11.43、12.67、11.57和9.85 mmol·g-1·min-1,分别比1龄幼虫增加了84.95%、68.04%、68.41%和77.80%。方差分析显示:寄主植物、幼虫龄期对金银花尺蠖幼虫4种消化酶活性均有显著影响(P < 0.05),但寄主植物和幼虫龄期的交互作用对金银花尺蠖幼虫4种消化酶活性没有显著影响(P>0.05)。
-
不同温度下金银花尺蠖取食‘九丰1号’鲜叶后,各龄幼虫消化酶活性均不相同(表 2),在16~34 ℃均呈先上升后下降的趋势。1~5龄幼虫的淀粉酶活性在22 ℃最高,分别为19.95、20.57、21.79、23.64和25.86 mmol·g-1·min-1,高于或低于22 ℃,淀粉酶活性均下降;1~5龄幼虫的蔗糖酶活性也在22 ℃最高,分别为27.65、28.89、29.85、31.45和32.89 mmol·g-1·min-1,高于或低于22 ℃,蔗糖酶活性均下降;1~5龄幼虫的蛋白酶活性在25 ℃时最高,分别为21.65、22.76、23.43、25.71和26.98 mmol·g-1·min-1,高于或低于25 ℃,蛋白酶活性均下降;1~5龄幼虫的脂肪酶活性在28 ℃时最高,分别为7.38、8.49、9.81、11.33和13.21 mmol·g-1·min-1,高于或低于28 ℃,脂肪酶活性均下降。方差分析显示:温度和幼虫龄期的交互作用对金银花尺蠖幼虫4种消化酶活性没有显著影响(P>0.05)。
表 2 不同温度下金银花尺蠖幼虫4种消化酶活性的变化
Table 2. Change of temperature on four digestive enzymes activities in H. jinyinhuaphaga larva
消化酶 温度/℃ 酶活性/(mmol·g-1·min-1) 1龄 2龄 3龄 4龄 5龄 淀粉酶 16 15.51 ± 1.05 CDd 17.64 ± 1.13 Bcd 18.78 ± 0.72 BCbc 20.37 ± 0.73 BCab 21.76 ± 0.87 Ba 19 17.73 ± 0.61 Bc 19.17 ± 1.39 ABbc 20.32 ± 0.85 ABb 21.53 ± 0.82 Bab 23.31 ± 0.94 ABa 22 19.95 ± 0.83 Ac 20.57 ± 1.44 Ac 21.79 ± 0.96 Abc 23.64 ± 0.87 Aab 25.86 ± 0.89 Aa 25 17.82 ± 1.19 Bc 18.43 ± 1.28 ABc 19.58 ± 0.84 ABCbc 21.35 ± 0.71 Bab 23.68 ± 0.83 ABa 28 15.87 ± 0.74 Cc 16.89 ± 0.83 Bbc 17.26 ± 0.74 CDbc 18.83 ± 0.42 CDb 21.47 ± 0.78 Ba 31 13.74 ± 1.31 Dc 14.36 ± 1.47 Cbc 15.65 ± 0.88 DEbc 16.78 ± 0.89 DEab 18.69 ± 0.77 Ca 34 11.45 ± 1.24 Ec 12.78 ± 1.29 Cbc 13.98 ± 1.06 Ebc 15.32 ± 0.51 Eab 16.75 ± 0.88 Ca 蔗糖酶 16 22.72 ± 0.93 Dd 24.36 ± 0.53 Ccd 25.67 ± 0.84 BCbc 26.87 ± 0.43 Cab 28.53 ± 0.76 BCa 19 25.31 ± 0.97 BCc 26.63 ± 0.85 Bbc 28.17 ± 0.38 ABab 29.22 ± 0.70 Bab 30.65 ± 0.96 ABa 22 27.65 ± 0.89 Ac 28.89 ± 0.45 Ac 29.85 ± 0.99 Abc 31.45 ± 0.71 Aab 32.89 ± 0.44 Aa 25 25.78 ± 0.36 ABc 26.65 ± 0.88 Bbc 27.76 ± 0.86 ABbc 28.91 ± 0.44 Bab 30.67 ± 0.89 ABa 28 23.45 ± 0.71 CDc 24.57 ± 0.72 BCbc 25.61 ± 0.83 BCbc 26.78 ± 0.39 Cab 28.44 ± 0.76 BCa 31 21.36 ± 0.70 Dc 22.46 ± 0.77 CDbc 23.55 ± 0.73 CDabc 24.76 ± 0.92 Dab 26.19 ± 1.04 CDa 34 18.93 ± 0.42 Ec 21.15 ± 0.85 Dbc 22.39 ± 0.71 Db 23.51 ± 0.74 Dab 24.79 ± 0.95 Da 蛋白酶 16 12.22 ± 0.62 Dd 14.38 ± 0.73 Dcd 16.13 ± 0.51 Dbc 18.37 ± 0.72 Cab 19.89 ± 0.45 Ea 19 15.61 ± 0.79 Cd 17.23 ± 0.64 Ccd 18.31 ± 0.91 CDbc 20.57 ± 0.82 CDab 22.17 ± 0.91 DEa 22 19.32 ± 1.02 Bc 20.19 ± 1.06 Bc 21.15 ± 0.53 ABbc 23.23 ± 0.68 Bab 24.67 ± 0.86 Ba 25 21.65 ± 0.83 Ac 22.76 ± 0.94 Ac 23.43 ± 0.75 Abc 25.71 ± 0.81 Aab 26.98 ± 0.53 Aa 28 18.24 ± 0.65 Bd 20.48 ± 0.47 ABcd 21.79 ± 0.89 Abc 23.52 ± 0.66 ABab 24.54 ± 0.81 BCa 31 15.81 ± 0.39 Cc 17.67 ± 0.83 Cbc 19.22 ± 0.52 BCb 21.25 ± 0.43 BCab 22.35 ± 0.70 CDa 34 13.55 ± 1.03 CDd 15.23 ± 0.51 CDcd 16.82 ± 0.69 Dbc 18.87 ± 0.59 Dab 20.28 ± 1.01 DEa 脂肪酶 16 2.48 ± 0.36 Dd 3.63 ± 0.45 Dcd 4.69 ± 0.48 Dbc 5.93 ± 0.43 Dab 7.05 ± 0.40 Da 19 3.56 ± 0.47 CDd 4.72 ± 0.39 CDcd 5.88 ± 0.41 CDbc 7.19 ± 0.55 CDab 8.43 ± 0.70 CDa 22 4.85 ± 0.42 BCd 5.91 ± 0.46 BCcd 7.17 ± 0.82 BCbc 8.31 ± 0.67 BCab 9.86 ± 0.81 BCa 25 6.23 ± 0.39 ABd 7.11 ± 0.73 ABcd 8.46 ± 0.66 ABbc 9.52 ± 0.61 ABb 11.68 ± 0.83 ABa 28 7.38 ± 0.59 Ad 8.49 ± 0.72 Acd 9.81 ± 0.61 Abc 11.33 ± 0.86 Aab 13.21 ± 0.79 Aa 31 5.83 ± 0.41 Bd 6.86 ± 0.64 ABcd 8.28 ± 0.67 ABbc 9.67 ± 0.76 ABab 11.55 ± 0.76 ABa 34 4.26 ± 0.45 Cd 5.45 ± 0.47 BCcd 6.57 ± 0.50 BCDbc 8.12 ± 0.69 BCab 9.78 ± 0.72 BCa 说明:数据为平均值+标准差。同列数据后不同大写字母和同行数据后不同小写字母均表示差异显著(P < 0.05) 根据不同温度下金银花尺蠖1~5龄幼虫4种消化酶活性的变化趋势进行回归分析,回归模型见表 3。对模型进行计算,得出金银花尺蠖1~5幼龄虫淀粉酶活性最高的温度分别为21.39、20.60、20.48、20.50和21.20 ℃;蔗糖酶活性最高的温度分别为21.83、21.11、20.89、20.96和21.12 ℃;蛋白酶活性最高的温度分别为24.70、24.97、25.51、25.24和24.35 ℃;脂肪酶活性最高的温度分别为28.41、28.08、27.52、28.69和29.30 ℃。
表 3 金银花尺蠖幼虫4种消化酶活性(y)与温度(x)间的回归模型
Table 3. Regression model about four digestive enzymes activities (y) in H. jinyinhuaphaga larva at different temperatures (x)
消化酶 幼虫龄期/龄 回归模型 相关系数 酶活性最高时的温度/℃ 淀粉酶 1 y1=0.004 1x3-0.367 5x2+10.093 0x-68.973 0.986 1 21.39 2 y2=0.003 7x3-0.325 1x2+8.683 8x-53.542 0.990 1 20.60 3 y3=0.004 5x3-0.381 4x2+9.960 5x-61.667 0.987 5 20.48 4 y4=0.004 6x3-0.393 4x2+10.329 0x-63.504 0.979 3 20.50 5 y5=0.004 1x3-0.367 1x2+10.036 0x-62.049 0.980 7 21.20 蔗糖酶 1 y1=0.004 5x3-0.400 1x2+11.034 0x-69.967 0.987 9 21.83 2 y2=0.005 4x3-0.459 6x2+12.185 0x-75.448 0.982 5 21.11 3 y3=0.005 7x3-0.479 7x2+12.580 0x-76.494 0.990 8 20.89 4 y4=0.005 9x3-0.496 0x2+13.016 0x-78.943 0.981 8 20.96 5 y5=0.005 4x3-0.460 3x2+12.218 0x-71.690 0.984 0 21.12 蛋白酶 1 y1=0.002 3x3-0.263 7x2+8.817 4x-71.174 0.957 9 24.70 2 y2=0.000 1x3-0.095 2x2+ 4.566 9x-35.206 0.964 9 24.97 3 y3=-0.000 9x3-0.010 1x2+2.272 8x-14.391 0.967 1 25.51 4 y4=-0.000 5x3-0.039 0x2+2.923 9x-16.821 0.959 3 25.24 5 y5=0.000 3x3-0.098 6x2+ 4.268 2x-24.965 0.954 7 24.35 脂肪酶 1 y1=-0.003 1x3+0.196 1x2-3.636 2x+23.157 0.983 8 28.41 2 y2=-0.003 0x3+0.189 1x2-3.524 1x+23.833 0.977 0 28.08 3 y3=-0.003 3x3+0.206 2x2-3.851 6x+26.861 0.984 7 27.52 4 y4=-0.003 4x3+0.220 0x2-4.228 1x+31.255 0.974 0 28.69 5 y5=-0.003 8x3+0.246 5x2-4.658 6x+34.232 0.985 3 29.30
Effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae
-
摘要:
目的 通过研究寄主植物、温度对金银花尺蠖Heterolocha jinyinhuaphaga幼虫消化酶活性的影响,为深入研究金银花尺蠖环境适应性的生理生化机制奠定基础。 方法 采用3,5-二硝基水杨酸法、福林-酚法和标准氢氧化钠溶液滴定法,通过分光光度计和滴定管测定了寄主植物、温度对金银花尺蠖幼虫消化酶活性的影响。 结果 取食3个金银花Lonicera japonica品种‘九丰1号’‘Jiufeng No.1’、‘响水1号’‘Xiangshui No.1’、‘响水2号’‘Xiangshui No.2’和野生金银花后,金银花尺蠖各龄幼虫消化酶活性均不一样。取食野生金银花的金银花尺蠖淀粉酶、蔗糖酶和蛋白酶活性均最高,脂肪酶活性最低,在1龄幼虫中4种消化酶的活性分别为18.37、26.45、22.31和5.54 mmol·g-1·min-1。4种消化酶活性均随着幼虫龄期的增加而增大,取食4种金银花后5龄幼虫的淀粉酶活性分别比1龄幼虫增加了33.39%、27.48%、33.31%和45.29%,蔗糖酶活性分别增加了19.12%、15.02%、14.64%和29.64%,蛋白酶活性分别增加了25.55%、18.69%、21.69%和41.46%,脂肪酶活性分别增加了84.95%、68.04%、68.41%和77.80%。在16~34℃,4种消化酶活性均随着温度的升高表现为先上升后下降的趋势,1~5龄幼虫的淀粉酶活性在22℃最高,分别为19.95、20.57、21.79、23.64和25.86 mmol·g-1·min-1;1~5龄幼虫的蔗糖酶活性在22℃最高,分别为27.65、28.89、29.85、31.45和32.89 mmol·g-1·min-1;1~5龄幼虫的蛋白酶活性在25℃最高,分别为21.65、22.76、23.43、25.71和26.98 mmol·g-1·min-1;1~5龄幼虫的脂肪酶活性在28℃最高,分别为7.38、8.49、9.81、11.33和13.21 mmol·g-1·min-1。方差分析显示:寄主植物和幼虫龄期的交互作用,以及温度和幼虫龄期的交互作用对金银花尺蠖幼虫4种消化酶活性均没有显著影响。 结论 寄主植物、温度能影响金银花尺蠖幼虫消化酶的活性。 Abstract:Objective This research aims to study the effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae, and lay a foundation for further research on their physiological and biochemical mechanism of environmental adaptation. Method Effects of these factors on digestive enzyme activities in H. jinyinhuaphaga larvae were studied through ultraviolet spectrophotometry and burette in laboratory by using 3, 5-dinitrosalicylic acid method, fulin-phenolic method, and standard sodium hydroxide solution titration method. Result Digestive enzyme activities of each H. jinyinhuaphaga larva differed after feeding on 'Jiufeng No. 1', 'Xiangshui No. 1', 'Xiangshui No. 2' and a wild variety of Lonicera japonica. The H. jinyinhuaphaga larvae feeding on the wild variety had the highest amylase, sucrase and protease activities, and the lowest lipase activity. The activities in the 1st instar larva were 18.37, 26.45, 22.31 and 5.54 mmol·g-1·min-1 respectively. The four digestive enzyme activities all increased with larval ages. Compared with the 1st instar larvae, the 5th instar larvae, after feeding on the four cultivars, displayed an increase in amylase activities by 33.39%, 27.48%, 33.31% and 45.29%, an increase in sucrase activities by 19.12%, 15.02%, 14.64% and 29.64%, an increase in protease activities by 25.55%, 18.69%, 21.69% and 41.46%, and an increase in lipase activities by 84.95%, 68.04%, 68.41% and 77.80%. In the range of 16-34℃, the activities of the four digestive enzymes all showed a tendency of first increasing and then decreasing with the rise of temperature. The highest amylase activities were observed at 22℃ in the larvae of the 1st-5th instar, which were 19.95, 20.57, 21.79, 23.64 and 25.86 mmol·g-1·min-1. The sucrase activities of the 1st-5th instar larvae were the highest at 22℃, which were 27.65, 28.89, 29.85, 31.45 and 32.89 mmol·g-1·min-1. The protease activities of the 1st-5th instar larvae were the highest at 25℃, which were 21.65, 22.76, 23.43, 25.71 and 26.98 mmol·g-1·min-1. The lipase activities of the 1st-5th instar larvae were the highest at 28℃, which were 7.38, 8.49, 9.81, 11.33 and 13.21 mmol·g-1·min-1. Two-way ANOVA showed that the interaction between host plants and larval ages, as well as the interaction between temperatures and larval ages, had no significant effect on the four digestive enzyme activities. Conclusion Host plants and temperatures can affect digestive enzyme activities of H. jinyinhuaphaga larvae. -
Key words:
- Heterolocha jinyinhuaphaga /
- host plant /
- temperature /
- digestive enzyme
-
表 1 不同寄主植物下金银花尺蠖幼虫4种消化酶活性的变化
Table 1. Change of host plants on four digestive enzymes activities in H. jinyinhuphagu larva
消化酶 寄主植物 酶活性/(mmol·g-1·min-1) 1龄 2龄 3龄 4龄 5龄 淀粉酶 ‘九丰1号’ 17.58 ± 1.23 ABc 18.28 ± 1.42 ABc 19.73 ± 1.52 Bbc 21.21 ± 1.34 Bab 23.45 ± 1.35 ABa ‘响水1号’ 15.43 ± 1.18 Cc 16.13 ± 0.86 Cbc 16.87 ± 1.64 Cbc 18.35 ± 1.53 Cab 19.67 ± 1.54 Ca ‘响水2号’ 16.24 ± 1.11 ABc 16.95 ± 0.77 Cc 18.11 ± 1.36 BCbc 19.37 ± 1.25 BCb 21.65 ± 1.45 BCa 野生金银花 18.37 ± 1.58 Ac 19.43 ± 1.51 Ac 22.56 ± 1.24 Ab 24.32 ± 1.65 Aab 26.69 ± 2.37 Aa 蔗糖酶 ‘九丰1号’ 25.63 ± 1.22 Ab 26.33 ± 2.21 Ab 27.37 ± 1.59 Aab 28.46 ± 1.61 ABab 30.53 ± 2.41 ABa ‘响水1号’ 24.16 ± 1.77 Ab 25.23 ± 1.74 Aab 26.11 ± 1.79 Aab 27.15 ± 1.89 Bab 27.79 ± 1.66 Ba ‘响水2号’ 24.72 ± 1.57 Ab 25.89 ± 1.66 Aab 26.75 ± 1.63 Aab 27.81 ± 1.67 Bab 28.34 ± 1.67 Ba 野生金银花 26.45 ± 1.33 Ac 27.61 ± 2.38 Ac 29.48 ± 2.37 Abc 31.65 ± 2.43 Aab 34.29 ± 1.41 Aa 蛋白酶 ‘九丰1号’ 21.84 ± 1.72 Ac 22.64 ± 1.43 ABbc 23.73 ± 1.61 ABbc 25.25 ± 1.88 Bab 27.42 ± 1.67 Ba ‘响水1号’ 19.48 ± 0.85 Aa 20.26 ± 1.79 Ba 21.32 ± 1.87 Ba 22.26 ± 1.83 Ba 23.12 ± 2.48 Ca ‘响水2号’ 20.33 ± 1.69 Ac 20.95 ± 1.74 ABc 22.12 ± 1.76 Bab 23.31 ± 1.84 Bab 24.74 ± 1.65 BCa 野生金银花 22.31 ± 1.38 Ac 23.54 ± 1.42 Ac 26.72 ± 1.57 Ab 28.83 ± 1.62 Aab 31.56 ± 2.33 Aa 脂肪酶 ‘九丰1号’ 6.18 ± 0.86 ABd 6.96 ± 0.84 ABcd 8.24 ± 0.78 ABbc 9.31 ± 0.68 Bb 11.43 ± 0.86 ABa ‘响水1号’ 7.54 ± 0.71 Ad 8.16 ± 0.91 Acd 9.23 ± 0.68 Ac 10.74 ± 0.56 Ab 12.67 ± 0.82 Aa ‘响水2号’ 6.87 ± 0.75 ABc 7.55 ± 0.79 ABbc 8.29 ± 0.92 ABbc 8.93 ± 0.76 Bb 11.57 ± 0.94 ABa 野生金银花 5.54 ± 0.78 Bd 6.29 ± 0.71 Bcd 7.32 ± 0.87 Bbc 8.56 ± 0.81 Bab 9.85 ± 0.73 Ba 说明:数据为平均值+标准差。同列数据后不同大写字母和同行数据后不同小写字母均表示差异显著(P < 0.05) 表 2 不同温度下金银花尺蠖幼虫4种消化酶活性的变化
Table 2. Change of temperature on four digestive enzymes activities in H. jinyinhuaphaga larva
消化酶 温度/℃ 酶活性/(mmol·g-1·min-1) 1龄 2龄 3龄 4龄 5龄 淀粉酶 16 15.51 ± 1.05 CDd 17.64 ± 1.13 Bcd 18.78 ± 0.72 BCbc 20.37 ± 0.73 BCab 21.76 ± 0.87 Ba 19 17.73 ± 0.61 Bc 19.17 ± 1.39 ABbc 20.32 ± 0.85 ABb 21.53 ± 0.82 Bab 23.31 ± 0.94 ABa 22 19.95 ± 0.83 Ac 20.57 ± 1.44 Ac 21.79 ± 0.96 Abc 23.64 ± 0.87 Aab 25.86 ± 0.89 Aa 25 17.82 ± 1.19 Bc 18.43 ± 1.28 ABc 19.58 ± 0.84 ABCbc 21.35 ± 0.71 Bab 23.68 ± 0.83 ABa 28 15.87 ± 0.74 Cc 16.89 ± 0.83 Bbc 17.26 ± 0.74 CDbc 18.83 ± 0.42 CDb 21.47 ± 0.78 Ba 31 13.74 ± 1.31 Dc 14.36 ± 1.47 Cbc 15.65 ± 0.88 DEbc 16.78 ± 0.89 DEab 18.69 ± 0.77 Ca 34 11.45 ± 1.24 Ec 12.78 ± 1.29 Cbc 13.98 ± 1.06 Ebc 15.32 ± 0.51 Eab 16.75 ± 0.88 Ca 蔗糖酶 16 22.72 ± 0.93 Dd 24.36 ± 0.53 Ccd 25.67 ± 0.84 BCbc 26.87 ± 0.43 Cab 28.53 ± 0.76 BCa 19 25.31 ± 0.97 BCc 26.63 ± 0.85 Bbc 28.17 ± 0.38 ABab 29.22 ± 0.70 Bab 30.65 ± 0.96 ABa 22 27.65 ± 0.89 Ac 28.89 ± 0.45 Ac 29.85 ± 0.99 Abc 31.45 ± 0.71 Aab 32.89 ± 0.44 Aa 25 25.78 ± 0.36 ABc 26.65 ± 0.88 Bbc 27.76 ± 0.86 ABbc 28.91 ± 0.44 Bab 30.67 ± 0.89 ABa 28 23.45 ± 0.71 CDc 24.57 ± 0.72 BCbc 25.61 ± 0.83 BCbc 26.78 ± 0.39 Cab 28.44 ± 0.76 BCa 31 21.36 ± 0.70 Dc 22.46 ± 0.77 CDbc 23.55 ± 0.73 CDabc 24.76 ± 0.92 Dab 26.19 ± 1.04 CDa 34 18.93 ± 0.42 Ec 21.15 ± 0.85 Dbc 22.39 ± 0.71 Db 23.51 ± 0.74 Dab 24.79 ± 0.95 Da 蛋白酶 16 12.22 ± 0.62 Dd 14.38 ± 0.73 Dcd 16.13 ± 0.51 Dbc 18.37 ± 0.72 Cab 19.89 ± 0.45 Ea 19 15.61 ± 0.79 Cd 17.23 ± 0.64 Ccd 18.31 ± 0.91 CDbc 20.57 ± 0.82 CDab 22.17 ± 0.91 DEa 22 19.32 ± 1.02 Bc 20.19 ± 1.06 Bc 21.15 ± 0.53 ABbc 23.23 ± 0.68 Bab 24.67 ± 0.86 Ba 25 21.65 ± 0.83 Ac 22.76 ± 0.94 Ac 23.43 ± 0.75 Abc 25.71 ± 0.81 Aab 26.98 ± 0.53 Aa 28 18.24 ± 0.65 Bd 20.48 ± 0.47 ABcd 21.79 ± 0.89 Abc 23.52 ± 0.66 ABab 24.54 ± 0.81 BCa 31 15.81 ± 0.39 Cc 17.67 ± 0.83 Cbc 19.22 ± 0.52 BCb 21.25 ± 0.43 BCab 22.35 ± 0.70 CDa 34 13.55 ± 1.03 CDd 15.23 ± 0.51 CDcd 16.82 ± 0.69 Dbc 18.87 ± 0.59 Dab 20.28 ± 1.01 DEa 脂肪酶 16 2.48 ± 0.36 Dd 3.63 ± 0.45 Dcd 4.69 ± 0.48 Dbc 5.93 ± 0.43 Dab 7.05 ± 0.40 Da 19 3.56 ± 0.47 CDd 4.72 ± 0.39 CDcd 5.88 ± 0.41 CDbc 7.19 ± 0.55 CDab 8.43 ± 0.70 CDa 22 4.85 ± 0.42 BCd 5.91 ± 0.46 BCcd 7.17 ± 0.82 BCbc 8.31 ± 0.67 BCab 9.86 ± 0.81 BCa 25 6.23 ± 0.39 ABd 7.11 ± 0.73 ABcd 8.46 ± 0.66 ABbc 9.52 ± 0.61 ABb 11.68 ± 0.83 ABa 28 7.38 ± 0.59 Ad 8.49 ± 0.72 Acd 9.81 ± 0.61 Abc 11.33 ± 0.86 Aab 13.21 ± 0.79 Aa 31 5.83 ± 0.41 Bd 6.86 ± 0.64 ABcd 8.28 ± 0.67 ABbc 9.67 ± 0.76 ABab 11.55 ± 0.76 ABa 34 4.26 ± 0.45 Cd 5.45 ± 0.47 BCcd 6.57 ± 0.50 BCDbc 8.12 ± 0.69 BCab 9.78 ± 0.72 BCa 说明:数据为平均值+标准差。同列数据后不同大写字母和同行数据后不同小写字母均表示差异显著(P < 0.05) 表 3 金银花尺蠖幼虫4种消化酶活性(y)与温度(x)间的回归模型
Table 3. Regression model about four digestive enzymes activities (y) in H. jinyinhuaphaga larva at different temperatures (x)
消化酶 幼虫龄期/龄 回归模型 相关系数 酶活性最高时的温度/℃ 淀粉酶 1 y1=0.004 1x3-0.367 5x2+10.093 0x-68.973 0.986 1 21.39 2 y2=0.003 7x3-0.325 1x2+8.683 8x-53.542 0.990 1 20.60 3 y3=0.004 5x3-0.381 4x2+9.960 5x-61.667 0.987 5 20.48 4 y4=0.004 6x3-0.393 4x2+10.329 0x-63.504 0.979 3 20.50 5 y5=0.004 1x3-0.367 1x2+10.036 0x-62.049 0.980 7 21.20 蔗糖酶 1 y1=0.004 5x3-0.400 1x2+11.034 0x-69.967 0.987 9 21.83 2 y2=0.005 4x3-0.459 6x2+12.185 0x-75.448 0.982 5 21.11 3 y3=0.005 7x3-0.479 7x2+12.580 0x-76.494 0.990 8 20.89 4 y4=0.005 9x3-0.496 0x2+13.016 0x-78.943 0.981 8 20.96 5 y5=0.005 4x3-0.460 3x2+12.218 0x-71.690 0.984 0 21.12 蛋白酶 1 y1=0.002 3x3-0.263 7x2+8.817 4x-71.174 0.957 9 24.70 2 y2=0.000 1x3-0.095 2x2+ 4.566 9x-35.206 0.964 9 24.97 3 y3=-0.000 9x3-0.010 1x2+2.272 8x-14.391 0.967 1 25.51 4 y4=-0.000 5x3-0.039 0x2+2.923 9x-16.821 0.959 3 25.24 5 y5=0.000 3x3-0.098 6x2+ 4.268 2x-24.965 0.954 7 24.35 脂肪酶 1 y1=-0.003 1x3+0.196 1x2-3.636 2x+23.157 0.983 8 28.41 2 y2=-0.003 0x3+0.189 1x2-3.524 1x+23.833 0.977 0 28.08 3 y3=-0.003 3x3+0.206 2x2-3.851 6x+26.861 0.984 7 27.52 4 y4=-0.003 4x3+0.220 0x2-4.228 1x+31.255 0.974 0 28.69 5 y5=-0.003 8x3+0.246 5x2-4.658 6x+34.232 0.985 3 29.30 -
[1] 顾方媛, 陈朝银, 石家骥, 等.纤维素酶的研究进展与发展趋势[J].微生物学杂志, 2008, 28(1):83-87. GU Fangyuan, CHEN Zhaoyin, SHI Jiaji, et al. Advance in cellulose and its development tendency[J]. J Microbiol, 2008, 28(1):83-87. [2] 孔玉萍, 黄青春, 刘曼慧, 等.粘虫中肠淀粉酶活性测定方法的参数优化[J].昆虫学报, 2007, 50(10):981-988. KONG Yuping, HUANG Qingchun, LIU Manhui, et al. Parametric optimization on the sensitive determination of midgut-amylase in larvae of Mythimna separata Walker[J]. Acta Entomol Sin, 2007, 50(10):981-988. [3] MORGAN E D. Biosynthesis in Insects[M]. Cambridge:Royal Society of Chemistry, 2010. [4] SUI Yiping, WANG Jinxing, ZHAO Xiaofan. Effects of classical insect hormones on the expression profiles of a lipase gene from the cotton bollworm (Helicoverpa armigera)[J]. Insect Mol Biol, 2008, 17(5):523-529. [5] ZENG F, COHEN A C. Comparison of α-amylase and protease activities of a zoophytophagous and two phytozoophagous Heteroptera[J]. Comp Biochem Physiol A Mol Integr Physiol, 2000, 126(1):101-106. [6] 贾冰, 谭瑶, 付晓彤, 等.不同寄主植物对牧草盲蝽生长发育、繁殖及消化酶活性的影响[J].草业科学, 2018, 35(8):1975-1984. JIA Bin, TAN Yao, FU Xiaotong, et al. Effect of host plants on development, reproduction, and digestive enzyme activity in Lygus pratensis[J]. Pratacultural Sci, 2018, 35(8):1975-1984. [7] 李艺琼, 姚羽芯, 彭正强, 等.不同生长阶段椰树叶片对椰心叶甲中肠消化酶活性的影响[J].江苏农业科学, 2017, 45(7):94-97. LI Yiqiong, YAO Yuxin, PENG Zhengqiang, et al. Effect of palm tree leaves with different growth phases on midgut digestive enzyme activity of Brontispa longissima[J]. Jiangsu Agric Sci, 2017, 45(7):94-97. [8] 姜丽娜, 钱蕾, 喜超, 等. CO2浓度升高对不同寄主植物上西花蓟马和花蓟马成虫体内消化酶活性的影响[J].昆虫学报, 2017, 60(3):237-246. JIANG Lina, QIAN Lei, XI Chao, et al. Effects of elevated CO2 on the digestive enzyme activities in the adults of Frankliniella occidentalis and F. intonsa (Thysanoptera:Thripidae) on different host plants[J]. Acta Entomol Sin, 2017, 60(3):237-246. [9] 刘峰, 刘阳阳, 楼宝, 等.温度对小黄鱼体内抗氧化酶及消化酶活性的影响[J].海洋学报, 2016, 38(12):76-85. LIU Feng, LIU Yangyang, LOU Bao, et al. Effect of water temperature on antioxidant and digestive enzymes activities in Larimichtys polyactis[J]. Haiyang Xuebao, 2016, 38(12):76-85. [10] 张建萍, 王强, 李小鲁.温度对南疆沙蜥和密点麻蜥消化酶活性的影响[J].四川动物, 2019, 38(2):200-205. ZHANG Jianping, WANG Qiang, LI Xiaolu. Effect of temperature on digestive enzyme activities in Phrynocephalus forsythii and Eremias multiocellata[J]. J Sichuan Zool, 2019, 38(2):200-205. [11] 黄东科, 梁华芳, 温崇庆, 等.温度对波纹龙虾消化酶活力的影响[J].渔业现代化, 2017, 44(6):32-36, 42. HUANG Dongke, LIANG Huafang, WEN Chongqing, et al. Effects of different temperatures on the digestive enzyme activities in the Panulirus homarus[J]. Fish Modenization, 2017, 44(6):32-36, 42. [12] 姜敏, 邵明果, 赵伯林.金银花尺蠖的生物学特性及防治技术[J].山东林业科技, 2005(1):62-63. JIANG Min, SHAO Mingguo, ZHAO Bolin. Biology characteristic of Heterolocha jinyinhuaphaga Chu and the control methods[J]. Shandong For Sci Technol, 2005(1):62-63. [13] 张文冉, 高殿滑, 刘爱华.金银花尺蠖的发生与气象条件的关系[J].气象与环境科学, 2007, 30(4):60-62. ZHANG Wenran, GAO Dianhua, LIU Aihua. Relationships between honeysuckle geometrid occurrence and meteorological condition[J]. Meteo and Envi Sci, 2007, 30(4):60-62. [14] 向玉勇, 刘克忠, 殷培峰, 等.安徽金银花尺蠖的生物学特性[J].滁州学院学报, 2010, 12(5):35-37. XIANG Yuyong, LIU Kezhong, YIN Peifeng, et al. The biological characteristics of honeysuckle geometrid in Anhui Province[J]. J Chuzhou Univ, 2010, 12(5):35-37. [15] 王广军, 张国彦, 王江蓉.金银花尺蠖的发生规律与防治技术[J].中国植保导刊, 2005, 25(3):22-23. WANG Guangjun, ZHANG Guoyan, WANG Jiangrong. Occuring laws of Heterolocha jinyinhuaphaga Chu and the control methods[J]. Chin Plant Prot, 2005, 25(3):22-23. [16] 倪云霞, 刘新涛, 刘玉霞, 等.金银花尺蠖的药剂防治[J].河南农业科学, 2006(12):78-79. NI Yunxia, LIU Xintao, LIU Yuxia, et al. Pesticide control to Heterolocha jinyinhuaphaga Chu[J]. J Henan Agric Sci, 2006(12):78-79. [17] 向玉勇, 彭晶晶, 张帆, 等.温度对金银花尺蠖幼虫取食量及食物利用效率的影响[J].环境昆虫学报, 2015, 37(6):1158-1162. XIANG Yuyong, PENG Jingjing, ZHANG Fan, et al. Effects of temperature on the feeding capacity and food utilization efficiency of Heterolocha jinyinhuaphaga Chu larvae[J]. J Environ Entomol, 2015, 37(6):1158-1162. [18] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1/2):248-254. [19] 李志刚, 韩诗畴, 郭明方, 等.取食不同食料植物对安婀珍蝶的营养利用及中肠四种酶活力的影响[J].昆虫学报, 2015, 48(5):674-678. LI Zhigang, HAN Shichou, GUO Mingfang, et al. Effects of feeding on different food plants on nutritional utilization and midgut enzyme activities in Actinote anteas (Lepidoptera:Nymphalidae)[J]. Acta Entomol Sin, 2005, 48(5):674-678. [20] WRIGHT M K, BRANDT S L, COUDRON T A, et al. Characterization of digestive protelytic activity in Lygus hesperus Knighr(Hemiptera:Miridae)[J]. J Insect Physiol, 2006, 52(7):717-728. [21] 向玉勇, 陈洋, 殷培峰.金银花尺蠖对金银花不同品种的取食选择[J].植物保护学报, 2016, 43(5):745-751. XIANG Yuyong, CHEN Yang, YIN Peifeng. Feeding preference of honeysuckle geometrid Heterolocha jinyinhuaphaga Chu to different varieties of honeysuckle[J]. J Plant Prot, 2016, 43(5):745-751. [22] KOTKAR H M, SARATE P J, TAMHANE V A, et al. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants[J]. J Insect Physiol, 2009, 55(8):663-670. [23] 李亚, 程立生, 彭正强, 等.寄主植物叶片生长阶段对椰心叶甲幼虫生长发育的影响[J].热带农业科学, 2006, 26(5):17-20. LI Ya, CHENG Lisheng, PENG Zhengqiang, et al. Influence of developmental stage of host plant leaves on the larval development and survival of Brontispa longissima(Gestro)[J]. Trop Agric Sci, 2006, 26(5):17-20. [24] 向枭, 周兴华, 陈建, 等.温度对嘉陵江鲇消化酶活性影响的研究[J].西南大学学报(自然科学版), 2013, 35(11):67-73. XIANG Xiao, ZHOU Xinghua CHEN Jian, et al. Effect of temperature on the activities of digestive enzymes in catfish (Silurus asotus Linnaeus) in the Jialing River[J]. J Southwest Univ Nat Sci Ed, 2013, 35(11):67-73. [25] 茹小尚, 高天翔, 刘石林, 等.温度对刺参繁殖期消化酶和代谢酶活力的影响[J].海洋科学, 2015, 39(3):1-6. RU Xiaoshang, GAO Tianxiang, LIU Shilin, et al. Effects of temperature on digestive and metabolic enzymes activities of sea cucumber (Apostichopus japonicus) broodstock[J]. Mar Sci, 2015, 39(3):1-6. [26] 张文辉, 刘光杰.植物抗虫性次生物质的研究概况[J].植物学通报, 2003, 20(5):552-530. ZHANG Wenhui, LIU Guangjie. A review on plant secondary substances in plant resistances to insect pest[J]. Chin Bull Bot, 2003, 20(5):552-530. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2020.02.016