-
高等植物成花受到自身遗传因素和外界环境因素的共同影响[1-2]。当植物完成成花诱导,花器官原基开始分化,逐渐形成花萼、花瓣、雄蕊和心皮等组织。在这期间,植物的茎尖分生组织形态发生了很大的变化,同时成花素FT(FLOWERING LOCUS T)的表达量显著增加并参与调控花芽分化[3]。在模式植物拟南芥Arabidopsis thaliana以及许多物种中已经证实,FT可以通过激活花芽分化组织特异性基因AP1(APETALA1)的表达促使植物完成开花进程[4]。过表达AP1基因,不论在长、短日照下拟南芥都会出现早花表型[5],其突变体ap1则出现明显的晚花表型[6]。在茎尖分生组织,AP1基因不仅在植物成花诱导的调控网络中起核心作用,而且也决定花器官的形成。AP1基因是植物ABCDE分化模型中的A类基因,控制第一轮花萼和第二轮花被片组织的形成[7],同时AP1也调控SEP3(SEPALLATA3)与LFY(LEAFY)基因的表达,促进花萼和花瓣的分化[8-9]。另外在拟南芥ap1突变体研究中发现,AP1突变会引起花器官的异常发育,如花萼发育成叶片、花瓣缺失等[10-11]。人们已从多种观赏植物中分离得到了AP1基因,并且对多个物种的AP1基因进行了功能验证和分析。超表达AP1及其同源基因都能促进开花,在拟南芥中异源表达百合Lilium longiflorum,蝴蝶兰Phalaenopsis aphrodite以及山茶Camellia japonica的AP1同源基因都能引起早花现象[12-14]。同时,在拟南芥AP1突变体中异源表达百合,枇杷Eriobotrya japonica以及麻疯树Jatropha curcas中的AP1基因,都可以回补其突变体花器官缺陷的性状[12, 15-16]。桂花Osmanthus fragrans是中国十大传统名花之一,也是常见的园林绿化树种。按照开花习性不同,可分为秋桂和四季桂,秋桂仅在每年秋季开花,花序常为无总梗的聚伞花序[17];关于其成花过程以及花芽分化和发育报道较少。木本植物桂花成花的机制与草本植物拟南芥等有一定差异。为深入了解桂花的成花机制,有必要分离成花相关基因并展开相关研究。本研究以秋桂品种‘堰虹桂’Osmanthus fragrans ‘Yanhonggui’为材料,克隆桂花AP1基因(OfAP1),并对其序列进行生物信息学分析,同时运用荧光定量对其组织和时空表达进行分析,以明确OfAP1基因的基本特征和表达模式,为今后桂花的开花分子机理研究提供科学依据。
cDNA cloning and expression analysis of OfAP1 in Osmanthus fragrans
-
摘要: AP1(APETALA1)基因在植物花分生组织及花器官形成过程中发挥着重要作用。以桂花品种‘堰虹桂’Osmanthus fragrans‘Yanhonggui’为材料,根据前期获得的转录组数据中AP1的序列设计引物,利用PCR技术,克隆得到约750 bp桂花AP1 cDNA序列,即OfAP1基因,其中开放阅读框长为720 bp(注册号为MH593222)。氨基酸序列比对发现,与其他物种的AP1基因的同源性高达69%~88%。荧光定量PCR结果表明:在不同组织中,桂花的OfAP1基因在花芽中的表达量显著高于其他组织,根中几乎不表达;在花芽分化过程中,OfAP1在成花转变及花芽分化初期(花瓣、花萼分化期)表达量较高,随后呈下降趋势。这说明OfAP1具有组织表达特异性,同时在桂花成花转变、花芽分化和发育中有重要作用。Abstract: Osmanthus fragrans is one of the top ten traditional flowers and a common landscaping tree in China. To better understand the function of AP1 in regulation of Osmanthus flowering, the OfAP1 gene was cloned from the Osmanthus cultivator 'Yanhonggui', and its function was analyzed through bioinformatics method and real time PCR. Our results showed that the cDNA length of OfAP1 was 750 bp (GenBank accession No. MH593222), in which the Open Reading Frame length was 720 bp, the amino acid was 239. The OfAP1 sequence alignment revealed high homology with other species ranging from 69% to 88%. Additionally, expression profiles showed that the expression of OfAP1 in flower buds was much higher than that in other tissues (root, stem, leaf, leaf bud and flower), and the expression was barely expressed in roots. During the development of flower bud, the OfAP1 showed higher expression in S1 (calyx and petal differentiation) stage than other stages. Thus, these results suggested that OfAP1 had a tissue specific expression and played an important role in flowering transformation, flower bud differentiation, and development of O. fragrans. And the results of OfAP1 can lay a foundation for further study of the molecular mechanism of O. fragrans.
-
Key words:
- forest tree breeding /
- Osmanthus fragrans /
- AP1 /
- gene cloning /
- expression analysis /
- flower bud development
-
[1] 周玉萍, 陈琼华, 黄小玲, 等.拟南芥开花时间调控的分子基础[J].植物学报, 2014, 49(4):469-482. ZHOU Yuping, CHEN Qionghua, HUANG Xiaoling, et al. Molecular basis of flowering time regulation in Arabidopsis[J]. Chin Bull Bot, 2014, 49(4):469-482. [2] FORNARA F, de MONTAIGU A, COUPLAND G. SnapShot:control of flowering in Arabidopsis[J]. Cell, 2010, 141(3):550-550. [3] HUANG T, BÖHLENIUS H, ERIKSSON S, et al. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering[J]. Science, 2005, 309(5741):1694-1696. [4] LIU Lu, ZHU Yang, SHEN Lisha, et al. Emerging insights into florigen transport[J]. Curr Opin Plant Biol, 2013, 16(5):607-613. [5] MANDEL M A, YANOFSKY M F. A gene triggering flower formation in Arabidopsis[J]. Nature, 1995, 377(6549):522. [6] PUTTERILL J, LAURIE R, MACKNIGHT R. It's time to flower:the genetic control of flowering time[J]. Bioessays, 2004, 26(4):363-373. [7] MANDEL M A, GUSTAFSON-BROWN C, SAVIDGE B, et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1[J]. Nature, 1992, 360(6401):273. [8] 戚晓利, 卢孟柱.拟南芥APETALA1基因在花发育中的网络调控及其生物学功能[J].中国农学通报, 2011, 27(8):103-107. QI Xiaoli, LU Mengzhu. Regulation network and biological roles of APETALA1 of Arabidopsis thaliana in flower development[J]. Chin Agric Sci Bull, 2011, 27(8):103-107. [9] KAUFMANN K, WELLMER F, MUINO J M, et al. Orchestration of floral initiation by APETALA1[J]. Science, 2010, 328(5974):85-89. [10] IRISH V F, SUSSEX I M. Function of the APETALA1 gene during Arabidopsis floral development[J]. Plant Cell, 1990, 2(8):741-753. [11] BOWMAN J L, ALVAREZ J, WEIGEL D, et al. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes[J]. Development, 1993, 119(3):721-743. [12] CHEN Mingkun, LIN Ichun, YANG Changhsien. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation[J]. Plant Cell Physiol, 2008, 49(5):704-717. [13] LIU Yuexue, KONG Jin, LI Tianzhong, et al. Isolation and characterization of an APETALA1-like gene from pear (Pyrus pyrifolia)[J]. Plant Mol Biol Rep, 2013, 31(4):1031-1039. [14] SUN Yingkun, FAN Zhengqi, LI Xinlei, et al. The APETALA1 and FRUITFUL homologs in Camellia japonica and their roles in double flower domestication[J]. Mol Breed, 2014, 33(4):821-834. [15] LIU Yuexue, SONG Huwei, LIU Zongli, et al. Molecular characterization of loquat EjAP1 gene in relation to flowering[J]. Plant Growth Regulation, 2013, 70(3):287-296. [16] TANG Mingyong, TAO Yanbin, XU Zengfu. Ectopic expression of Jatropha curcas APETALA1(JcAP1) caused early flowering in Arabidopsis, but not in Jatropha[J]. Peer J, 2016, 4:e1969. doi:10.7717/peerj.1969. [17] 向其柏, 刘玉莲.中国桂花品种图志[M].浙江:浙江科学技术出版社, 2008:56. [18] 王英, 张超, 付建新, 等.桂花花芽分化和花开放研究进展[J].浙江农林大学学报, 2016, 33(2):340-347. WANG Ying, ZHANG Chao, FU Jianxin, et al. Progress on flower bud differentiation and flower opening in Osmanthus fragrans[J]. J Zhejiang A & F Univ, 2016, 33(2):340-347. [19] 付建新, 张超, 王艺光, 等.桂花组织基因表达中荧光定量PCR内参基因的筛选[J].浙江农林大学学报, 2016, 33(5):727-733. FU Jianxin, ZHANG Chao, WANG Yiguang, et al. Reference gene selection for quantitative real-time polymerase chain reaction (qRT-PCR) normalization in the gene expression of sweet osmanthus tissues[J]. J Zhejiang A & F Univ, 2016, 33(5):727-733. [20] THEISSEN G, BECKER A, DI ROSA A, et al. A short history of MADS-box genes in plants[J]. Plant Mol Biol, 2000, 42(1):115-149. [21] NG M, YANOFSKY M F. Function and evolution of the plant MADS-box gene family[J]. Nat Rev Genet, 2001, 2(3):186-195. [22] LIU Chang, XI Wanyan, SHEN Lisha, et al. Regulation of floral patterning by flowering time genes[J]. Dev Cell, 2009, 16(5):711-722. [23] CHUANG Tienhsin, LI Kunhung, LI Peifang, et al. Functional analysis of an APETALA1-like MADS box gene from Eustoma grandiflorum in regulating floral transition and formation[J]. Plant Biotechnol Rep, 2018, 12(2):1-11. [24] 吴菁华, 吴少华, 杨超, 等.建兰AP1基因的克隆、表达及其与MADS-box转录因子相互作用的分析[J].园艺学报, 2013, 40(10):1935-1942. WU Jinghua, WU Shaohua, YANG Chao, et al. Cloning and expression analysis on AP1 homologous gene from Cymbidium ensifolium and interaction analysis between AP1 and MADS-box transcription factors[J]. Acta Hortic Sin, 2013, 40(10):1935-1942. [25] 吴彦庆, 葛金涛, 陶俊.芍药花分生组织决定基因(AP1)克隆、序列分析及其在不同发育时期花瓣中的表达变化规律[J].农业生物技术学报, 2015, 23(12):1559-1567. WU Yanqing, GE Jintao, TAO Jun. cDNA cloning, sequence analysis and tissue expression detection of APETALA1 gene (AP1) in Paeonia lactiflora Pall. petals of different development stages[J]. Chin J Agric Biotechol, 2015, 23(12):1559-1567. [26] 梁芳, 黄萍, 袁秀云, 等.菊花CmAP1基因克隆及其植物表达载体构建[J].南方农业学报, 2017, 48(6):952-959. LIANG Fang, HUANG Ping, YUAN Xiuyun, et al. Cloning of CmAP1 gene from Chrysanthemum morifolium and establishment of its plant expression vector[J]. J South Agric, 2017, 48(6):952-959. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.04.005