-
朱顶红Hippeastrum rutilum又名红花莲、孤挺花等,系石蒜科Amaryllidaceae朱顶红属Hippeastrum
所有种类的总称,多年生草本植物,性喜温暖、湿润气候,稍耐寒[1]。现有约70个种[2]在全球呈离散分布,野生种主要集中分布在巴西和玻利维亚一带。在中国,朱顶红属外来引入花卉[3]。朱顶红花色艳丽且复杂多变,花瓣形状丰富,极具观赏价值,除可用于一般的盆景植物外,还可用于户外景观植物栽培,是元旦、春节和国庆的重要装饰。目前,国际上流行的园艺杂交种朱顶红有100多个品种,其中在中国栽培的品种有60多个[4]。作为高档观赏花卉,国内外开展的对朱顶红相关研究,主要集中在栽培技术(包括组培)、育种、扩繁技术和病虫害防治等方面。近年来,育种学家们培育出了很多花型、花色变化丰富,花瓣厚和花期长的新品种[3],但在国内推广应用的朱顶红品种主要引自荷兰,缺少自主培育的新品种,而且朱顶红的遗传背景较复杂,无法确定大部分栽培品种的遗传背景和品种间的亲缘关系,采用传统的分类方法很难区分其种下类群和品种[5]以及朱顶红种质资源的遗传多样性分析数据[4],因此,了解朱顶红的遗传多样性对于朱顶红遗传育种具有重要意义。已有研究表明:简单序列重复技术(ISSR)[6−7]已经成功应用于朱顶红种质资源遗传关系分析和品种鉴定,但这并不能完全反映朱顶红遗传多样性。2009年COLLARD等[8]新开发的基于植物基因组起始密码子ATG侧翼序列的保守性,设计单引物对目的基因进行扩增的新型分子标记技术——目标起始密码子多态性分子标记(start codon targeted polymorphism, SCoT)。ISSR引物扩增介于反向重复序列位点间的序列[9],部分序列存在无法扩增的现象。与ISSR标记相比,SCoT标记单引物与ATG结合后扩增目的基因或其附近DNA序列[10],有更为广阔的DNA扩增范围,其实验结果更具有可靠性。目前,SCoT标记已经成功应用于花生Arachis[11]、茶树Camellia sinensis[12−13]、栀子Gardenia jasminoides[14]、油菜Brassica rapa[15]、石蒜属Lycoris[16]、猕猴桃Actinidia[17]、铁皮石斛Dendrobium officinale[18]等植物遗传多样性、亲缘关系分析和变异鉴定以及基因变异表达等方面。为了更进一步分析更多朱顶红品种间的遗传多样性和亲缘关系,本研究利用建立的SCoT标记体系对朱顶红品种进行遗传多样性和亲缘关系分析,旨在了解朱顶红在分子水平上的遗传变异,为朱顶红杂交育种、种质资源保护和利用提供理论依据和技术基础。 -
植物材料朱顶红采自浙江农林大学遗传学科朱顶红植物种质资源圃,共计41个朱顶红品种(表1)。于2019年4月采集朱顶红花瓣,液氮冷冻并于−80 ℃冰箱保存备用。本研究所用引物是根据COLLARD等[8]设计的SCoT引物。
表 1 41个朱顶红品种性状描述
Table 1. Character description of 41 H. rutilum cultivars used in this stduy
品种编号 品种名 性状描述 花色 品种编号 品种名 性状描述 花色 1 ‘阿弗雷’‘Alfresco’ 重瓣 白NN155-D 22 ‘奇迹’‘A Miracle 单瓣 红46-A 2 ‘爱神’‘Aphrodite’ 重瓣 白NN155-D 23 ‘奇妙仙子’‘Tinker Bell’ 单瓣 红41-D,白NN155-D 3 ‘冰后’‘Ice Queen’ 重瓣 白NN155-D 24 ‘瑞贝卡’‘Rebecca’ 单瓣 红紫73-C,白NN155-D 4 ‘焦点’‘Spotlight’ 单瓣 白NN155-D,红53-B 25 ‘世外桃源’‘Paradise’ 单瓣 红紫73-A,白NN155-D 5 ‘粉色惊奇’‘Pink Surprise’ 单瓣 红54-A 26 ‘欲望’‘Desire’ 单瓣 红41-C 6 ‘鬼魅’‘Joker’ 重瓣 橙红N30-A 27 ‘珍妮小姐’‘Lady Jane’ 单瓣 红47-A,红56-A 7 ‘黑天鹅’‘Royal Velvet’ 重瓣 红53-A 28 ‘婚礼舞曲’‘Wedding Dance’ 单瓣 白NN155-A 8 ‘快车’‘The Express’ 单瓣 橙红N34-A 29 ‘托斯卡’‘Tosca’ 单瓣 红紫58-B 9 ‘哈库’‘Haku’ 单瓣 红54-B 30 ‘双梦’‘Double Dream’ 重瓣 红54-A 10 ‘露天’‘Alfresco’ 重瓣 白NN155-D 31 ‘红狮’‘Red Lion’ 单瓣 红41-A 11 ‘红宝石之星’‘Star of Ruby’ 单瓣 橙红N34-A,黄绿145-D 32 ‘千禧蛋’‘Millennium Egg’ 单瓣 白155-A 12 ‘红唇’‘Tres Chic’ 单瓣 红42-A,黄2-D 33 ‘焰火’‘Fireworks’ 单瓣 橙红34-A 13 ‘红娘’‘Matdhmaker’ 重瓣 红42-A,黄2-D 34 ‘马格’‘Magné’ 单瓣 红47-A 14 ‘侯爵’‘Marquis’ 重瓣 白NN155-D 35 ‘世界和平’‘World Peace’ 单瓣 红50-A 15 ‘花瓶’‘Gervase’ 单瓣 红50-B 36 ‘北极女神’‘Arctic Nymph’ 重瓣 白NN155-B 16 ‘滑稽演员’‘Harlequin’ 重瓣 白NN155-D 37 ‘首映’‘Premiere’ 单瓣 灰红182-A 17 ‘黄金岁月’‘Golden Years’ 重瓣 红46-A 38 ‘圣诞快乐’‘Merry Christmans’ 重瓣 白NN155-C,红45-A 18 ‘甜蜜妮芙’‘Sweet Nymph’ 重瓣 红45-C 39 ‘清晨阳光’‘Morning Light’ 单瓣 白NN155-D,红紫58-B 19 ‘玫瑰花样’‘Rose Petal’ 重瓣 白NN155-D 40 ‘超级黛丝’‘Giantama Deus’ 重瓣 白NN155-D,红54-C 20 ‘绣球’‘Hydrangea’ 单瓣 白NN155-D 41 ‘迷雾’‘Misty’ 单瓣 黄4-C,红46-A 21 ‘迎春’‘Jasminum Nudiflorum’ 重瓣 橙红N34-A,白NN155-C 说明:表中大写字母表示不同的色系代码 -
采用改良 CTAB法[19]提取朱顶红花瓣基因组DNA,采用微量核酸测定仪(Nanodrop 2000)测定DNA的浓度和质量,并通过质量分数为1.0%的琼脂糖凝胶电泳检测,检测合格的DNA样品于−20 ℃冰箱保存备用。
-
为获得朱顶红SCoT-PCR反应的最佳体系,参考姜小凤[20]和潘媛等[14]报道的SCoT扩增反应条件,通过对PCR反应五要素(模板、引物、MgCl2、dNTPs、rTaqDNA聚合酶)进行5因素4水平正交实验(
$L^4_5 $ ,表2~3)。PCR扩增反应体系为20 μL,PCR扩增反应程序为:94 ℃预变性5 min,94 ℃变性35 s,退火35 s,72 ℃复性90 s,35个循环;72 ℃延伸10 min,16 ℃保存。PCR扩增产物进行质量分数为1.0%琼脂糖凝胶电泳。表 2
${{L}}^4_5 $ 正交实验因素及水平Table 2.
$L^4_5 $ factors and levers of orthogonal design水平因素 引物/(μmol·L−1) MgCl2/(mmol·L−1) DNA/ng dNTPs/(mmol·L−1) rTaq/(×16.67 nkat) 1 0.1 1.5 30 0.1 0.50 2 0.2 2.0 40 0.2 0.75 3 0.3 2.5 50 0.3 1.00 4 0.4 3.0 60 0.4 1.25 表 3 朱顶红SCoT-PCR正交试验体系筛选
Table 3. Screening of orthogonal systems
处理
编号模板
DNA/ng引物/
(μmol·L−1)Mg2+/
(mmol·L−1)dNTPs/
(mmol·L−1)rTaq/
(×16.67 nkat)处理
编号模板
DNA/ng引物/
(μmol·L−1)Mg2+/
(mmol·L−1)dNTPs/
(mmol·L−1)rTaq/
(×16.67 nkat)1 30 0.1 1.5 0.1 0.50 9 50 0.4 1.5 0.3 0.75 2 30 0.2 2.0 0.2 0.75 10 50 0.3 2.0 0.1 0.50 3 30 0.3 2.5 0.3 1.00 11 50 0.2 2.5 0.4 1.25 4 30 0.4 3.0 0.4 1.25 12 50 0.1 3.0 0.2 1.00 5 40 0.3 1.5 0.2 1.25 13 60 0.2 1.5 0.4 1.00 6 40 0.4 2.0 0.1 1.00 14 60 0.1 2.0 0.3 1.25 7 40 0.1 2.5 0.4 0.75 15 60 0.4 2.5 0.2 0.50 8 40 0.2 3.0 0.3 0.50 16 60 0.3 3.0 0.1 0.75 -
参照COLLARD等[8]设计SCoT引物,并由南京金斯瑞生物技术有限公司合成。引物筛选先利用1个样品对55条SCoT引物进行初步筛选,选择条带清晰的引物,再利用性状差异较大的3个朱顶红样品进行复筛,选择条带清晰、具多态性条带的引物进行后续41份朱顶红样品的SCoT-PCR扩增。SCoT-PCR扩增反应程序为:94 ℃预变性5 min,94 ℃变性35 s,退火35 s,72 ℃复性90 s,36个循环,72 ℃延伸10 min,16 ℃保存。PCR扩增产物用质量分数为1.0%琼脂糖凝胶电泳检测。
-
由于引物与DNA结合点可由琼脂糖凝胶电泳图谱的条带表示,因此,PCR电泳图中的每个条带就是1个位点。在数据统计时,记录重复的DNA电泳条带峰同一引物的扩增产物,迁移率相同的条带记为“1”,没有条带记为“0”,并建立矩阵,只记录易于辨认的条带,排除模糊不清的条带。利用Excel计算多态性条带百分比(percentage of bands,PPB)。根据“1,0”矩阵并使用NTSYspc软件计算遗传距离和遗传相似系数,依据SHAN程序按照非加权配对算术平均法(UPGMA)法构建朱顶红样品间的聚类图。
-
采用改良CTAB法提取朱顶红基因组DNA,经质量分数为1.0%琼脂糖凝胶电泳检测,各泳道朱顶红基因组DNA条带清晰、亮度好(图1),点样孔附近无杂质残留,表明提取DNA完好,降解少;使用微量核酸测定仪检测DNA质量浓度与纯度,吸光度值D(260)/D(280)为1.88~2.00,表明提取的朱顶红基因组DNA纯度较高,杂质较少;经测定朱顶红DNA质量浓度为80.0~896.2 mg·L−1,可满足后续实验要求。
-
通过5因素4水平(
$L^4_5 $ )正交试验设计(表3),采用SCoT引物P55对朱顶红样品‘黑天鹅’DNA进行PCR扩增,结果发现:5号、9号、10号、14号、15号和16号处理,无扩增条带或条带模糊,可能是由于dNTPs用量过少而导致的。1号处理条带清晰,但条带数量少;12号处理条带清晰、数目多但有非特异性条带发生;7号处理由于条带清晰、数量多且没有非特异性条带的扩增(图2),因此,综合扩增条带与正交体系筛选分析,朱顶红SCoT-PCR扩增条带清晰且多态性良好的最佳反应体系为7号处理(20 μL):DNA 40 ng,引物 0.1 μmol·L−1;MgCl2 2.0 mmol·L−1,dNTPs 0.4 mmol·L−1和rTaq DNA聚合酶0.75 U (1 U =16.67 nkat)。 -
利用建立的SCoT体系从55条SCoT引物初筛出32条条带多且清晰的引物(图3),再用3个花色差异较大的朱顶红样品(‘婚礼舞曲’‘红狮’‘迷雾’)对32条SCoT引物进行复筛(图4),最终筛选到12条条带清晰且多态性良好的SCoT引物,用于后续41份朱顶红样品SCoT- PCR扩增。
-
利用12条引物对41个朱顶红品种的DNA进行PCR扩增,产物分布在 200~3 000 bp,共扩增出89条清晰的条带,每条引物扩增的条带数为5~11条,其中,P56扩增条带数最多,可达11条,多态性条带11条;P5扩增条带数最少为5条,多态性条带4条,平均每条引物扩增条带为7.42条。多态性条带合计77条,平均每条引物可扩增出的多态性位点为6.42条,多态性比率为86.52%。多态性最高的引物是P32、P40和P56均达100%;而引物P12的多态性最低,仅有60%(表4)。以上结果表明:SCoT分子标记适用于朱顶红的多态性位点的检测,便于朱顶红品种间的遗传多样性的分析。
表 4 SCoT标记引物扩增结果
Table 4. Amplification results of SCoT marker primers
引物编号 引物序列 扩增条带数 多态性条带数 多态性比率/% P5 CAACAATGGCTACCACGA 5 4 80.00 P12 ACGACATGGCGACCAACG 5 3 60.00 P13 ACGACATGGCGACCATCG 9 7 77.78 P32 CCATGGCTACCACCGCAC 10 10 100.00 P40 CCATGGCTACCACCGCCG 5 5 100.00 P41 AACCATGGCTACCACCGA 6 5 83.33 P43 AACCATGGCTACCACCGG 7 7 100.00 P54 ACAATGGCTACCACCAGC 5 4 80.00 P55 ACAATGGCTACCACCAGG 8 6 75.00 P56 ACAATGGCTACCACCAGA 11 11 100.00 P57 ACAATGGCTACCACCAGT 9 7 77.78 P61 ACCATGGCTACCACCGAG 9 8 88.89 平均 7.42 6.42 86.52 合计 89 77 86.52 -
根据12条多态性良好的SCoT引物对41份朱顶红样品的扩增结果,使用NTSYspc软件计算品种遗传相似系数。41份朱顶红品种间共获得861个相似系数组成相似性矩阵,41份朱顶红样材料两两之间的相似系数为0.292 3~0.833 3,平均为0.498 4。其中,2号‘爱神’和3号‘冰后’相似系数最大(0.833 3),表明两者之间亲缘关系较近;23号‘奇妙仙子’和41号‘迷雾’相似系数最小(0.292 3),表明两者之间亲缘关系较远,相差较大。
同时,对41份朱顶红品种的遗传相似系数进行统计分析,以0.054 1为间距,分成10组,分析基因相似系数的频数条形图(图5)。大部分朱顶红品种种间相似度集中在0.400 7~0.563 2,数目为524个,所占比例为63.91%;剩下的基因相似系数在两侧呈不对称分布。表明朱顶红不同品种之间存在明显差异,具有丰富的遗传多样性。对相似性最高的10对品种的瓣型花色进行比对可以发现:相似性高的品种间瓣型具有高度的一致性(100%),而花色的一致性较低(40%),说明朱顶红在花色方面的遗传多样性更为丰富。
-
利用NTSYS 2.1软件中的非加权配对算术平均法(UPGMA)对41份朱顶红品种进行聚类分析,构建分子系统树(图6)。由图6可知:在遗传相似系数的0.42处可以将41份朱顶红品种划分为2个大类,说明这2个类群之间有较为明显的差异。第Ⅰ大类有34个品种,既有重瓣品种又有单瓣品种,第Ⅰ大类又分为4个小类,其中Ⅰa类中,白色的2号‘爱神’和3号‘冰后’聚在一起,橙红色6号‘鬼魅’、8号‘快车’和红色的7号‘黑天鹅’聚在一起;Ⅰb小类多为红色系列,而且还有多个由白色和红色形成的复色花,如4号‘焦点’、24号‘瑞贝卡’、25号‘世外桃源’和13号‘红唇’;Ⅰc小类多为红色繁殖类,其中白色的可能是品种变异的结果;Ⅰd小类中单瓣、白色的20号‘绣球’和红色的22号‘奇迹’是重瓣、橙红和白色组成的复色花(21号‘迎春’)的可能亲本;第Ⅱ大类品种较为简单,包括35号‘世界和平’、36号‘北极女神’、37号‘首映’、38号‘圣诞快乐’、39号‘清晨阳光’、40号‘超级黛丝’、41号‘迷雾’在内的7个品种(系),除36号‘北极女神’和37号‘首映’为重瓣外,均为单瓣,且多为复色花。
-
朱顶红是国际市场上常用的观赏植物,其种间杂交育种技术极大地丰富了朱顶红品种(系),具有较高的经济价值。但目前,朱顶红品种改良和选育主要以传统的杂交育种方式为主,从自然杂交、人工杂交的后代中分离优良性状单株,通过2~3 α培育后鉴定花瓣性状、花色等形态学特征,性状不同于亲本且具有稳定遗传性状的被认定为新品种。此类育种方法工作年限长且进展缓慢,无法区分真假杂交种,有极大可能面临育种失败的风险。
近年发展起来的SCoT分子标记技术兼具操作简单、多态性高、遗传信息丰富、成本低和引物通用性强等特点[21],是一种分析物种遗传多样性和亲缘关系有效的分子标记辅助育种技术,为植物种质鉴定和指纹图谱构建等研究提供了新的技术手段;它可以排除外界环境带来的表观遗传变化,从基因组水平真实反映材料的遗传基础与特征,从而快速判断是否为新品种,极大地缩短育种年限,降低育种成本。SCoT标记技术已应用于园林植物育种中,如玫瑰Rosa rugosa杂交种后代早期选择、遗传多样性和亲缘关系分析等方面[21]。本研究应用12条SCoT引物对41份朱顶红品种进行PCR扩增后均检测到清晰的条带,平均多态性条带比率高达86.52%,品种间遗传相似系数为0.292 3~0.834 3,与利用ISSR分子标记检测61份朱顶红品种间(遗传相似系数为0.371 4~0.842 9)[6−7]的结果相比,本实验的朱顶红品种间的遗传范围更广泛,遗传多样性更高,可为朱顶红的新品种选育提供基础。聚类结果表明:本研究的41个朱顶红品种没有完全按照花的瓣型,而是根据遗传相似系数混合聚类,多数花色性状相似品种被聚在一起,如第Ⅱ大类多为红色和白色组成的复色花。这与张林等[6−7]利用ISSR标记对61个朱顶红品种的聚类不太一致,可能是由于SCoT标记技术是一种能跟踪性状,并获得与性状相关目的基因的新型分子标记技术;利用SCoT标记技术还可以初步判断可能的杂交亲本,如Ⅰd小类中单瓣、白色的‘绣球’(20号)和红色的‘奇迹’(22号)是重瓣,橙红和白色组成的复色花(21号‘迎春’)的可能亲本。此假设可以在后期分子水平实验中进一步验证。
本研究成功有效地利用SCoT标记技术研究了朱顶红品种间的遗传多样性和对可能亲本的鉴定。今后可从朱顶红种质资源圃中选择亲缘关系较远的可育品种作为亲本,进行品种间杂交,培育花色丰富和花型多样的朱顶红新品种,进一步改良和选育朱顶红的新品种。
Genetic diversity analysis of Hippeastrum rutilum cultivars based on SCoT markers
-
摘要:
目的 进一步从分子水平分析朱顶红Hippeastrum rutilum品种间的遗传多样性、亲缘关系和亲本鉴定。 方法 利用正交试验设计方法筛选朱顶红目标起始密码子多态性分子标记(SCoT)体系,并以41份朱顶红品种为材料对遗传多样性和亲缘关系进行分析。 结果 ①朱顶红SCoT标记最佳反应体系(20 μL):包括DNA 40 ng,引物 0.1 μmol·L−1;MgCl2 2.0 mmol·L−1,dNTPs 0.4 mmol·L−1和rTaq DNA聚合酶0.75 U (1 U=16.67 nkat)。② 12条SCoT引物从41份朱顶红品种获得77条多态性条带,平均多态性比率高达86.52%。朱顶红品种间遗传相似系数为0.292 3~0.834 3,表明41份朱顶红品种间遗传多样性较高,遗传范围广。③非加权配对算术平均法(UPGMA)聚类表明:朱顶红SCoT标记聚类与花色的相关性较大,但与瓣型相关性不大。在遗传相似系数0.420 0处将41份朱顶红品种分为两大类:第Ⅰ大类既有重瓣品种又有单瓣品种,第Ⅰ大类又分为4个小类,其中相似花色的聚为一类,Ⅰd小类中单瓣、白色的‘绣球’‘Hydrangea’(20号)和红色的‘奇迹’‘Miracle’(22号)可能是重瓣、橙红和白色组成的复色花(21号‘迎春’‘Yingchun’)的亲本;第Ⅱ大类品种多为复色花。 结论 SCoT标记技术可有效地应用于朱顶红品种间遗传多样性分析和可能亲本的鉴定。图6表4参21 Abstract:Objective The objective of this study is to further analyze the genetic diversity, genetic relationship and parental identification of Hippeastrum rutilum cultivars at molecular level. Method The SCoT marker system of H. rutilum was screened by orthogonal design method, and genetic diversity and genetic relationship of 41 cultivars were analyzed. Result (1) The optimum reaction system of SCoT markers for H. rutilum (20 μL) included DNA 40 ng, primer 0.1 μmol·L−1, MgCl2 2.0 mmol·L−1, dNTPs 0.4 mmol·L−1 and rTaq DNA polymerase 0.75 U (1 U=16.67 nkat). (2) 77 polymorphic bands were obtained from 41 H. rutilum cultivars by 12 SCoT primers, and the average polymorphic band ratio was up to 86.52%. The genetic similarity coefficient between H. rutilum cultivars was 0.292 3−0.834 3, indicating that the 41 cultivars had high genetic diversity and wide genetic range. (3)UPGMA(unweighted pair-group method with arithmetic means) cluster analysis showed that the SCoT marker clustering of H. rutilum had significant correlation with flower color, but not with the petal type. At genetic similarity coefficient of 0.420 0, the 41 cultivars were divided into two groups. The first group had both double and single petal cultivars. The first group was divided into four subgroups, among which those with similar flower colors were clustered into one group. In subgroupⅠd, the single-petal, white ‘Hydrangea’ (No. 20) and red ‘Miracle’ (No. 22) were the possible parents of double-petal, orange-red and white multicolor flowers (No. 21 ‘Yingchun’). The second group was mostly multicolor flowers. Conclusion SCoT marker technique can be effectively applied to genetic diversity analysis and identification of possible parents of H. rutilum cultivars. [Ch, 6 fig. 4 tab. 21 ref.] -
Key words:
- plant breeding /
- Hippeastrum rutilum /
- SCoT marker /
- genetic diversity /
- parental identification
-
近年来,国内绿道建设发展迅猛。目前,已有广东、浙江、河北、江苏、四川、福建、安徽、新疆等省(自治区)的众多城市开展了绿道网规划和建设工作。绿道网的规划建设行动源于对日趋严峻的城乡环境问题和对传统生态绿色空间保护政策实效的主动反思和应对,然而,在部分地区绿道建设的快速推进中也出现了绿道生态性不足,存在功能单一、基础设施缺乏、绿道特色欠缺等问题[1]。当前,亟需对已建成的绿道价值进行评价与分析,以便清晰地呈现绿道建设的综合效益,为科学规划和建设绿道提供参考和依据。国内对于绿道评价体系的研究已有一定积累,但多为对绿道某一方面的性质或功能评价,对于绿道服务价值全面系统的评价较少。研究主要集中在2个方面:一为景观资源评价,包括植物景观评价[2]和景观视觉评价等[3];二是功能评价,包括生态效益评价[4-5]、休闲游憩功能评价[6]、生态系统服务功能评价[7]、使用后评价(POE)[8-9]和社会绩效评价[10]。此外,也有学者提出了以“使用者(人)—绿道(环境)”关系为中心的区域绿道网评价体系研究假设以及研究思路,但未进行实证研究[11]。“景观绩效”是“衡量景观解决方案在实现其预设目标的同时满足可持续性方面效率的指标”[12],即基于可持续发展目标,从环境、经济、社会等3个方面对景观进行全面的绩效评价。其评价以生态系统服务为基础,补充适合景观研究内容的评价指标[13],因此更具有针对性。美国景观设计基金会(Landscape Architecture Foundation,简称 LAF)于 2010 年提出“景观绩效系列”(Landscape Performance Series,简称 LPS)研究计划,针对已建成的景观项目,形成一套依托案例调查研究(case study investigation, CSI)的开放性评价体系。当前,景观绩效研究呈现迅速增长的发展态势[13],其研究主要集中于评价指标的选取[14]、评价体系的构建[15-16]和评估方法的应用[17]等方面。国内景观绩效的研究多集中于较小尺度风景园林的建成项目[18-19],或景观绩效中某些可持续特征的部分[13,20],缺少对大尺度区域景观的研究,对建成项目从环境、经济、社会等3个方面进行全面评价的研究也较少。为此,笔者依托案例研究,尝试对浙江青山湖国家森林公园环湖绿道1期的景观绩效进行评价,以期全面评估绿道的综合价值,为绿道的设计与建设提供参考,并向社会传播绿道的综合价值。
1. 研究地概况与研究方法
1.1 研究地概况
浙江省杭州市临安区青山湖国家森林公园环湖绿道(简称“青山湖绿道”)1期,曾入选2017年“浙江省十大经典绿道”,并获2018年浙江建设工程“钱江杯”一等奖,2019年度中国风景园林学会科学技术奖一等奖。青山湖绿道位于杭州市临安区锦城镇东郊。青山湖为大型人工湖,水域开阔,湖山一体,环湖森林覆盖率79%,自然景色优美,生态环境优越。青山湖绿道沿湖而建,连接城、村、湖、山,全长42.195 km,分3期建设,于2019年7月全线贯通。本研究区段为青山湖绿道1期,长10 km,于2017年1月建成开放。
1.2 评价方法
根据中国住房与城乡建设部2016年9月编制的《绿道规划设计导则》(简称《导则》),郊野型绿道的功能包括生态环保、休闲健身、社会与文化、旅游与经济[21]。其中,生态环保作为其核心价值,体现在绿道有助于固土保水、净化空气、缓解热岛等,并为生物提供栖息地及迁徙廊道。以上功能与LPS中游径(trail,包含绿道类项目)[22]、滨水景观再开发(waterfront redevelopment)[23]等相关案例中所采用的评价指标(表1)高度吻合。另外,LPS基于可持续的发展目标,其经济评价指标还加入了节约建设成本。基于以上分析,结合青山湖绿道的实际情况,确定了本研究采用的景观绩效指标体系,包含环境、经济、社会等3个方面的17项指标(表2)。收集分析以上绩效数据,结合统计学、生态学、经济学、使用后评价等方法,进行景观绩效评价。
表 1 郊野型绿道的功能与LPS相关案例评价指标的对照表Table 1 Comparison between the function of country greenways and the evaluation indexes of LPS-related cases《绿道规划设计导则》中的郊野绿道功能 LPS相关案例采用的评价指标 生态环保 固土保水、净化空气、缓解热岛、生物提供栖息地及
迁徙廊道环境 土壤保护、水岸线保护、涵养水源、固碳释氧、空
气质量、调节气温和城市热岛效应、栖息地改善/
保护/创建/恢复旅游与经济 整合旅游资源,促进相关产业发展,提升沿线土地价值 经济 地产价值、工作岗位、旅游业收入、节约建设成本 休闲健身 提供亲近自然、游憩健身的场所和途径,倡导健康的生
活方式社会 娱乐及社会价值、文化保护、健康、教育、可达
性、景观质量社会与文化 连接城乡居民点、公共空间以及历史文化节点,保护和
利用文化遗产,促进人际交往、社会和谐与文化传承表 2 郊野型滨水绿道景观绩效指标体系Table 2 Country waterfront greenway landscape performance indicators system环境绩效 经济绩效 社会绩效 土壤保护 房产价值 文化保护 水岸线保护 工作岗位 健康 涵养水源 旅游业收入 教育价值 固碳释氧 节约建设成本 可达性 调节气温 娱乐及社会价值 景观质量 净化空气 增加物种多样性、
提高生态完整性等1.2.1 环境绩效评价方法
在LPS的案例中,环境绩效的评价多通过相应的绩效评估工具集进行计算,但由于本研究场地尺度较大,利用工具集评估所需的部分数据获取较为困难,故本研究的环境绩效评价,主要参考了欧阳志云等[24]对中国陆地生态系统服务功能进行评估时所综合运用的生态学及经济学方法。吴隽宇[8]曾采用此方法对珠江三角洲区域绿道1号线进行评估。首先确定绿道线路、类型和控制范围,再对其相应的生态系统面积进行计算。研究采用的绿道图纸由绿道的设计单位提供。《浙江省绿道规划设计技术导则》[25]规定,根据绿道所处区域和功能要求,分为城镇型绿道、乡野型绿道、山地型绿道3种类型。其中,乡野型绿道是指城镇规划建设用地范围外,依托林地、园地、湿地、水体、农田,连接风景名胜区、旅游度假区、历史文化名镇名村、农业观光区、特色乡村、农家乐等的绿道。乡野型绿道的总宽度一般不小于100 m。青山湖绿道依托青山湖国家森林公园,一面临水,一面靠山,属于该导则中的乡野型绿道。本研究将100 m作为其控制范围的宽度。以青山湖绿道1期的总体平面图为基本研究范围,将卫星图片导入Auto CAD软件,依据其控制范围的宽度,描绘其具体范围。再根据卫星图片及实地踏勘,确定绿道沿线生态系统的类型,主要包括林地、耕地、草地、湿地、水域等5种类型。根据设计单位提供的信息,在Auto CAD软件中分层描绘,并统计新增及因绿道建设而被保护的各类型生态系统的面积。在此基础上,分别计算其保持土壤、涵养水源、固碳释氧、调节气温、净化空气等方面的环境绩效。
1.2.2 经济绩效评价方法
经济绩效的评估采用市场价值法。工作岗位数据源自现场调研,旅游业收入的数据来自于对绿道周边乡村村委会的调研,节约建设成本的数据由绿道设计单位提供。
1.2.3 社会绩效评价方法
社会绩效的评估主要采用使用后评价、问卷调查等方法。在2017年3−5月、11月、2018年4月,本研究对583位场地使用者进行了现场问卷调查,其中有效问卷531份,问卷有效率91%。问卷内容根据社会绩效的相应指标设置,包括受访者对绿道的娱乐价值、文化保护、教育价值、景观质量评价,以及绿道对受访者健康的影响。
2. 结果与分析
2.1 环境绩效评价
根据彭建等[26]的经验,生态系统面积为有效林地、草地、湿地沼泽和水域面积的和,其中有效林地面积=林地面积+耕地面积×0.2(表3)。
表 3 青山湖绿道1期生态系统面积Table 3 Ecosystem area of Qingshan Lake Greenway Phase I有效林地/hm2 草地/hm2 湿地沼泽/hm2 水域/hm2 生态系统面积/hm2 针叶林 阔叶林 耕地(按0.2系数折算成林地) 1.670 13.692 0.896 7.198 17.250 0.134 40.840 2.1.1 保持土壤效益
保持土壤带来的经济价值,以林地、草地每年减少土壤侵蚀的总量为基础,计算林地、草地对表土损失、肥力损失和减轻泥沙淤积灾害3个方面的价值。(1)林地、草地每年减少的土壤侵蚀总量。潜在土壤侵蚀量是指无任何植被覆盖的情况下,土壤的最大侵蚀量。而不同植被覆盖下的土壤侵蚀量有很大差别。林地、草地减少的土壤侵蚀量=潜在土壤侵蚀量−林地、草地覆盖区土壤侵蚀量。本研究参考欧阳志云等[24]统计的侵蚀模数进行计算(表4~6)。(2)效益估算。①每年减少的土地损失面积及间接价值。根据土壤侵蚀量和土壤耕作层的平均厚度来推算土地损失面积。每年减少的土壤损失量按表5的平均值计,土壤密度以1.3 g·cm−3计,先算出每年减少的土壤损失量对应的体积。将中国耕作土壤的平均厚度0.5 m作为林地、草地的土层厚度[16],进而算出每年林地、草地减少的土地损失面积分别为0.798、0.353 hm2·a−1。单位面积的生产收益根据2014年浙江省林业、牧业生产的平均收益2 224.8和1 489.7元·hm−2·a−1计算,则每年减少的林地、草地损失的经济价值分别为1 094、2 620元·a−1。②减少土壤肥力损失的间接效益。土壤侵蚀带走了大量的土壤营养物质,主要是土壤有机质、氮、磷、钾。根据实地调查,绿道所在区域土壤主要为红黄泥土,按照临安农林信息网[27]中红黄泥土的有机质、氮、磷、钾质量分数为标准,结合每年林地、草地分别减少的土壤损失平均值,估算林地、草地每年减少的有机质、氮、磷、钾元素的损失量分别为195.10 t·a−1、9.21 t·a−1、51.51 kg·a−1、1 075.05 kg·a−1。根据浙江价格网的公示,2018年第3季度浙江省化肥市场价格的平均值约2.52元·kg−1,据此可以估算林地、草地每年减少的土壤氮、磷、钾损失的经济价值为26 044元·a−1。③减少泥沙淤积的经济效益。根据中国主要流域的泥沙运动规律,一般土壤侵蚀流失的泥沙有24%淤积于水库、江河、湖泊,另有33%滞留,37%入海[28]。本研究仅考虑淤积于水库、江河、湖泊的24%,这部分泥沙直接造成蓄水量的下降。按林地、草地每年减少的土壤损失量平均值计算蓄水损失量,再根据蓄水成本计算其价值。按水库建设需投入成本5.714元·m−3计[29],减少泥沙淤积的经济价值为7 897元·a−1。
表 4 每年林地草地的潜在土壤侵蚀量Table 4 Annual potential soil erosion of woodland and grassland侵蚀模数/(t·hm−2·a−1) 林地 草地 总潜在侵蚀量/(t·a−1) 面积/hm2 潜在侵蚀量/
(t·a−1)面积/hm2 潜在侵蚀量/
(t·hm−2·a−1)最低值 192.0 16.258 3 121.536 7.198 1 382.016 4 503.552 最高值 447.7 7 278.707 3 222.545 10 501.251 平均值 319.8 5 199.308 2 301.920 7 501.229 表 5 每年林地草地覆盖区的土壤侵蚀量Table 5 Annual soil erosion of woodland and grassland林地 草地 总侵蚀量/(t·a−1) 侵蚀模数/(t·hm−2·a−1) 面积/hm2 侵蚀量/(t·a−1) 侵蚀模数/(t·hm−2·a−1) 面积/hm2 侵蚀量/(t·a−1) 0.630 16.258 10.243 0.500 7.198 4.535 14.777 表 6 每年林地草地减少的土壤损失量Table 6 Annual reduction in soil loss of woodland and grassland林地减少的土壤损失量/(t·a−1) 草地减少的土壤损失量/(t·a−1) 总减少土壤损失量/(t·a−1) 最低值 3 111.293 最低值 1 377.481 4 488.775 最高值 7 268.464 最高值 3 218.010 10 486.474 平均值 5 189.066 平均值 2 297.386 7 486.452 综合以上,青山湖绿道1期每年保持土壤的总经济价值包括减少土壤损失面积的经济价值3 714元·a−1,减少土壤氮磷钾损失的经济价值26 044元·a−1,减少泥沙淤积的经济价值为7 897元·a−1,合计37 655元·a−1。
2.1.2 涵养水源效益
本研究采用替代工程法评估涵养水源的价值。根据浙江省杭州市临安区气象局的数据,临安多年年均降水量为1 506.0 mm。参考陈波等[30]对杭州西湖风景区绿地储水保土研究,假设降水的蒸散量为65%,则青山湖绿道1期每年截留水量为1 506.0 mm×35%×23.45 hm2=123 636.58 m3。单位库容的水库工程费用仍以5.714元·m−3计,则每年涵养水源价值为70.65万元·a−1。
2.1.3 固碳释氧效益
参考孙燕飞[31]在临安的研究,杉木Cunninghamia Lanceolata林的固碳量为2.44 t·hm−2·a−1,释氧量为6.52 t·hm−2·a−1;针阔混交林的固碳量为2.16 t·hm−2·a−1,释氧量为5.76 t·hm−2·a−1。根据温家石[32]对城市建成区所做研究,考虑到绿道的草坪修剪次数远低于城市内部,假设绿道的草坪修剪次数是后者的1/4,得出绿道草地固碳量6.68 t·hm−2·a−1,草地释氧量为11.55 t·hm−2·a−1。对于生态系统二氧化碳吸收功能经济价值的评估多采用碳税法和造林成本法[33],并取两者的平均值。国际上通常采用瑞典碳税,折合人民币1 010元·t−1,中国造林成本折合为255元·t−1[34]。对于释放氧气的价值采用工业制氧法进行评估,中国工业制氧的平均成本为400元·t−1。经计算可得青山湖绿道1期每年固碳价值为5.17万元·a−1元,释放氧气价值为6.92万元·a−1。
2.1.4 调节气温效益
根据已有研究测定[35],夏季绿地可从环境中吸收81.8 MJ·hm−2·d−1的热量,相当于189台空调机全天工作的制冷效果。室内空调机耗电0.86 kWh·h−1·台−1,电费按浙江省电费价格0.538元·kWh−1计,则绿地节约电费为2 098.7元·hm−2·d−1。按每年使用空调60 d计,则青山湖绿道1期每年调节气温所创造的价值为295.29万元·a−1。
2.1.5 净化空气效益
(1)吸收二氧化硫的价值。阔叶林对二氧化硫的吸收能力为88.65 kg·hm−2·a−1,针叶林对二氧化硫的平均吸收能力值为215.60 kg·hm−2·a−1,两者对二氧化硫的平均吸收能力为152.13 kg·hm−2·a−1,二氧化硫的治理代价为3 000元·t−1,得到吸收二氧化硫价值为0.74万元·a−1。(2)吸收氮氧化物的价值。目前,汽车尾气脱氮治理的代价是1.6万元·t−1。林地可吸收氮氧化物380 kg·hm−2·a−1,得到吸收氮氧化物价值为9.88万元·a−1。(3)滞尘价值。针叶林的滞尘能力为33.20 t·hm−2·a−1,阔叶林的滞尘能力为10.11 t·hm−2·a−1,平均为21.67 t·hm−2·a−1。削减粉尘价格为170元·t−1,则其滞尘价值为5.99万元·a−1。因此,绿道净化空气的总价值为16.61万元·a−1。
2.2 经济绩效评估
2.2.1 房产价值
绿道的建设,极大地改善了周边居民的生活环境。根据安居客网站的数据,绿道建设前的2015年11月与竣工投入使用后的2018年12月相比,紧邻绿道的房产单价增幅约27.76%,可见绿道对于房产价值提升有积极影响。
2.2.2 工作岗位和旅游业收入
绿道建成后为管理维护提供了20个就业岗位,为带动旅游业发展而提供了37个就业岗位。绿道建成后对周边如泥山湾村等乡村的农家乐、民宿等有显著促进作用。据不完全统计,该区域旅游产值增幅超过20.00%。
2.2.3 节约建设成本
回收利用场地遗留的废旧材料,如红砖、青砖、石等,节约了废旧材料外运与处理费用,以及购买等量新材料的材料费和运输费用,节约成本为23.33万元(表7)。利用原有水利废弃设施等构筑物而产生的节约费用,包括拆除、清运、处理费用,及新建相应设施的费用,合计66.75万元(表8)。
表 7 利用废旧建材产生的节约建设成本Table 7 Construction costs savings from the use of waste building materials废旧材料 工程量/ m3 外运处理总价/元 新材料单价(含材料费、运费)/元 新材料总价/元 合计节约建设成本/元 砖 4.4 132 730 3 212 3 344 卵石 16.3 489 330 5 379 5 868 景观石 233.4 2 334 810 189 054 191 388 老石板 54.0 162 603 32 562 32 724 合计 233 324 表 8 利用原有构筑物产生的节约建设成本Table 8 Construction costs savings from the use of existing structures构筑物名称 工程量/ m3 拆除、清运、处理费用/元 新建栈道基础费用/元 合计节约建设成本/元 钓鱼台 63 15 750 31 500 47 250 观星台 675 168 750 337 500 506 250 “鱼头”小品 51 12 750 25 500 38 250 青风徐来亭 101 25 250 50 500 75 750 合计 667 500 2.3 社会绩效评价
根据问卷调查统计结果,青山湖绿道在1期自开放以来,已吸引大量长期使用者,首次来绿道的人群比例较低;绿道的使用者主要来自临安本地,尽管绿道距离杭州主城区有36 km,依然吸引了不少来自杭州的游人。表9记述了社会绩效调查的结果。多数使用者认为绿道建设提升了城市形象,绿道设计体现了临安的历史文化。82.7%的受访者对绿道的骑行或步行体验表示满意。多数受访者认为绿道提升了其户外活动的参与度,近半数使用者表示绿道改变了其生活方式。在可达性方面,公共交通的可达性较差,间接导致了选择私家车出行的游人增多,在节假日游客高峰时期,交通及停车问题较为突出。10.0%的受访者表示绿道当前最突出的问题即到达绿道的路线不畅通。增设绿道附近的公交站点,是增强其可达性及缓解交通与停车压力的有效方式。作为郊野型绿道,青山湖绿道吸引游客的主要因素是其自然环境优美,而绿道设计中对于乡土材料的应用也受到了使用者的关注,57.0%的受访者表示对于可持续设计有了更深的了解。
表 9 青山湖绿道1期的景观绩效评价结果Table 9 Landscape performance evaluation results of Qingshan Lake Greenway Phase I类别 项目 指标 评价结果 环境
绩效土地 土壤保护 经济价值为3.8万元 水岸线保护 未进行评估 水 涵养水源 经济价值为70.65万元 碳及空
气质量固碳释氧 固碳价值为5.17万元,释氧价值为6.92万元 调节气温 经济价值为295.29万元 净化空气 经济价值为16.61万元 栖息地 增加物种多样性、提高
生态完整性等未进行评估 经济
绩效房产价值 绿道建设后,紧邻绿道的房产单价增幅约27.76% 工作岗位 绿道建成后管理维护提供了57个就业岗位 旅游业收入 绿道拉动了地方旅游业的发展,旅游产值增幅超过20.00% 节约建设成本 利用废旧建材节约23.33万元,利用原有构筑物设节约66.75万元 社会
绩效娱乐及社会价值 531名受访者中有82.7%对绿道骑行或步行的体验是满意的,67.0%的受访者认为绿道建设提升了城市形象,有组织的大型徒步、毅行、马拉松活动达到近1.5万余人次 文化保护 73.4%的受访者表示绿道设计体现了临安的历史文化 健康 65%的受访者表示绿道提升了其户外活动的参与度,68%的受访者来绿道活动的目的是散 步,25%选择了旅游观光,17%选择了骑行,10%选择聚会;43%的受访者表示绿道改变 了其生活方式,骑行、散步、聚会、摄影、钓鱼等活动对其生活产生了积极影响; 82%的受访者表示愿意居住在步行可达的范围内 教育价值 9%的受访者表示来此地是为了研究学习,57%的受访者表示对于可持续设计有了更深 的了解 可达性 38%的受访者开私家车到达绿道,其次为步行占30%,骑自行车或电动自行车前来的 占20%,采用公交交通者仅占11% 景观质量 82%的受访者表示由于绿道自然环境优美而选择来此 3. 结论
在环境绩效评价中,青山湖绿道1期的相应经济价值约398.44万元·a−1,其中调节气温价值为295.29万元·a−1,占总价值的74%,其次为涵养水源价值为70.65万元·a−1,占总价值的18%,净化空气价值为16.61万元·a−1,固碳释氧价值为12.09万元·a−1,保持土壤的经济价值较低,为3.80万元·a−1。
在经济绩效评价中,青山湖绿道1期充分利用废旧建材与原有构筑物,节约建设成本约90.08万元;绿道建成后提供了新的工作岗位,拉动了当地旅游业发展。
在社会绩效评价中,绿道的建设提升了城市形象,体现了临安的历史文化,提升了人们的户外活动参与度,在一定程度上改变了人们的生活方式,大多数人因自然环境优美而来到绿道,超半数受访者表示对可持续设计有了更深的了解。
本研究的郊野型滨水绿道景观绩效进行了较为全面的评价,客观、清晰地呈现了绿道建设的综合效益。青山湖绿道1期的建设投入约7 200万元,仅以环境绩效价值398.44万元·a−1计算,约18 a可获得与建设投入相当的经济价值,而其对于地区发展和市民健康的促进也将产生更大的价值。对于场地中废旧建材与原有构筑物进行充分利用,能够创造较大的经济价值。
景观绩效评价可以更全面地考察、直观地展现绿道建成的综合价值,但因绿道的规模尺度较大,沿线的自然、人文资源类型丰富,需要在绿道建设前,即结合评价指标体系进行全面的数据收集,且此过程需要延续至项目建成后的数年,才能够得到更客观且全面的评价结果。本研究也存在一定局限,其中水岸线保护、栖息地恢复等指标由于原始数据缺失而无法获取;经济绩效中,房产价值的增长未排除绿道之外的其他要素影响比例;针对健康等方面的评价可在对使用者进行问卷调查的基础上,采用更完善的研究方法,以获得更客观、准确的结果。
4. 致谢
浙江农林大学风景园林与建筑学院史琰副教授对本文写作提供帮助,谨致谢意。
-
表 1 41个朱顶红品种性状描述
Table 1. Character description of 41 H. rutilum cultivars used in this stduy
品种编号 品种名 性状描述 花色 品种编号 品种名 性状描述 花色 1 ‘阿弗雷’‘Alfresco’ 重瓣 白NN155-D 22 ‘奇迹’‘A Miracle 单瓣 红46-A 2 ‘爱神’‘Aphrodite’ 重瓣 白NN155-D 23 ‘奇妙仙子’‘Tinker Bell’ 单瓣 红41-D,白NN155-D 3 ‘冰后’‘Ice Queen’ 重瓣 白NN155-D 24 ‘瑞贝卡’‘Rebecca’ 单瓣 红紫73-C,白NN155-D 4 ‘焦点’‘Spotlight’ 单瓣 白NN155-D,红53-B 25 ‘世外桃源’‘Paradise’ 单瓣 红紫73-A,白NN155-D 5 ‘粉色惊奇’‘Pink Surprise’ 单瓣 红54-A 26 ‘欲望’‘Desire’ 单瓣 红41-C 6 ‘鬼魅’‘Joker’ 重瓣 橙红N30-A 27 ‘珍妮小姐’‘Lady Jane’ 单瓣 红47-A,红56-A 7 ‘黑天鹅’‘Royal Velvet’ 重瓣 红53-A 28 ‘婚礼舞曲’‘Wedding Dance’ 单瓣 白NN155-A 8 ‘快车’‘The Express’ 单瓣 橙红N34-A 29 ‘托斯卡’‘Tosca’ 单瓣 红紫58-B 9 ‘哈库’‘Haku’ 单瓣 红54-B 30 ‘双梦’‘Double Dream’ 重瓣 红54-A 10 ‘露天’‘Alfresco’ 重瓣 白NN155-D 31 ‘红狮’‘Red Lion’ 单瓣 红41-A 11 ‘红宝石之星’‘Star of Ruby’ 单瓣 橙红N34-A,黄绿145-D 32 ‘千禧蛋’‘Millennium Egg’ 单瓣 白155-A 12 ‘红唇’‘Tres Chic’ 单瓣 红42-A,黄2-D 33 ‘焰火’‘Fireworks’ 单瓣 橙红34-A 13 ‘红娘’‘Matdhmaker’ 重瓣 红42-A,黄2-D 34 ‘马格’‘Magné’ 单瓣 红47-A 14 ‘侯爵’‘Marquis’ 重瓣 白NN155-D 35 ‘世界和平’‘World Peace’ 单瓣 红50-A 15 ‘花瓶’‘Gervase’ 单瓣 红50-B 36 ‘北极女神’‘Arctic Nymph’ 重瓣 白NN155-B 16 ‘滑稽演员’‘Harlequin’ 重瓣 白NN155-D 37 ‘首映’‘Premiere’ 单瓣 灰红182-A 17 ‘黄金岁月’‘Golden Years’ 重瓣 红46-A 38 ‘圣诞快乐’‘Merry Christmans’ 重瓣 白NN155-C,红45-A 18 ‘甜蜜妮芙’‘Sweet Nymph’ 重瓣 红45-C 39 ‘清晨阳光’‘Morning Light’ 单瓣 白NN155-D,红紫58-B 19 ‘玫瑰花样’‘Rose Petal’ 重瓣 白NN155-D 40 ‘超级黛丝’‘Giantama Deus’ 重瓣 白NN155-D,红54-C 20 ‘绣球’‘Hydrangea’ 单瓣 白NN155-D 41 ‘迷雾’‘Misty’ 单瓣 黄4-C,红46-A 21 ‘迎春’‘Jasminum Nudiflorum’ 重瓣 橙红N34-A,白NN155-C 说明:表中大写字母表示不同的色系代码 表 2
${{L}}^4_5 $ 正交实验因素及水平Table 2.
$L^4_5 $ factors and levers of orthogonal design水平因素 引物/(μmol·L−1) MgCl2/(mmol·L−1) DNA/ng dNTPs/(mmol·L−1) rTaq/(×16.67 nkat) 1 0.1 1.5 30 0.1 0.50 2 0.2 2.0 40 0.2 0.75 3 0.3 2.5 50 0.3 1.00 4 0.4 3.0 60 0.4 1.25 表 3 朱顶红SCoT-PCR正交试验体系筛选
Table 3. Screening of orthogonal systems
处理
编号模板
DNA/ng引物/
(μmol·L−1)Mg2+/
(mmol·L−1)dNTPs/
(mmol·L−1)rTaq/
(×16.67 nkat)处理
编号模板
DNA/ng引物/
(μmol·L−1)Mg2+/
(mmol·L−1)dNTPs/
(mmol·L−1)rTaq/
(×16.67 nkat)1 30 0.1 1.5 0.1 0.50 9 50 0.4 1.5 0.3 0.75 2 30 0.2 2.0 0.2 0.75 10 50 0.3 2.0 0.1 0.50 3 30 0.3 2.5 0.3 1.00 11 50 0.2 2.5 0.4 1.25 4 30 0.4 3.0 0.4 1.25 12 50 0.1 3.0 0.2 1.00 5 40 0.3 1.5 0.2 1.25 13 60 0.2 1.5 0.4 1.00 6 40 0.4 2.0 0.1 1.00 14 60 0.1 2.0 0.3 1.25 7 40 0.1 2.5 0.4 0.75 15 60 0.4 2.5 0.2 0.50 8 40 0.2 3.0 0.3 0.50 16 60 0.3 3.0 0.1 0.75 表 4 SCoT标记引物扩增结果
Table 4. Amplification results of SCoT marker primers
引物编号 引物序列 扩增条带数 多态性条带数 多态性比率/% P5 CAACAATGGCTACCACGA 5 4 80.00 P12 ACGACATGGCGACCAACG 5 3 60.00 P13 ACGACATGGCGACCATCG 9 7 77.78 P32 CCATGGCTACCACCGCAC 10 10 100.00 P40 CCATGGCTACCACCGCCG 5 5 100.00 P41 AACCATGGCTACCACCGA 6 5 83.33 P43 AACCATGGCTACCACCGG 7 7 100.00 P54 ACAATGGCTACCACCAGC 5 4 80.00 P55 ACAATGGCTACCACCAGG 8 6 75.00 P56 ACAATGGCTACCACCAGA 11 11 100.00 P57 ACAATGGCTACCACCAGT 9 7 77.78 P61 ACCATGGCTACCACCGAG 9 8 88.89 平均 7.42 6.42 86.52 合计 89 77 86.52 -
[1] 北京林业大学园林学院花卉教研室. 花卉学[M]. 北京: 中国林业出版社, 2009. [2] 王凤祥. 朱顶红[M]. 北京: 中国林业出版社, 2002. [3] 马慧, 王琪, 袁燕波, 等. 朱顶红属植物种质资源及园林应用[J]. 世界林业研究, 2012, 25(4): 28 − 33. MA Hui, WANG Qi, YUAN Yanbo, et al. Germplasm resources of Hippeastrum spp. and their application to landscaping [J]. World For Res, 2012, 25(4): 28 − 33. [4] 原雅玲, 张延龙. 我国朱顶红生产现状及发展策略[C]//中国园艺学会. 中国园艺学会球根花卉分会2008年年会暨球根花卉产业发展研讨会论文集. 北京: 中国园艺学会, 2008: 193 − 196. [5] MEEROW A W, BROSCHAT T K, KANE M E. Breeding of new Hippeastrum cultivars using diploid species [J]. Acta Hortic, 2015, 325(9): 583 − 589. [6] 张林, 徐迎春, 成海钟, 等. 基于ISSR标记的62个朱顶红品种的遗传关系分析及指纹图谱构建[J]. 植物资源与环境学报, 2012, 21(4): 48 − 54. ZHANG Lin, XU Yingchun, CHENG Haizhong, et al. Genetic relationship analysis and fingerprint construction of 62 cultivars of Hippeastrum spp. based on ISSR marker [J]. J Plant Res Environ, 2012, 21(4): 48 − 54. [7] 张林. 基于形态性状和ISSR标记的朱顶红品种遗传多样性分析及ISSR指纹图谱构建[D]. 南京: 南京农业大学, 2012. ZHANG Lin. Genetic Diversity Analysis and ISSR Fingerprint Construction of Hippeastrum Based on Morphological Characters and ISSR Markers[D]. Nanjing: Nanjing Agricultural University, 2012. [8] COLLARD B C Y, MACKILL D J. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants [J]. Plant Mol Biol Rep, 2009, 27: 86 − 93. [9] 龙治坚, 范理璋, 徐刚, 等. SCoT分子标记在植物研究中的应用进展[J]. 植物遗传资源学报, 2015, 16(2): 336 − 343. LONG Zhijiang, FAN Lizhang, XU Gang, et al. Application advance of SCoT molecular markers in plants [J]. J Plant Gen Resour, 2015, 16(2): 336 − 343. [10] 张俊丽. 扇脉杓兰遗传多样性的SCoT分析及扇脉组的亲缘地理学研究[D]. 上海: 华东师范大学, 2016. ZHANG Junli. Genetic Diversity of Cypripedium japonicum Thunb. with SCoT Analysis and the Phylogeography Study of Set. Flabellinervia[D]. Shanghai: East China Normal University, 2016. [11] 熊发前, 蒋菁, 钟瑞春, 等. 目标起始密码子多态性(SCoT)分子标记技术在花生属中的应用[J]. 作物学报, 2010, 36(12): 2055 − 2061. XIONG Faqiang, JIANG Jing, ZHONG Ruichun, et al. Application of SCoT molecular marker in genus Arachis [J]. Acta Agron Sin, 2010, 36(12): 2055 − 2061. [12] 林伟东, 陈志丹, 孙威江, 等. 基于SCoT标记的福建茶树品种(系)遗传多样性分析[J]. 茶叶科学, 2018, 38(1): 43 − 57. LIN Weidong, CHEN Zhidan, SUN Weijiang, et al. Analysis of genetic diversity of fujian tea varieties by SCoT markers [J]. J Tea Sci, 2018, 38(1): 43 − 57. [13] 王令, 李佼, 席彦军, 等. 基于SCoT标记的陕西茶树种质资源遗传多样性分析[J]. 西北农业学报, 2018, 27(2): 244 − 252. WANG Ling, LI Jiao, XI Yanjun, et al. Analysis on genetic diversity of tea germplasm in Shaanxi based on SCoT markers [J]. Acta Agric Boreali-occident Sin, 2018, 27(2): 244 − 252. [14] 潘媛, 陈大霞, 宋旭红, 等. 基于SCoT标记的栽培栀子种质资源遗传多样性研究[J]. 中草药, 2018, 49(14): 3376 − 3381. PAN Yuan, CHEN Daxia, SONG Xuhong, et al. Genetic diversity of cultivated Gardenia jasminoides germplasms detected by SCoT markers [J]. Chin Tradit Herbal Drug, 2018, 49(14): 3376 − 3381. [15] 卓么草, 郭文文, 杨广环, 等. 基于SCoT标记分析西藏白菜型黄籽油菜遗传多样性[J]. 中国油料作物学报, 2018, 40(4): 486 − 491. ZHUO Mecao, GUO Wenwen, YANG Guanghuan, et al. Genetic diversity of Tibet yellow seed rape based on SCoT markers [J]. Chin J Oil Crop Sci, 2018, 40(4): 486 − 491. [16] GAO Yanhui, ZHU YuQiu, TONG Zaikang, et al. Analysis of genetic diversity and relationships among genus Lycoris based on start codon targeted (SCoT) marker [J]. Biochem Syst Ecol, 2014, 57: 221 − 226. [17] 陈伯伦, 张晋, 黄继魁, 等. SCoT分子标记在猕猴桃遗传多样性分析与变异鉴定上的应用[J]. 农业生物技术学报, 2018, 26(1): 77 − 86. CHEN Bolun, ZHANG Jin, HUANG Jikui, et al. Application of SCoT markers on genetic diversity analysis and variation identification of Actinidia [J]. J Agric Biotechnol, 2018, 26(1): 77 − 86. [18] 李东宾, 高燕会, 斯金平. 冷胁迫下铁皮石斛抗寒相关基因的SCoT差异表达分析[J]. 中国中药杂志, 2013, 38(4): 511 − 515. LI Dongbin, GAO Yanhui, SI Jinping. SCoT differential expression of cold resistance related genes in Dendrobium officinale under low temperature stress [J]. China J Chin Mater Med, 2013, 38(4): 511 − 515. [19] 王关林, 方宏筠. 植物基因工程[M]. 2版. 北京: 科学出版社, 2002. [20] 姜小凤. 石蒜属植物杂交育种技术的研究[D]. 杭州: 浙江农林大学, 2013. JIANFG Xiaofeng. Research of Cross-breeding of Lycoris[D]. Hangzhou: Zhejiang A&F University, 2013. [21] 王玉, 于晓艳, 丰震, 等. 玫瑰自然杂交后代数量分类及SCoT标记研究[J]. 园艺学报, 2015, 42(2): 1195 − 1204. WANG Yu, YU Xiaoyan, FENG Zhen, et al. Studies on numerical taxonomy and SCoT marker of rose natural hybrids [J]. Acta Hortic Sin, 2015, 42(2): 1195 − 1204. 期刊类型引用(4)
1. 李凡. 基于环境成本视角的流域生态补偿核算研究. 财会通讯. 2024(19): 100-103+165 . 百度学术
2. 吕跃东,朱万才,张妍妍. 基于WebGIS的林区森林资源地理信息系统设计. 现代电子技术. 2023(19): 171-174 . 百度学术
3. 张心语,郭诗韵,王亚萍,刘宪钊,贺丹,徐恩凯,曹洋,雷雅凯. 雄安新区森林生态系统服务功能价值评估及其空间分析研究. 河南农业大学学报. 2022(04): 661-673+684 . 百度学术
4. 郑文松. 对森林资源价值绿色核算的思考. 中南林业调查规划. 2022(04): 5-8+23 . 百度学术
其他类型引用(1)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190614