-
桂花Osmanthus fragrans属木犀科Oleaceae木犀属Osmanthus,是中国十大传统名花之一,具有非常高的经济价值和观赏价值。目前,桂花在中国南岭以北至秦岭以南的广大亚热带地区均有大量应用,其栽培面积和栽植数量是中国园林苗木中最大的种类之一。随着2004年中国取得了桂花国际登录权,进一步拓展了桂花生产和销售的国际和国内市场,这就要求我们必须进行桂花种质的改良和创新,培育花大、芳香、色艳、抗性强的桂花新品种。野生桂花具丰富的性状变异和遗传变异,是栽培桂花的重要育种资源,然而野生资源开发过度,破坏严重,适生生境散失,分布范围急剧缩小,种群规模和数量锐减;而现存的野生桂花种群仅在湖南[1-3]、福建[4]、浙江[3, 5]、江西[6]等地被零星发现。目前,野生桂花资源的研究主要集中在野生资源的调查[3, 6]、种群动态[1, 4]、繁育系统[2, 5]等方面,而遗传多样性等方面的研究报道较少。江西全南和福建长汀的2个桂花自然种群保存较好,隔离分布,具有代表性。本研究利用扩增片段长度多态性(amplified fragment length polymorphism,AFLP)分子标记技术对2个不同类型(衰退型和稳定型)野生桂花种群遗传多样性进行分析,从而明确这2个种群的遗传结构,为桂花野生资源的科学保护和有效利用提供理论依据。
-
从64对引物组合中筛选出了7对扩增产物稳定、重复性好、多态性高且分辨能力强的引物组合,对2个种群96份样品基因组DNA进行AFLP分析。结果表明:7对引物共获得了330条清晰的条带,其中276条为多态性条带;每对引物组合扩增条带数为29~59条;每对引物的多态性条带百分率为70.73%~100.00%(图 1和表 1)。
表 1 7对AFLP选择性扩增引物组合及其扩增结果
Table 1. Amplification results of different AFLP primer combinations
引物组合 总扩增条带数 多态性条带数 多态性条带百分率/% E-AGC/M-CTG 47 47 100.00 E-AGC/M-CTA 50 43 86.00 E-AGG/M-CTG 41 29 70.73 E-AGG/M-CTA 48 43 89.58 E-ACC/M-CAT 29 23 79.31 E-AAC/M-CTT 59 51 86.44 E-AAG/M-CTA 56 40 71.43 合计 330 276 平均 47.14 39.42 83.64 此外,除引物组合E-ACC/M-CAT外其他引物组合都扩增出一定数量的特异性条带(表 2),福建长汀种群扩增的特异性条带数明显多于江西全南种群。
表 2 特异性条带扩增
Table 2. Amplification of private bands
引物组合 全南 长汀 特异性条带数 特异性条带百分率/% 特异性条带数 特异性条带百分率/% E-AGC/M-CTG 6 12.77 13 27.66 E-AGC/M-CTA 0 0 21 42 E-AGG/M-CTG 1 2.44 5 12.2 E-AGG/M-CTA 2 4.17 20 41.67 E-ACC/M-CAT 0 0 0 0 E-AAC/M-CTT 0 0 5 8.47 E-AAG/M-CTA 3 5.36 8 14.29 合计 12 3.64 72 21.82 平均 1.71 10.29 -
多态位点百分率(PPL)、Shannon 多态性信息指数(I)、Nei’s 基因多样性(He)都是广泛运用的衡量物种遗传多样性的指标。从表 3可以看出,在物种水平,桂花的多态位点百分率(PPL)为83.64%,Shannon 多态性信息指数(I)为0.428 3,Nei’s 基因多样性(He)为0.285 6;在种群水平,江西全南种群和福建长汀种群的多态位点百分率(PPL)分别为48.48%和79.09%,平均为63.79%,Shannon 多态性信息指数(I)分别为0.263 1和0.414 8,平均为0.339 0,Nei’s 基因多样性(He)多态性指数分别为0.177 8和0.277 6,平均为0.227 7。江西全南和福建长汀的观测等位基因数和有效等位基因数分别为1.484 8和1.790 9,1.309 0和1.471 4。
表 3 桂花种群的遗传多样性
Table 3. Genetic diversity index of Osmanthus fragrans in populations
种群 多态位点百分率/% Shannon多态性信息指数 Nei’ s基因多样性 观测等位基因数 有效等位基因数 江西全南 48.48 0.263 1 ± 0.246 4 0.177 8 ± 0.179 7 1.484 8 ± 0.370 5 1.3090 ± 0.354 8 福建长汀 79.09 0.414 8 ± 0.257 1 0.277 6 ± 0.183 6 1.7909±0.4073 1.4714±0.3498 平均 63.79 0.339 0 ± 0.252 8 0.227 7 ± 0.181 7 1.637 9 ± 0.388 9 1.3902 ± 0.352 3 种水平 83.64 0.428 3 ± 0.293 3 0.285 6 ± 0.204 6 1.8364±0.5005 1.4873 ± 0.377 2 -
分子方差分析(AMOVA)(表 4)表明:江西全南种群和福建长汀种群间的差异达极显著(P<0.001),种群内的遗传变异百分率为71%,种群间的变异百分率为29%,遗传变异主要来源于种群内部。这与Nei’s基因多样性(Gst=0.161 6)的结果一致。根据遗传分化系数,江西全南种群和福建长汀种群间的基因流(Nm)为2.594 9。
表 4 96个桂花个体的分子方差分析(AMOVA)
Table 4. Analysis of molecular variation (AMOVA) for 96 individuals of Osmanthus fragrans
变异来源 自由度dj 总分差SSD 均方差MSE 方差成分 变异百分率/% P值 种群间 1 617.540 617.540 16.486 29 <0.001 种群内 94 3 842.064 40.873 40.873 71 <0.001 合计 95 4 459.604 57.359 100 -
Nei’s遗传一致度(0.888 2)和遗传距离(0.118 5)结果表明江西全南种群和福建长汀种群间相似程度较高。2个种群不同个体间的UPGMA聚类分析表明,2个种群的不同个体均先聚为一类(图 2),表明地理隔离使得2个种群间有一定的遗传分化。
Genetic structure of different natural Osmanthus fragrans populations based on AFLP method
-
摘要: 桂花Osmanthus fragrans具有极高的经济价值和观赏价值。研究野生桂花种群的遗传多样性有利于为新品种的选育以及野生桂花资源的保护提供重要的依据。利用扩增片段长度多态性(AFLP)技术对江西全南(衰退型)和福建长汀(稳定型)这2个桂花自然种群96个个体进行了遗传多样性评估。7对引物组合共检测到330个清晰位点,其中多态位点276个,占83.64%。在物种水平,桂花的Shannon多态性信息指数(I)为0.428 3,Nei's基因多样性(He)为0.285 6,表明桂花具有丰富的遗传多样性;在种群水平,福建长汀种群的多态性指数均高于江西全南种群,表明包含不同世代、具有较好自然更新能力的长汀种群携带更丰富的遗传信息;分子方差分析(AMOVA)表明:桂花的遗传变异主要存在于种群内(71%),种群间的遗传变异只占29%;2个种群间存在一定的遗传分化(Gst=0.161 6),种群间基因流较小(Nm=2.594 9)。Abstract: Osmanthus fragrans is being concerned in recent years due to its high economic value and ornamental value. It can provide significant evidences for breeding of new cultivars and protecting of natural populations with studying on the genetic diversity of natural populations of O. fragrans. The genetic diversity of 96 O. fragrans individuals of two natural populations from Quannan County of Jiangxi Province and Changting County of Fujian Province was estimated using amplified fragment length polymorphism (AFLP) method. A total number of 330 reproducible bands were amplified using seven AFLP primer combinations, and 276 bands were polymorphic with a proportion of 83.64%. At the species level, Shannon's information index (I) was 0.428 3, the Nei's genetic diversity (He) was 0.285 6, which indicated the genetic diversity of O. fragrans was rich; at the population level, Shannon's information index and Nei's genetic diversity of Fujian population was higher 1.5 than Jiangxi population, that showed Fujian population owned much rich genetic resource. Moreover, AMOVA indicated the most total genetic variation was within populations with a proportion of 71% and the less was among the populations with a proportion of 29%. Meanwhile, a certain extent level of genetic differentiation (Gst=0.161 6) was detected among the populations and genetic flow was 2.594 9.
-
Key words:
- botany /
- Osmanthus fragrans /
- AFLP /
- genetic diversity /
- genetic structure /
-
表 1 7对AFLP选择性扩增引物组合及其扩增结果
Table 1. Amplification results of different AFLP primer combinations
引物组合 总扩增条带数 多态性条带数 多态性条带百分率/% E-AGC/M-CTG 47 47 100.00 E-AGC/M-CTA 50 43 86.00 E-AGG/M-CTG 41 29 70.73 E-AGG/M-CTA 48 43 89.58 E-ACC/M-CAT 29 23 79.31 E-AAC/M-CTT 59 51 86.44 E-AAG/M-CTA 56 40 71.43 合计 330 276 平均 47.14 39.42 83.64 表 2 特异性条带扩增
Table 2. Amplification of private bands
引物组合 全南 长汀 特异性条带数 特异性条带百分率/% 特异性条带数 特异性条带百分率/% E-AGC/M-CTG 6 12.77 13 27.66 E-AGC/M-CTA 0 0 21 42 E-AGG/M-CTG 1 2.44 5 12.2 E-AGG/M-CTA 2 4.17 20 41.67 E-ACC/M-CAT 0 0 0 0 E-AAC/M-CTT 0 0 5 8.47 E-AAG/M-CTA 3 5.36 8 14.29 合计 12 3.64 72 21.82 平均 1.71 10.29 表 3 桂花种群的遗传多样性
Table 3. Genetic diversity index of Osmanthus fragrans in populations
种群 多态位点百分率/% Shannon多态性信息指数 Nei’ s基因多样性 观测等位基因数 有效等位基因数 江西全南 48.48 0.263 1 ± 0.246 4 0.177 8 ± 0.179 7 1.484 8 ± 0.370 5 1.3090 ± 0.354 8 福建长汀 79.09 0.414 8 ± 0.257 1 0.277 6 ± 0.183 6 1.7909±0.4073 1.4714±0.3498 平均 63.79 0.339 0 ± 0.252 8 0.227 7 ± 0.181 7 1.637 9 ± 0.388 9 1.3902 ± 0.352 3 种水平 83.64 0.428 3 ± 0.293 3 0.285 6 ± 0.204 6 1.8364±0.5005 1.4873 ± 0.377 2 表 4 96个桂花个体的分子方差分析(AMOVA)
Table 4. Analysis of molecular variation (AMOVA) for 96 individuals of Osmanthus fragrans
变异来源 自由度dj 总分差SSD 均方差MSE 方差成分 变异百分率/% P值 种群间 1 617.540 617.540 16.486 29 <0.001 种群内 94 3 842.064 40.873 40.873 71 <0.001 合计 95 4 459.604 57.359 100 -
[1] 王贤荣,袁发银,陈昕,等. 湖南浏阳桂花峡桂花次生林的物种数量特征[J]. 南京林业大学学报:自然科学版,2004,28(增刊):41-44. WANG Xianrong,YUAN Fayin,CHEN Xin,et al. Quantitative characteristics of species in wild community of Osmanthus fragrans in Guihuaxia,Liuyang,Hunan[J]. J Nanjing For Univ Nat Sci Ed,2004,28(supp):41-44. [2] 汪德娥,王宗海. 庐山山南桂花结实习性及野生群落研究[J]. 林业科技通讯,1997(10):18-21. WANG De'e,WANG Zonghai. Study on breeding and wild population of Osmanthus fragrans in south slopes of Lushan[J]. For Sci Technol,1997(10):18-21. [3] 雷瑞虎,喻勋林,王莉青. 中国野生桂花群落研究现状[J]. 安徽农业科学,2008,36(6):2337,2354. LEI Ruihu,YU Xunlin,WANG Liqing. Research on the introduction of Osmanthus fragrans community in China[J]. J Anhui Agric Sci,2008,36(6):2337,2354. [4] 董建文,范小明,吴东来,等. 福建长汀石峰寨景区桂花次生林群落物种数量特征[J]. 植物资源与环境学报,2002,11(4):40-44. DONG Jianwen,FAN Xiaoming,WU Donglai,et al. Quantitative characteristics of species in secondary forest community of Osmanthus fragrans in Shifengzhai of Changting County,Fujian Province[J]. J Plant Resour Environ,2002,11(4):40-44. [5] 郝日明,赵宏波,王金虎,等. 野生桂花繁育系统的观察和研究[J]. 植物资源与环境学报,2011,20(1):17-24. HAO Riming,ZHAO Hongbo,WANG Jinhu,et al. Observation and study on breeding system of wild Osmanthus fragrans[J]. J Plant Resour Environ,2011,20(1):17-24. [6] 段一凡,谭志明,刘远标,等. 江西全南古桂和野生桂花资源调查[J]. 植物资源与环境学报,2012,21(2):118-120. DUAN Yifan,TAN Zhiming,LIU Yuanbiao,et al. Resources investigation of ancient tree and wild tree of Osmanthus fragrans in Quannan County of Jiangxi Province[J]. J Plant Resour Environ,2012,21(2):118-120. [7] YEH F C,YANG R C,BOYLE T B J,et al. PopGene32,Microsoft Windows-Based Freeware for Population Genetic Analysis Version 1.32[CP/OL]. Alberta:Molecular Biology and Biotechnology Centre,University of Alberta,2000. [8] PEAKALL R, SMOUSE P E.GenAlEx 6.5:genetic analysis in Excel. Population genetic software for teaching and research-an update[J]. Bioinformatics,2012,28(19):2537-2539. [9] ROHLF F J. NTSYS-pc. Numerical Taxonomy and Multi-variate Analysis System,Version 2.1[CP/OL]. Setauket,New York:Exeter Software,2000. [10] NYBOM H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants[J].Mol Ecol,2004,13(5):1143-1155. [11] 宋丛文,包满珠. 天然珙桐群体的RAPD标记遗传多样性研究[J]. 林业科学,2004,24(4):75-79. SONG Congwen,BAO Manzhu. Study on genetic diversity of RAPD mark for natural Davidia involucrata population[J]. Sci Silv Sin,2004,24(4):75-79. [12] 李雪萍,李在留,贺春玲,等. 珙桐遗传多样性的AFLP分析[J]. 园艺学报,2012,39(5):992-998. LI Xueping,LI Zailiu,HE Chunling,et al. Genetic diversity of the endangered Davidia involucrata by AFLP analysis[J]. Acta Hortic Sin,2012,39(5):992-998. [13] 张蕊,周志国,金国庆,等. 南方红豆杉种源遗传多样性和遗传分化[J]. 林业科学,2009,45(1):50-56. ZHANG Rui,ZHOU Zhiguo,JIN Guoqing,et al. Genetic diversity and genetic differentiation of Taxus wallichiana var. mairei provenances[J]. Sci Silv Sin,2009,45(1):50-56. [14] 张俊红,黄华宏,童再康,等. 光皮桦6个南方天然群体的遗传多样性[J]. 生物多样性,2010,18(3):233-240. ZHANG Junhong,HUANG Huahong,TONG Zaikang,et al. Genetic diversity in six natural populations of Betula luminifera from southern China[J]. Biodiversity Sci,2010,18(3):233-240. [15] HAMRICK J L,GODT M J W. Conservation genetics of endemic plant species[G]//AVISE J C,HAMRICK J L.Conservation Genetics:Case Histories from Nature. New York:Chapman and Hall,1996:281-304. [16] ISHIHAMA F,UENO S,TSUMURA Y,et al. Gene flow and inbreeding depression inferred from fine-scale genetic structure in an endangered heterostylous perennial,Primula sieboldi[J]. Mol Ecol,2005,14(4):983-990. [17] BARTISH I V,JEPPSSON N,NYBOM H. Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA(RAPD)markers[J]. Mol Ecol,1999,8(5):791-802. [18] NYBOM H,BARTISH I V. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants[J]. Evol Syst,2000,3(2):93-114. [19] 严茂粉,李向华,王克晶. 北京地区野生大豆种群SSR标记的遗传多样性评价[J]. 植物生态学报,2008,32(4):938-950. YAN Maofen,LI Xianghua,WANG Kejing. Evaluation of genetic diversity by SSR markers for natural populations of wild soyban (Glycine soja) growing in the region of Beijing,China[J]. J Plant Ecol,2008,32(4):938-950. [20] 吴会芳,李作洲,黄宏文. 湖北野生天麻的遗传分化及栽培天麻种质评价[J]. 生物多样性,2006,14(4):315-326. WU Huifang,LI Zuozhou,HUANG Hongwen. Genetic differentiation among natural populations of Gastrodia elata (Orchidaceae) in Hubei and germplasm assessment of the cultivated populations[J]. Biodiversity Sci,2006,14(4):315-326. [21] 陈良华,胡庭兴,张帆,等. 用AFLP技术分析四川核桃资源的遗传多样性[J]. 植物生态学报,2008,32(6):1362-1372. CHEN Lianghua,HU Tingxing,ZHANG Fan,et al. Genetic diversity of four Juglans populations revealed by AFLP in Sichuan Province,China[J]. J Plant Ecol,2008,32(6):1362-1372. [22] 李楠,柳新红,李因刚,等. 白花树天然群体的遗传多样性[J]. 林业科学,2012,48(11):49-56. LI Nan,LIU Xinhong,LI Yingang,et al. Genetic diversity in natural populations of Styrax tonkinensis[J]. Sci Silv Sin,2012,48(11):49-56. [23] 陈小勇. 生境片断化对植物种群遗传结构的影响及植物遗传多样性保护[J]. 生态学报,2000,20(5):885-892. CHEN Xiaoyong. Effects of habitat fragmentation on genetic structure of plant populations and implications for the biodiversity conservation[J]. Acta Ecol Sin,2000,20(5):885-892. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.02.009