-
玄武岩作为地球表面分布最广的岩石类型之一,其风化作用对于土壤形成和发育具有重要作用[1−2]。玄武岩中的矿物成分,如长石、辉石和橄榄石等[3],在风化过程中分解和转化,为土壤提供丰富的矿质营养元素[3−4],这些元素对于支持植物生长和生态系统功能至关重要[5−7]。许多研究表明:玄武岩风化在调节土壤地球化学以及地球气候变化等长期演化方面具有重要的作用[8−13]。如施用到土壤中的玄武岩粉末经风化作用后显著提高了土壤养分,促进了土壤有机碳的固定[14−15]。因此,研究玄武岩风化作用的影响因素对阐明土壤发生过程、矿质养分元素循环等具有重要作用。
土壤微生物通过代谢活动、化学作用、氧化还原作用以及与植物的共生关系等多种方式,加速土壤矿物的风化过程。其中,硅酸盐细菌不仅可以从矿物中提取经济价值较高的元素如钙(a)、镁(Mg)、锰(Mn),还可以作为生物肥料,从矿物中提取钾(K)、铁(Fe)、磷(P)等植物必需的营养元素[13−17]。与细菌相比,真菌在地质活动中的作用更加显著。有研究表明:真菌通过有机酸分泌、呼吸作用和络合物的生成等途径对玄武岩进行风化,参与风化的真菌主要包括地衣共生真菌、菌根真菌和腐生真菌[16−17]。
棘孢木霉Trichoderma asperellum和胶质芽孢杆菌Bacillus mucilaginosus是土壤中普遍存在的真菌与细菌,它们不仅能分解土壤中的难溶性矿物供自身的生长繁殖,还能促进土壤中矿质元素的地球化学循环[18−20]。棘孢木霉通过分泌有机酸和酶类,可以有效地促进矿物质溶解和元素释放,已有研究表明:它能加速硅酸盐矿物的风化,释放植物生长所需的硅元素(Si)[21−23]。而胶质芽孢杆菌则通过分泌多种有机酸和其他代谢产物,对钾长石等矿物的溶解效果显著,能够释放出K,提高土壤肥力。但是棘孢木霉和胶质芽孢杆菌在形态、大小和功能等具有各自的特点,因此它们在促进矿物风化的途径、机制等方面存在一定的差异[22−24]。
本研究选用了1株产酸量较大且能生成铁载体的棘孢木霉和1株硅酸盐细菌胶质芽孢杆菌,在恒温震荡培养条件下,探究它们对玄武岩风化过程中元素的释放速率的影响,探讨其对玄武岩风化作用机制的异同,以期为不同菌种促进玄武岩风化提供理论依据。
-
选用的1株产酸量较大且能生成铁载体的棘孢木霉和1株硅酸盐细菌胶质芽孢杆菌,均由浙江农林大学省部共建亚热带森林培育国家重点实验室微生物研究室保存。棘孢木霉菌株生长迅速,在马铃薯葡萄糖琼脂培养基(potato dextrose agar, PDA)上生长时,营养体初体为白色的菌丝体,之后表面的颜色逐渐转变为青绿色,长势呈不定型棉絮状或致密丛束状。胶质芽孢杆菌菌株在赖氏低氏培养基(Luria-Bertani, LB)上形成隆起菌落,边缘整齐并凸起,中心有明显褶皱,革兰氏反应呈阴性。
-
PDA培养基用于活化培养棘孢木霉。LB培养基用于活化培养胶质芽孢杆菌。马铃薯葡萄糖培养基(PD)提供了统一且丰富的营养环境,确保细菌和真菌都能生长,将营养因素的影响降至最低。
-
玄武岩样品由嵊州皓达矿业有限公司提供。利用X-射线荧光光谱仪(X-ray F luorescence Spectrometer,XRF)测定玄武岩的化学成分,其主要化学成分包括(质量分数):SiO2 47.27%,Al2O3 15.89%,Fe2O3 9.72%,MnO 0.57%,MgO 5.63%,CaO 1.28%,Na2O 5.03%,K2O 5.55%,TiO2 4.41%,P2O5 3.14%。
-
①棘孢木霉菌液的制备:挑起单菌落放入25 mL的PD培养基中,摇床上培养24 h。②胶质芽孢杆菌菌液的制备:挑起单菌落放入25 mL的PD培养基中,摇床上培养24 h,5 000 r·min−1离心6 min,去除上层清液,底层沉淀物用无菌水打散,即为细菌菌液。
-
分别称取5.0 g的玄武岩岩粉放置于250 mL的锥形瓶,每瓶加入120 mL的PD培养基,在115 ℃高压灭菌锅灭菌30 min。然后分别加入3 mL的棘孢木霉菌液、胶质芽孢杆菌菌液和无菌水(对照),处理的编号分别为MM、YB、ck,并用厚度为0.2 μm的半透膜封口,以保证瓶内处于有氧环境,每个处理3次重复。将所有的锥形瓶放置于28 ℃、150 r·min−1的恒温振荡培养箱内。根据细胞的生长曲线,在第1、3、7、15、20、30天共6次取样,每次从锥形瓶中取2 mL的浸提液用于测定。
-
浸提液pH值和离子浓度[25]:浸提液pH用台式pH计在室温下测定,精度±0.01。Si、Ca,Mg,Fe和铝(Al)的浓度用电感耦合等离子体发射光谱法(ICP-OES)测定,在测定前将浸提液过0.22 μm的醋纤滤头,按照时间序列,以不同的倍数用体积分数为3%的0.05 mol·L−1HNO3稀释至3 mL, 3次重复,取平均值,其标准偏差(SD)<5%。为减小实验误差,用公式(1)对所测数据矫正。
$$ {C}_{j,i}^{\mathrm{*}}=\dfrac{{C}_{j,i}[{v}_{0}-(j-1\left){v}_{s}\right]+\displaystyle\sum _{h=1}^{j-1}{C}_{j,i}{v}_{s}}{{v}_{0}} 。$$ (1) 式(1)中,$ {C}_{j,i}^{\mathrm{*}} $ 是离子i在第j次取样后的矫正浓度(mmol·L−1),$ {v}_{0} $是反应体系浓度的初始体积(120 mL),$ {C}_{j,i} $ 是测定浓度,$ {v}_{s} $ 是每次取样的体积(2 mL),$ \displaystyle\sum _{h=1}^{j-1}{C}_{j,i}{v}_{s} $ 是取样过程中提取离子i的质量。
用线性溶解速率来表征元素释放快慢,具体运算公式(2)计算。
$$ R_i^l=\dfrac{\mathrm{d}C_i^{\mathrm{*}}}{\mathrm{d}t}\dfrac{V_0}{Am}。 $$ (2) 式(2)中,$ {R}_{i}^{l} $是离子i的线性释放速率(mol·m−2·s−1),$ \mathrm{d}{C}_{i}^{\mathrm{*}}/\mathrm{d}t $是离子i矫正后浓度对于时间t的微分,V0是反应溶液的初试体积(120 mL),A为玄武岩粉末的比表面积(
0.2437 ±0.0027 ) m2·g−1,m为玄武岩样品的质量(5.0 g)。采用冷场发射扫描电子显微镜(CFESEM)对反应后的玄武岩颗粒表面形态进行分析,并根据能谱仪(EDS)形成的能谱图的能量值确定元素种类。
-
采用Excel 2019和Origin 2020进行数据整理和作图分析。
Effects of different microbial strains on element release during weathering of basalt
-
摘要:
目的 对比分析2种微生物对玄武岩的风化和元素释放的影响,探究微生物在玄武岩风化过程中的作用,为微生物促进玄武岩风化提供理论依据。 方法 选用不同微生物菌株胶质芽孢杆菌Bacillus mucilaginosus和棘孢木霉Trichoderma asperellum,开展玄武岩的生物风化模拟试验;通过元素地球化学方法(元素溶解量和速率等)和矿物分析方法(物质组成等),研究微生物对玄武岩中硅(Si)、钙(Ca)、铝(Al)、铁(Fe)和镁(Mg)释放量、释放速率以及释放能力的影响,并探讨释放机制。 结果 胶质芽孢杆菌和棘孢木霉对玄武岩的风化和元素溶解产生了促进作用,与对照相比,真菌和细菌体系溶液pH分别降低1.46和0.88个单位;与对照相比,真菌作用下玄武岩中Si、Ca、Al、Fe和Mg元素释放量增加10.2、2.6、8.2、92.9和9.9倍,细菌作用下增加2.7、1.2、1.7、19.7和3.2倍;真菌和细菌作用下,玄武岩中元素的释放能力顺序基本相同,从大到小依次为Ca、Mg、Fe、Si、Al;微生物主要通过分泌有机酸创造酸性环境或通过络合作用促进玄武岩的风化和提高元素溶解速率。 结论 微生物能够有效提高玄武岩风化过程中元素的释放量和速率,而不同菌株之间存在差异,其中棘孢木霉处理下玄武岩风化过程中元素的释放量和速率高于胶质芽孢杆菌处理,说明真菌对于加速玄武岩风化具有更有效作用。图6参41 Abstract:Objective Analyze the effects of different microorganisms on the weathering and elemental release of basalt, to explore the role of microorganisms in the weathering process of basalt, and to provide a theoretical basis for microorganisms promoting basalt weathering. Method Different microbial strains (Bacillus mucilaginosus and Trichoderma asperellum) were selected to carry out simulation experiments on biological weathering of basalt. By means of elemental geochemical methods (elemental dissolution amount and rate) and mineral analytical methods (material composition), the effects of microorganisms on the release amount, release rate, and release capacity of Si, Ca, Al, Fe, and Mg elements from basalt were investigated, and preliminarily explored the release mechanisms. Result Microorganisms contributed to the weathering of basalt and the dissolution of elements, compared to the control group, the pH of the fungal and bacterial system solutions decreased by 1.46 and 0.88 units, respectively. Compared to the control group, the release amounts of Si, Ca, Al, Fe and Mg elements in basalt was significantly increased by 10.2, 2.6, 8.2, 92.9 and 9.9 times under the action of fungi, and it was significantly increased by 2.7, 1.2, 1.7, 19.7 and 3.2 times under bacterial action. The order of element release from basalt under the action of fungi and bacteria was same: Ca>Mg>Fe>Si>Al. Microorganisms create an acidic environment mainly by secreting organic acids or by complexing to promote the weathering of basalt and increase the rate of elemental dissolution. Conclusion Microorganisms can effectively increase the release and rate of elements during the weathering process of basalt, there are also differences among different strains. The release and rate of elements during the weathering process of basalt under the treatment of T. asperellum are higher than those under the treatment of B. mucilaginosus, indicating that fungi have a more significant role in accelerating the weathering process of basalt. [Ch, 6 fig. 41 ref.] -
Key words:
- basalt /
- Trichoderma asperellum /
- Bacillus mucilaginosus /
- weathering /
- release rate /
- mechanism
-
-
[1] STRAATEN V P. Farming with rocks and minerals: challenges and opportunities [J]. Anais da Academia Brasileira de Ciências, 2006, 78(4): 731 − 747. [2] FEININGER T. An introduction to the rock-forming minerals (third edition) [J]. The Canadian Mineralogist, 2013, 51(4): 663 − 664. [3] CHADWICK O A, DERRY L A, VITOUSEK P M, et al. Changing sources of nutrients during four million years of ecosystem development [J]. Nature, 1999, 397: 491 − 497 [4] 金文豪, 邵帅, 陈俊辉, 等. 不同类型菌根对土壤碳循环的影响差异研究进展[J]. 浙江农林大学学报, 2021, 38(5): 953 − 962. JIN Wenhao, SHAO Shuai, CHEN Junhui, et al. Progress of research on the effects of different types of mycorrhizae on soil carbon cycle [J]. Journal of Zhejiang A&F University, 2021, 38(5): 953 − 962. [5] WOLFF BOENISCH D, GISLASON S R, OELKERS E H. The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates [J]. Geochimica et Cosmochimica Acta, 2006, 70(4): 858 − 870. [6] POKEOVSKY O S, SCHOTT J, KUDRYAVTZEV D I, et al. Basalt weathering in Central Siberia under permafrost conditions [J]. Geochimica et Cosmochimica Acta, 2005, 69(24): 5659 − 5680. [7] FYFE S W, LEONARDOS H O, THEODORO H S. Sustainable farming with native rocks: the transition without revolution [J]. Anais da Academia Brasileira de Ciências, 2006, 78(4): 715 − 720. [8] DESSERT C, BERNARD D, GAILLARDET J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle [J]. Chemical Geology, 2005, 202(3/4): 257 − 273. [9] OELKERS E H, SCHOTT J. An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution [J]. Geochimica et Cosmochimica Acta, 2001, 65: 1219 − 1231. [10] BAYON G, BIROT D, RUFFINE L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin [J]. Earth & Planetary Science Letters, 2011, 312(3/4): 443 − 452. [11] DAS A, KRISJNASWAMI S, KUMAR A. Sr and 87Sr/86Sr in rivers draining the Deccan Traps (India): implications to weathering, Sr fluxes, and the marine 87Sr/86Sr record around K/T [J/OL]. Geochemistry Geophysics Geosystems, 2013, 7 (6): Q06014[2024-05-30]. 10.1029/2005GC001081. [12] STEWART W B, CAPO C R, CHADWICK A O. Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils [J]. Geochimica et Cosmochimica Acta, 2001, 65(7): 1087 − 1099. [13] HARTMANN J, WEST A J, RENFORTH P, et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification [J]. Reviews of Geophysics, 2013, 51(2): 113 − 149. [14] KANTOLA I B, MASTERS M D, BEERlING D J, et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering [J/OL]. Biology Letters, 2017, 13 (4): 20160714[2024-05-30]. doi: 10.1098/rsbl.2016.0714. [15] WALLANDER H, HAGERBERG D. Do ectomycorrhizal fungi have a significant role in weathering of minerals in forest soil? [J]. Symbiosis, 2004, 37(1/3): 249 − 257. [16] KIM J, DONG H, SEABAUGH J, et al. Role of microbes in thesmectite-to-illite reaction [J]. Science, 2004, 303(5659): 830 − 832. [17] BHATTI T M, BIGHAM J M, VUORINEN A, et al. Weathering of biotite in Acidithiobacillus ferrooxidans cultures [J]. Geomicrobiology Journal, 2011, 28(2): 130 − 134. [18] SOOD M, KAPOOR D, KUMAR V, et al. Trichoderma: the “secrets” of a multitalented biocontrol agent [J/OL]. Plants, 2020, 9 (6): 762[2024-05-30]. doi: 10.3390/plants9060762. [19] 高宁, 邢意警, 熊瑞, 等. 丛枝菌根真菌和溶磷细菌协调植物获取磷素的机制[J]. 浙江农林大学学报, 2023, 40(6): 1167 − 1180. GAO Ning, XING Yijing, XIONG Rui, et al. Mechanisms of coordination of phosphorus acquisition by plants by tufted mycorrhizal fungi and phosphorus-solubilizing bacteria [J]. Journal of Zhejiang A&F University, 2023, 40(6): 1167 − 1180. [20] YAO Minjie, LIAN Bin, TENG H H, et al. 2013. Serpentine dissolution in the presence of bacteria Bacillus mucilaginosus [J]. Geomicrobiology Journal, 2013, 30(1): 72 − 80. [21] 王飞. 棘孢木霉对植物铁营养的影响及其机制的研究[D]. 济南: 山东师范大学, 2014. WANG Fei. Study on the Effect of Trichoderma aspergillus on Plant Iron Nutrition and Its Mechanism [D]. Ji’nan: Shandong Normal University, 2014. [22] MICHAEL G G, JOON Y R, KAREN S, et al. Geomycology: metals, actinides and biominerals [J]. Environmental Microbiology Reports, 2012, 4(3): 270 − 296. [23] BALOGH-BRUNSTAD Z, KELLER C K, DICKINSON J T, et al. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments [J]. Geochimica et Cosmochimica Acta, 2008, 72(11): 2601 − 2618. [24] 常征, 许林书, 高梅香, 等. 镜泊湖全新世玄武岩台地土壤养分特征分析[J]. 东北林业大学学报, 2009, 37(10): 57 − 59. CHANG Zheng, XU Linshu, GAO Meixiang, et al. Analysis of soil nutrient characteristics of the Holocene basalt platform in Jingpo Lake [J]. Journal of Northeast Forestry University, 2009, 37(10): 57 − 59. [25] 王浩贤, 李子波, 陈旸, 等. 真菌-玄武岩相互作用过程中真菌属种差异对元素释放行为的影响[J]. 第四纪研究, 2019, 39(2): 458 − 468. WANG Haoxian, LI Zibo, CHEN Yang, et al. The influence of fungal species differences on element release behavior during fungal-basalt interactions [J]. Quaternary Sciences, 2019, 39(2): 458 − 468. [26] GUBDRANDSSON S, WOLFF-BOENISCH D, GISIASON S R, et al. Anexperimental study of crystalline basalt dissolution from 2≤pH≤l1 and temperatures from 5 to 75 ℃ [J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5496 − 5509. [27] CRISPIM C A, GAYLARDC C C. Cyanobacteria and biodetcrioration of cultural heritage: a review [J]. Microbial Ecology, 2005, 49(1): 1 − 9. [28] PENNISI E. A lichen ménage a trois [J/OL]. Scicnce, 2016, 353 (6297): 337[2024-05-30]. doi: 10.1126/science.353.6297.337. [29] 李永, 李福春, 杨刚, 等. 真菌与细菌作用下黑云母中主要元素溶出状况的对比分析[J]. 土壤通报, 2017, 48(1): 86 − 93. LI Yong, LI Fuchun, YANG Gang, et al. Comparative analysis of major element leaching from biotite under the action of fungi and bacteria [J]. Chinese Journal of Soil Science, 2017, 48(1): 86 − 93. [30] 周跃飞, 王汝成, 陆现彩. 玄武岩微生物分解过程中的矿物表面效应[J]. 岩石矿物学杂志, 2008, 27(1): 59 − 66. ZHOU Yuefei, WANG Rucheng, LU Xiancai. Mineral surface effects during microbial decomposition of basalt [J]. Acta Petrologica et Mineralogica, 2008, 27(1): 59 − 66. [31] LI Zibo, LIU Lianwen, CHEN Jun, et al. Cellular dissolution at hypha and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering [J]. Geology, 2016, 44(4): 319 − 322. [32] SANTHIYA D, SUBRAMANIAN S, NATARAJAN K. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa [J]. Journal of Colloid and Interface Science, 2002, 256(2): 237 − 248. [33] BRANTLEY L S, LIERMANN J L, GUYNN L R, et al. Fe isotopic fractionation during mineral dissolution with and without bacteria [J]. Geochimica et Cosmochimica Acta, 2004, 68(15): 3189 − 3204. [34] LIERMANN L J, KALINOWSKI B E, BRANTLEY S L, et al. Role of bacterial siderphores in dissolution of hornblende [J]. Geochimica et Cosmochimica Acta, 2000, 64(4): 587 − 602. [35] 宋振宇, 蔡柏岩. 丛枝菌根真菌介导的矿质元素运输研究进展[J]. 黑龙江大学自然科学学报, 2024, 41(2): 127 − 133. SONG Zhenyu, CAI Boyan. Progress in the study of mineral element transport mediated by the mycorrhizal fungi [J]. Journal of Natural Science of Heilongjiang University, 2024, 41(2): 127 − 133. [36] RAMOS M E, GARCIA-PALM S, ROZALEN M. Kinetics of montmorillonite dissolution: an experimental study of the effect of oxalate [J]. Chemical Geology, 2014, 63: 283 − 292. [37] 屈明华, 俞元春, 李生, 等. 丛枝菌根真菌对矿质养分活化作用研究进展[J]. 浙江农林大学学报, 2019, 36(2): 394 − 405. QU Minghua, YU Yuanchun, LI Sheng, et al. Progress in the study of the activation of mineral nutrients by tufted mycorrhizal fungi [J]. Journal of Zhejiang A&F University, 2019, 36(2): 394 − 405. [38] STONE A T. Reactions of extracellular organic ligands with dissolved metal ions and mineral surfaces [J]. Reviews in Mineralogy and Geochemistry, 1997, 35(1): 309 − 344. [39] DREVER J I, STILLINGS L L. The role of organic acids in mineral weathering [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 120(1/3): 167 − 181. [40] STUMM W, FURRER G, WIELAND E, et al. The effects of complex-forming ligands on the dissolution of oxides and aluminosilicates [M]. DREVER J I. The Chemistry of Weathering. Dordrecht: Springer, 1985: 55 − 74. [41] FRIEDRICH S, PLATONOVA N P, KARAVAIKO G, et al. Chemical and microbiological solubilization of silicates [J]. Acta Biotechnologica, 1990, 11(3): 187 − 196. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240381