留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光强和氮素对芒萁光响应及叶绿素荧光参数的影响

王佳佳 张明如 许焱 何云核

魏继华, 李佳益, 刘宏, 等. 沙棘根瘤内生菌株库构建与微生物多样性分析[J]. 浙江农林大学学报, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
引用本文: 王佳佳, 张明如, 许焱, 等. 光强和氮素对芒萁光响应及叶绿素荧光参数的影响[J]. 浙江农林大学学报, 2019, 36(6): 1199-1207. DOI: 10.11833/j.issn.2095-0756.2019.06.018
WEI Jihua, LI Jiayi, LIU Hong, et al. Construction of endophytic strain bank of seabuckthorn nodule and an analysis of microbial diversity[J]. Journal of Zhejiang A&F University, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
Citation: WANG Jiajia, ZHANG Mingru, XU Yan, et al. Light response and chlorophyll fluorescence parameters in Dicranopteris dichotoma with light intensity and nitrogen treatments[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1199-1207. DOI: 10.11833/j.issn.2095-0756.2019.06.018

光强和氮素对芒萁光响应及叶绿素荧光参数的影响

DOI: 10.11833/j.issn.2095-0756.2019.06.018
基金项目: 

国家自然科学基金资助项目 31570611

浙江省自然科学基金资助项目 LY13C160012

详细信息
    作者简介: 王佳佳, 从事园林植物与观赏园艺研究。E-mail:1239513631@qq.com
    通信作者: 何云核, 教授, 从事野生植物资源研究。E-mail:yunhhe@163.com
  • 中图分类号: S685

Light response and chlorophyll fluorescence parameters in Dicranopteris dichotoma with light intensity and nitrogen treatments

  • 摘要: 以亚热带森林退化植被"标志种"之一的芒萁Dicranopteris dichotoma为研究材料,采取盆栽控制实验,设置不同光强[透光率35.96%(L1)、13.00%(L2)和4.75%(L3)]和氮素水平[施氮(N1)和不施氮(N0)],探究盆栽芒萁对光强和氮素的光响应,分析叶绿素荧光参数变化。结果表明:光强对光响应特征参数有显著影响(P < 0.05)。未施氮组,L2处理下盆栽芒萁最大净光合速率(Pnmax)、光饱和点(PLS)最大,光补偿点(PLC)、暗呼吸速率(Rd)和表观量子效率(AQY)最小;施氮提高了3种光强下盆栽芒萁的Pnmax,但差异不显著(P>0.05)。未施氮组,净光合速率(Pn)和蒸腾速率(Tr)大小变化顺序为L2 > L1 >对照> L3,气孔导度(GS)为L1 >对照>L3 > L2,施氮组均为L1 > L2 > L3;2种氮素水平下,胞间二氧化碳浓度(Ci)大小顺序均为对照> L1 > L2 > L3。未施氮组,叶绿素a、叶绿素b、总叶绿素及类胡萝卜素随光强减弱而增加,叶绿素a/b随光强减弱而降低,且差异显著(P < 0.05)。L1光强下光合色素质量分数施氮组显著高于未施氮组(P < 0.05),其他光强下施氮组均降低。未施氮组盆栽芒萁叶绿素荧光参数随光强增加而下降;施氮组盆栽芒萁的初始荧光(F0)显著低于同等光强未施氮组,最大荧光(Fm)L1和L3光强低于未施氮组,L2则高于未施氮组;PSⅡ最大光化学效率(Fv/Fm)、PSⅡ潜在活性(Fv/F0)和以吸收光能为基础的性能指数(Piabs)L1和L2光强高于未施氮组,但差异不显著。由此认为:施氮一定程度上提高各光强盆栽芒萁的净光合速率,有利于缓解强光光抑制作用,但不利于L2和L3光强下光合色素的提高。
  • 沙棘Hippophae rhamnoides又名醋柳,是胡颓子科Elaeagnaceae沙棘属Hippophae的落叶性灌木[1]。作为药食同源植物的沙棘不仅在食疗、医药、农林牧渔等领域具有较大的经济价值,在水土保持、恢复生物链及防风固沙中也具有极大的生态价值[2-5]。生长过程中沙棘根部会遭受土壤中放线菌、细菌的侵染形成根瘤。部分菌种会在根瘤中高度富集发挥固氮、促生长、抵御逆境胁迫、防止有害病菌侵染等功能[6-8]。传统的微生物研究方法主要以培养基进行分离纯培养,再进而探究其培养特征、显微结构、生理特性等[9]。而自然界中90%以上的微生物为不可培养微生物,且现有培养基与培养技术不适应未知菌群的生长,或部分菌群生长缓慢、丰度较小等情况都会对菌群的多样性评估产生影响[10]。以二代高通量测序为基础的16S rDNA技术通过对编码原核核糖体小亚基rRNA的DNA序列进行测序,不仅克服了传统方法难以获得不可培养菌株的弊端,还能对样品中的物种相对丰度进行排序,并分析各群组样品中发挥重要作用的优势物种,解析样品中微生物之间的相互作用。该技术对研究沙棘根瘤内生菌微生物多样性与环境关系以及微生物资源的开发利用有重要的理论和现实意义[11-16]

    本研究通过16S rRNA测序技术对沙棘根瘤内生菌进行物种注释、分类学分析、α多样性分析、β多样性分析、组间差异显著性分析,比较高通量测序和纯培养方法的差异与优劣,为发掘具有应用价值的根瘤内生菌资源提供科学依据。

    采样地为内蒙古自治区巴彦淖尔市磴口县中国林业科学研究院沙漠林业实验中心试验林场(40°29′34″N,106°74′06″E)。该研究区海拔为1 054 m,年平均气温为7.4 ℃。2020年7月,选取人为干扰因素较少的沙漠边缘地带采集沙棘根瘤样品。在每个样地10 m×10 m的区域内用网格法定9个点,运用梅花形采样法在边角及中心共5个点分别采集根瘤样品并进行混合,共设计6组重复样,分别命名为M1、M2、M3、M4、M5、M6。

    1.2.1   沙棘根瘤内生菌的分离

    依据文献[17-18]的方法进行修改,使其更加适宜沙棘根瘤内生菌的分离。详细步骤如下:选取新鲜饱满的根瘤,冲洗掉土粒泥沙,将根瘤团用解剖刀分割成带有单柄的瘤瓣,用纱布包裹,先用体积分数为95%的酒精溶液浸泡30 s,再用体积分数为10%的次氯酸钠溶液表面灭菌5 min,取出后用无菌水冲洗数次。在灭菌滤纸上,用无菌解剖刀先切取根瘤头部,再将其均分成2~3份薄片,置于固体培养基中28 ℃恒温暗处静置培养。根据相关研究,本研究选取BAP[19]、S[20]、JA[19]、高氏一号培养基[19]进行分离培养。

    1.2.2   沙棘根瘤内生菌的鉴定

    提取纯培养的沙棘根瘤内生菌DNA后,对16S rDNA全长进行PCR扩增。序列引物采用YU等[21]设计的细菌通用引物(引物序列27F:5′-AGAGTTTGATCMTGGCTCAG-3′,1492R:5′-GGYTACCTTGTTACGACTT-3′),PCR总反应体系为50 μL,包括10×缓冲液(KOD buffer) 5 μL、2 mmol·L−1三磷酸脱氧核糖核苷酸混合液(dNTPs) 5 μL、基因组DNA (genomic DNA) 1 μL、上游引物(forward primer) (10 μm) 1 μL、下游引物(reverse primer) (10 μm) 1 μL、DNA聚合酶(KOD DNA polymerase) 1 μL、超纯水(ddH2O) 36 μL。PCR反应程序:94 ℃预变性 3 min,94 ℃变性 30 s,58 ℃退火 30 s,72 ℃延伸1 min,35个循环,最后72 ℃延伸10 min。用质量分数为1%的琼脂糖凝胶电泳,确定有特异扩增后,进行PCR产物回收和测序注释,并参考文献[22-25]进行比对校验。

    1.3.1   建库测序

    提取沙棘根瘤总DNA后,根据16S rDNA保守区设计引物(引物序列335F:5′-CADACTCCTACGGGAGGC-3′,769R:5′-ATCCTGTTTGMTMCCCVCRC-3′),在引物末端加上测序接头,便于建库时添加能区分样本的碱基序列的条码/索引(barcode/index)。再进行PCR扩增并对其产物进行紫外分光光度计定量及混样、过柱纯化和均一化形成测序文库,建好的文库先进行文库质检,质检合格的文库用Illumina HiSeq 2500进行测序[26]。高通量测序得到的原始图像数据文件,经碱基识别分析转化为原始测序序列,结果以FASTQ (简称为fq)文件格式存储[27]

    1.3.2   测序数据处理

    首先使用 Trimmomatic v.0.33软件[28],对测序得到的原始测序序列进行过滤;其次使用cutadapt 1.9.1软件进行引物序列的识别与去除,得到不包含引物序列的高质量测序序列;然后使用FLASH v1.2.7软件[29],按照最小重叠(overlap)长度为10 bp、重叠区允许的最大错配比率为0.2的要求,对每个样品高质量的一小段短的基因测序片段(reads)进行拼接,得到的拼接序列即原始序列质控后的高质量测序序列(clean reads);最后使用UCHIME v4.2软件[30],鉴定并去除嵌合体序列,得到最终有效数据。使用Usearch软件对reads在97.0%的相似度水平下进行聚类,获得分类操作单元(OTU)[31],以测序所有序列数的0.005%作为阈值过滤OTU[32]。以SILVA (http://www.arb-silva.de/)为参考数据库使用朴素贝叶斯分类器对特征序列进行分类学注释,可得到每个特征对应的物种分类信息,进而在各水平(门、纲、目、科、属、种)统计样品群落组成,利用QIIME软件生成不同分类水平上的物种丰度表,再利用R语言工具绘制样品分类学水平下的群落结构图[33]。使用QIIME软件对样品α多样性进行评估和t检验(显著性水平为0.01)。利用Mothur v1.30软件和R语言工具包绘制稀释曲线。基于独立OTU,采用加权分析方法和Bray-Curtis算法,使用QIIME软件进行非加权组平均法(UPGMA)分析,比较各组样品间的物种差异。

    使用Usearch软件对clean reads在97.0%的相似度水平下进行聚类,共计获得651个OTU。各样品OTU个数分布较为均匀,样品M1~M6分别为551、583、579、518、593、589个。如图1所示:6组样品中共有的OTU数为417个。M3、M5、M6中分别有4、2、9个特有的OTU,为样品特有OTU,非单个样品特有或所有样品间共有的OTU在图1未做展示。从整体来看,不同地点的各样品间的OTU差异性远小于共性,说明采样方法设计合理。

    图 1  沙棘(M1~M6)根瘤样品分类操作单元(OTU)花瓣图
    Figure 1  Petal image of operational taxonomic unit (OTU) of H. rhamnoides root nodule sample (M1-M6)

    对6组样品测序共获得 810 039对reads,双端reads质控、拼接后共产生617 188条clean reads。其中质量≥20的碱基占总碱基数的比例(Q20)为98.7%,质量≥30的碱基占总碱基数的比例(Q30)为95.4%,表明测序质量较好。从图2可见:各样品稀释性曲线趋向平缓,表明在持续抽样下新物种出现的速率逐渐趋于平缓,此环境中物种数量不会随测序数量的增加而显著增多[34],说明取样合理,能较好体现6组样品中根瘤内生菌的多样性,可以进行数据分析。M5的Shannon和Simpson指数最大(表1),说明物种多样性最高。同理,M4的物种多样性最低。物种丰度方面M5与M6差别不大,均有较高水平。M4根瘤样品的物种丰度最低。样点的Shannon指数平均为4.24,Simpson指数平均为0.70,Ace指数平均为585.79,Chao1指数平均为595.47,样本文库平均覆盖率为99.95%。说明采样地的沙棘根瘤内生菌的物种丰富且多样性较大,各物种分配相对均匀,其微生物物种信息得到了充分体现。

    图 2  各样品稀释性曲线
    Figure 2  Dilution curve of each sample
    表 1  各组样品的α多样性指数
    Table 1  Alpha diversity index for each group of samples
    样品Shannon
    指数
    Simpson
    指数
    Ace
    指数
    Chao1
    指数
    覆盖
    率/%
    M12.530.47568.45598.5799.95
    M24.730.79595.09600.6099.95
    M34.280.75600.58607.4599.95
    M42.520.44542.32543.5299.94
    M56.580.95605.66610.7199.94
    M64.820.77602.63611.9799.94
    平均4.240.70585.79595.4799.95
    下载: 导出CSV 
    | 显示表格

    通过传统分离方法从BAP、JA、S、高氏一号培养基中得到纯培养菌株96株。所有菌株均可传代培养,但菌株之间培养周期差异较大,培养周期在1~30 d呈离散型分布。对各菌株进行分子鉴定,共有4门8纲8目13科19属。在门的分类水平分别为变形菌门Proteobacteria、放线菌门Actinobacteria、厚壁菌门Firmicutes和柔膜菌门Tenericutes。在属的分类水平上,96株菌分属于支原体属Mycoptasma 1株、慢生根瘤菌属Bradyrhizobim 6株、土壤杆菌属Agrobacterium 7株、肠杆菌属Enterobacter 6株、小坂菌属Kosakonia 8株、柠檬酸杆菌属Citrobacter 1株、约克氏菌属Yokenella 1株、欧文氏菌属Erwinia 1株、克罗诺杆菌属Cronobacter 2株、泛菌属Pantoea 1株、莫拉菌属Moraxella 1株、贪噬菌属Variovorax 1株、草螺菌属Herbaspirillum 1株、假单胞菌属Pseudomonas 5株、链霉菌属Streptomyces 14株、小单孢菌属Micromonospora 1株、短杆菌属Brevibacterium 6株、葡萄球菌属Straphylococcus 1株和芽孢杆菌属Bacillus 32株。其中,优势门为变形菌门和厚壁菌门,优势属为芽孢杆菌属和链霉菌属。

    高通量测序分析发现:6组样品共有14门34纲89目148科314属。将相对丰度大于0.1%的门与相对丰度前10的属进行汇总(图3表2表3)发现:在门的分类水平上,6组样品中相对丰度较高的主要为放线菌门和变形菌门,两者相对丰度之和为87.5%~97.1%。其次为拟杆菌门Bacteroidetes、杆菌门Patescibacteria、厚壁菌门、酸杆菌门Acidobacteria。在属的分类水平上,弗兰克氏菌属Frankia占绝对优势,相对丰度为20.12%~74.81%,平均相对丰度为51.49%。其次为根瘤菌属Rhizobium、类固醇杆菌属Steroidobacter、糖单孢菌属Saccharimonadales、肠杆菌属、泛菌属、欧文氏菌属、假黄色单胞菌属Pseudoxanthomonas、鞘脂单胞菌属Sphingomonas、假单胞菌属、固氮弓菌属Azoarcus、伯克氏菌属Burkholderia、芽单胞菌属Blastomonas、聚集杆菌属Congregibacter、拉恩氏菌属Rahnella、鞘氨醇菌属Chitinophaga、独岛杆菌属Dokdonella、普雷沃氏菌属Prevotella、链霉菌属、Microtrichales属。

    表 2  沙棘微生物区系门水平的相对分布
    Table 2  Relative abundance of microbiota taxa at the level of phylum
    分类6组样品在门水平的相对丰度/%
    M1M2M3M4M5M6
    放线菌门73.5547.5651.2476.0927.7357.68
    变形菌门22.3841.9141.6321.0160.3529.82
    拟杆菌门0.891.421.300.402.184.42
    杆菌门 0.315.663.890.731.421.72
    厚壁菌门2.182.741.301.212.184.42
    酸杆菌门0.150.260.420.181.160.53
    其他  0.540.450.220.380.750.60
    下载: 导出CSV 
    | 显示表格
    表 3  沙棘微生物区系属水平的相对分布
    Table 3  Relative abundance of microbiota taxa at the level of genus
    分类6组样品在属水平的相对丰度/%
    M1M2M3M4M5M6
    弗兰克氏菌属 72.6244.4549.5074.8120.1247.41
    根瘤菌属   1.171.972.892.043.134.13
    类固醇杆菌属 0.730.831.052.207.192.87
    糖单孢菌属  0.285.613.850.711.411.68
    肠杆菌属   6.932.191.050.080.220.40
    泛菌属    0.635.194.690.010.050.11
    欧文氏菌属  0.604.663.770.100.180.23
    假黄色单胞菌属0.851.981.670.753.560.68
    鞘脂单胞菌属 0.391.062.101.552.101.64
    假单胞菌属  0.511.275.600.030.210.09
    其他     15.2930.7923.8317.7261.8340.76
    下载: 导出CSV 
    | 显示表格
    图 3  6组根瘤样品的非加权组平均法(UPGMA)聚类树与物种分布柱状图
    Figure 3  UPGMA clustering tree and the species distribution histogram of the six groups of nodule samples are combined drawing

    在门、纲、目、科、属的各分类单元中,高通量测序的检测灵敏度(高通量测序/纯培养)依次是纯培养方法的3.50、4.25、11.20、11.38和16.53倍。在门水平上,纯培养菌株中占比较高的厚壁菌门在高通量测序中占比并不高。在属水平上,纯培养菌株中占比较高的芽孢杆菌属和链霉菌属皆在高通量测序中占比很低。该对比结果差异性较大,说明高通量测序在微生物多样性分析中占据优势地位,要优于纯培养方法。同时也说明,沙棘根瘤内共生细菌群落结构更为复杂,群落更为稳定。

    在运用传统方法分离纯培养微生物时,共分离纯培养菌株96株,分属于4门8纲8目13科19属,未获得弗兰克氏菌属的菌株,可能是培养基中弗兰克氏菌属的菌株生长缓慢,易被其他菌群取代,因此仍需探索新的培养基与培养方法以遏制根瘤中其他菌株的繁殖。在微生物多样性分析中,由于环境中的微生物复杂多样,各环境之间组成差异较大,通常采用非加权方法进行分析。该方法简单易操作,主要考虑物种的有无,但未考虑物种的丰度,所以采用非加权的方法难以区别各样品间的差异。

    高通量测序分析共检测到14门34纲89目148科314属。在门、纲、目、科、属的各分类单元中,高通量测序的检测灵敏度(高通量测序/纯培养)依次是纯培养方法的3.50、4.25、11.20、11.38和16.53倍。与纯培养获得的菌株相比,高通量测序分析结果更加完整地揭示了沙棘根瘤内生菌的微生物多样性。高通量测序表明:在门的分类水平上,样品中相对丰度较高的主要为放线菌门和变形菌门,两者相对丰度之和为87.5%~97.1%。在属的分类水平上,弗兰克氏菌属占绝对优势,相对丰度为20.12%~74.81%,平均相对丰度为51.49%。

    张爱梅等[35]和刘志强等[36]分别对甘肃榆中、辽宁通辽、内蒙古赤峰等地沙棘根瘤内生菌微生物多样性做过类似研究,其高通量测序所得的微生物多样性高于本研究结果,说明沙棘根瘤内生菌微生物多样性受地理位置、土壤成分、气候条件、宿主种类及生长环境等多种因素的影响。本研究的沙棘取样于内蒙古乌兰察布沙漠边缘地带,采样地荒漠化土壤与干旱少雨气候对内生菌多样性有特别影响。

    属于非豆科Leguminosae植物的沙棘根瘤共生固氮体系是以弗兰克氏菌属为主导的[37]微生物—微生物—植物互作体系。高通量测序分析显示:弗兰克氏菌属所占比例较高,然而本次传统方法分离却未得到纯培养菌株,这可能是由于培养基中缺乏某种信号物质或与其他菌属竞争存在劣势导致的,建议添加制霉菌素、萘啶酮酸和放线菌酮抑制其他菌群的繁殖[18]。非豆科植物结瘤固氮过程,单一属的菌株难以完成此任务。有研究[38]表明:纯培养分离的贪噬菌属是复杂微生物组中维持根生长的核心菌属,并且具有产生和降解生长素的能力,是细菌—细菌—植物通讯网络的关键角色。小单孢菌是植物益生菌,在促进植物生长的同时还可以分泌细胞壁降解酶促进细胞壁的降解,进而便于弗兰克氏菌的侵染[39-40],但是小单孢菌的快速繁殖也对弗兰克氏菌的生长起到抑制作用。沙棘作为胡颓子科植物,根部结瘤侵染方式为细胞间侵入。研究[41]表明:草螺旋菌属Spirillum、慢生根瘤菌属、肠杆菌属的相关细菌与弗兰克氏菌存在负相关性(即抑制关系),以上3个菌属均在豆科、禾本科Poaceae植物中发挥固氮相关的重要作用,但在胡颓子科中此类细菌与弗兰克氏菌属相互作用的机制尚未明确。

  • 图  1  不同光强和氮素处理后盆栽芒萁气体交换参数的变化

    Figure  1  Changes of gas exchange parameters of potted D. dichotoma in different light intensits and nitrogen treatments

    图  2  不同透光率和氮素处理后盆栽芒萁叶片色素质量分数变化

    不同字母表示同一水平不同处理间差异显著(P<0.05)

    Figure  2  Pigment content of potted D. dichotoma under different light intensities and nitrogen treatments

    表  1  不同光强与施氮处理盆栽芒萁光合特征参数的变化

    Table  1.   Changes in photosynthetic characteristics of potted D. dichotoma under different light intensityies and nitrogen applications

    处理 Pnmax/(μmol·m-2·s-1 PLS/(μmol·m-2·s-1 PLC/(μmol·m-2·s-1 Rd/(μmol·m-2·s-1 AQY/(mmol·mol-1
    N0 L1 10.24 ± 0.32 a 1 158.06 ± 0.72 a 19.14 ± 0.78 a 1.21 ± 0.04 a 0.068 ± 0.00 a
    L2 10.52 ± 0.24 a 1 233.66 ± 20.01 a 5.39 ± 0.30 d 0.30 ± 0.00 c 0.057 ± 0.00 a
    L3 6.27 ± 0.41 b 1 174.26 ± 9.29 a 8.25 ± 0.77 cd 0.42 ± 0.08 c 0.058 ± 0.00 a
    ck 7.47 ± 0.23 b 1 008.87 ± 40.05 b 16.87 ± 0.96 ab 1.06 ± 0.04 a 0.069 ± 0.00 a
    N1 L1 12.03 ± 0.54 a 1 172.00 ± 14.65 a 13.29 ± 0.66 abc 0.84 ± 0.05 ab 0.067 ± 0.00 a
    L2 11.23 ± 0.25 a 1 255.00 ± 9.77 a 11.24 ± 1.18 bcd 0.62 ± 0.07 bc 0.058 ± 0.00 a
    L3 6.43 ± 0.29 b 1 158.22 ± 15.96 a 11.68 ± 1.27 bcd 0.45 ± 0.04 bc 0.038 ± 0.00 b
    ANOVA L *** ** ** *** *
    N ns ns ns ns ns
    L×N ns ns * * ns
    说明:*、**和***分别表示P<0.05,P<0.01和P<0.001,ns表示不显著。同列不同字母表示处理间差异显著(P<0.05)
    下载: 导出CSV

    表  2  透光率和氮素对盆栽芒萁叶片色素相对含量的效应分析

    Table  2.   Effect of different light intensity (L), nitrogen (N) and light × nitrogen (L × N) on the pigment content of potted D. dichotoma

    处理 叶绿素a 叶绿素b 总叶绿素 类胡萝卜素
    光强 25.7*** 24.2*** 25.3*** 24.0***
    氮素 46.5*** 38.6*** 44.6*** 42.2***
    光强×氮素 94.0*** 90.2*** 93.3*** 89.5***
    说明:******分别表示P<0.05,P<0.01和P<0.001
    下载: 导出CSV

    表  3  不同透光率与施氮处理后盆栽芒萁叶片叶绿素荧光参数的变化

    Table  3.   Changes of chlorophyll fluorescence parameters of potted D. dichotoma with different light intensity and nitrogen application

    处理 Fo Fm Fv/Fm Fv/Fo Piabs
    N0 L1 4 041.3 ± 50.2 bc 12 865.7 ± 105.9 bc 0.69 ± 0.00 ab 2.18 ± 0.06 bc 0.90 ± 0.03 c
    L2 4 244.3 ± 53.4 b 13 575.3 ± 389.2 b 0.69 ± 0.01 ab 2.20 ± 0.10 bc 0.93 ± 0.07 bc
    L3 4 845.3 ± 202.1 a 16 377.7 ± 340.1 a 0.70 ± 0.00 ab 2.37 ± 0.09 abc 1.00 ± 0.08 bc
    ck 2 059.7 ± 136.9 e 6 233.7 ± 554.3 d 0.67 ± 0.00 b 2.02 ± 0.08 c 1.22 ± 0.06 ab
    N1 L1 3 087.3 ± 77.5 d 11 056.3 ± 401.8 c 0.72 ± 0.00 a 2.58 ± 0.08 ab 1.22 ± 0.05 ab
    L2 3 795.0 ± 36.8 c 14 253.7 ± 340.2 b 0.73 ± 0.00 a 2.76 ± 0.11 a 1.31 ± 0.08 a
    L3 3 709.0 ± 75.4 c 11 423.0 ± 1071.4 c 0.67 ± 0.04 b 2.09 ± 033 bc 0.88 ± 0.19 c
    ANOVA L *** *** ns ns ns
    N *** ** ns ns *
    L×N * ** * * *
    说明:******分别表示P<0.05,P<0.01和P<0.001,ns表示不显著。同列不同字母表示处理间差异显著(P<0.05)
    下载: 导出CSV
  • [1] 樊艳荣, 陈双林, 杨清平, 等.毛竹材用林林下植被群落结构对多花黄精生长的影响[J].生态学报, 2014, 34(6):1471-1480.

    FAN Yanrong, CHEN Shuanglin, YANG Qingping, et al. The impact of understory vegetation structure on growth of Polygonatum cyrtonema in extensively managed Phyllostachys edulis plantation[J]. Acta Ecol Sin, 2014, 34(6):1471-1480.
    [2] 潘萍, 赵芳, 欧阳勋志, 等.马尾松林2种林下植被土壤碳氮特征及其与凋落物质量的关系[J].生态学报, 2018, 38(11):3988-3997.

    PAN Ping, ZHAO Fang, OUYANG Xunzhi, et al. Characteristics of soil carbon and nitrogen and relationship with litter quality under different understory vegetation in Pinus massoniana plantations[J]. Acta Ecol Sin, 2018, 38(11):3988-3997.
    [3] 张明如, 何明, 温国胜, 等.芒萁种群特征及其对森林更新影响评述[J].内蒙古农业大学学报, 2010, 31(4):303-308.

    ZHANG Mingru, HE Ming, WEN Guosheng, et al. The characteristics of Dicranopteris dichotoma population and its effects on the forest regeneration[J]. J Inner Mongolia Agric Univ, 2010, 31(4):303-308.
    [4] 任寅榜, 吕茂奎, 江军, 等.侵蚀退化地植被恢复过程中芒其对土壤可溶性有机碳的影响[J].生态学报, 2018, 38(7):2288-2298.

    REN Yinbang, LÜ Maokui, JIANG Jun, et al. Effects of Dicranopteris dichotoma on soil dissolved organic carbon in severely eroded red soil[J]. Acta Ecol Sin, 2018, 38(7):2288-2298.
    [5] 张明如, 翟明普, 王学勇.太行山低山丘陵区植被恢复构建的生态对策和途径[J].中国水土保持科学, 2006, 4(2):75-81.

    ZHANG Mingru, ZHAI Mingpu, WANG Xueyong. Ecological strategies and approaches of vegetation restoration in the hilly area of Taihang Mountain[J]. Sci Soil Water Conserv, 2006, 4(2):75-81.
    [6] 叶居新, 洪瑞川, 聂义如, 等.芒萁植株浸出液对几种植物生长的影响[J].植物生态学与地植物学学报, 1987, 11(3):203-211.

    YE Juxin, HONG Ruichuan, NIE Yiru, et al. The effect of maceration extract of Dicranopteris dichotoma on the growth of several plant species[J]. Acta Phytoecol Geobot Sin, 1987, 11(3):203-211.
    [7] PORTSMUTH A, NIINEMETSÜ. Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance[J]. Func Ecol, 2007, 21(1):61-77.
    [8] 蔡建国, 韦孟琪, 章毅, 等.遮阴对绣球光合特性和叶绿素荧光参数的影响[J].植物生态学报, 2017, 41(5):570-576.

    CAI Jianguo, WEI Mengqi, ZHANG Yi, et al. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla[J]. Chin J Plant Ecol, 2017, 41(5):570-576.
    [9] 万宏伟, 杨阳, 白世勤, 等.羊草草原群落6种植物叶片功能特性对氮素添加的响应[J].植物生态学报, 2008, 32(3):611-621.

    WAN Hongwei, YANG Yang, BAI Shiqin, et al. Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia[J]. Chin J Plant Ecol, 2008, 32(3):611-621.
    [10] GEORGE L O, BAZZAZ F A. The fern understory as an ecological filter:growth and survival of canopy-tree seedlings[J]. Ecology, 1999, 80(3):846-856.
    [11] GEORGE L O, BAZZAZ F A. The fern understory as an ecological filter:emergence and establishment of canopy-tree seedlings[J]. Ecology, 1999, 80(3):833-845.
    [12] 赵芳, 欧阳勋志.飞播马尾松林林下植被盖度与环境因子的关系[J].应用生态学报, 2015, 26(4):1071-1076.

    ZHAO Fang, OUYANG Xunzhi. Relationships between understory vegetation coverage and environmental factors in Pinus massoniana plantations from aerial seeding[J]. Chin J Appl Ecol, 2015, 26(4):1071-1076.
    [13] 任海, 王俊.试论人工林下乡土树种定居限制问题[J].应用生态学报, 2007, 18(8):1855-1860.

    REN Hai, WANG Jun. Recruitment limitations of native tree species under plantations:a preliminary review[J]. Chin J Appl Ecol, 2007, 18(8):1855-1860.
    [14] 李媛良, 汪思龙, 宿秀江, 等.天然林重建过程中单优箬叶竹灌丛对树木更新的影响[J].生态学报, 2009, 29(12):6615-6621.

    LI Yuanliang, WANG Silong, SU Xiujiang, et al. Effect of monodominant longauricled in docalamus (Indocalamus longiauritus) thickets on tree regeneration during reestablishment of natural forest[J]. Acta Ecol Sin, 2009, 29(12):6615-6621.
    [15] 金桂宏, 张明如, 王立竹, 等.光强对盆栽芒其光响应过程与抗氧化酶系统的影响[J].浙江农林大学学报, 2018, 35(5):836-844.

    JIN Guihong, ZHANG Mingru, WANG Lizhu, et al. Photosynthetic characteristics and enzymatic antioxidant system of Dicranopteris dichotoma with differing light intensity[J]. J Zhejiang A & F Univ, 2018, 35(5):836-844.
    [16] 彭扬, 彭培好, 李景吉.模拟氮沉降对矢车菊属植物Centaurea stoebe种群生长和竞争能力的影响[J].植物生态学报, 2016, 40(7):679-685.

    PENG Yang, PENG Peihao, LI Jingji. Simulated nitrogen deposition influences the growth and competitive ability of Centaurea stoebe populations[J]. Chin J Plant Ecol, 2016, 40(7):679-685.
    [17] 张馨月, 王寅, 陈健, 等.水分和氮素对玉米苗期生长、根系形态分布的影响[J].中国农业科学, 2019, 52(1):34-44.

    ZHANG Xinyue, WANG Yin, CHEN Jian, et al. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seeding stage[J]. Sci Agric Sin, 2019, 52(1):34-44.
    [18] 叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报, 2010, 34(6):727-740.

    YE Zipiao. A review on modeling of responses of photosynthesis to light and CO2[J]. Chin J Plant Ecol, 2010, 34(6):727-740.
    [19] SRIVASTAVA A, GUISSÉB, GREPPIN H, et al. Regulation of antenna structure and electron transport in PhotosystemⅡ of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient:OKJIP[J]. Biochim Biophys Acta, 1997, 1320(1):95-106.
    [20] LICHTENTHALER H K. ChlorophyⅡ and carotenoids:pigments of photosynthetic biomembranes[J]. Method Enzymol, 1987, 148:350-382.
    [21] 安慧, 上官周平.光照强度和氮水平对白三叶幼苗生长与光合生理特性的影响[J].生态学报, 2009, 29(11):6017-6024.

    AN Hui, SHANGGUAN Zhouping. Effects of light intensity and nitrogen application on growth and photosynthetic characteristics of Trifolium repens L.[J]. Acta Ecol Sin, 2009, 29(11):6017-6024.
    [22] 韩玙, 刘石山, 梁艳丽, 等.不同光照强度下花魔芋(Amorphophallus konjac)与谢君魔芋(Amorphophallus xiei)光合特性及光保护机制研究[J].植物研究, 2013, 33(6):676-683.

    HAN Yu, LIU Shishan, LIANG Yanli, et al. Photosynthesis and photorotection in Amorphophallus konjac and Amorphophallus xiei grown at a light gradient[J]. Bull Bot Res, 2013, 33(6):676-683.
    [23] 向芬, 李维, 刘红艳, 等.氮素水平对不同品种茶树光合及叶绿素荧光特性的影响[J].西北植物学报, 2018, 38(6):1138-1145.

    XIANG Fen, LI Wei, LIU Hongyan, et al. Characteristics of photosynthetic and chlorophyll fluorescence of tea varieties under different nitrogen application leves[J]. Acta Bot Boreal Occident Sin, 2018, 38(6):1138-1145.
    [24] 毛立彦, 慕小倩, 董改改, 等.光照强度对曼陀罗和紫花曼陀罗生长发育的影响[J].植物生态学报, 2012, 36(3):243-252.

    MAO Liyan, MU Xiaoqian, DONG Gaigai, et al. Influence of light intensity on growth of Datura stramonium and D. stramonium var. tatual[J]. Chin J Plant Ecol, 2012, 36(3):243-252.
    [25] 张云海, 何念鹏, 张光明, 等.氮沉降强度和频率对羊草叶绿素含量的影响[J].生态学报, 2013, 33(21):6786-6794.

    ZHANG Yunhai, HE Nianpeng, ZHANG Guangming, et al. Nitrogen deposition and Leymus chinensis leaf chlorophyll content in Inner Mongolian grassland[J]. Acta Ecol Sin, 2013, 33(21):6786-6794.
    [26] BAIG M J, ANAND A, MANDAL P K, et al. Irradiance influences contents of photosynthetic pigments and proteins in tropical grasses and legumes[J]. Photosynthetica, 2005, 43(1):47-53.
    [27] LONG S P, HUMPHRIES S, FALKOWSKI P G. Photoinhibition of photosynthesis in nature[J]. Annu Rev Plant Physiol Mol Biol, 1994, 45:633-662.
    [28] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982, 33(1):317-345.
    [29] 汪赛, 伊力塔, 余树全, 等.模拟酸雨对青冈光合及叶绿素荧光参数的影响[J].应用生态学报, 2014, 25(8):2183-2192.

    WANG Sai, YI Lita, YU Shuquan, et al. Effects of simulating acid rain on photosynthesis and chlorophyⅡ fluorescence parameters of Quercus glauca[J]. Chin J Appl Ecol, 2014, 25(8):2183-2192.
    [30] 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报, 1999, 16(4):444-448.

    ZHANG Shouren. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chin Bull Bot, 1999, 16(4):444-448.
    [31] 刘青青, 马祥庆, 黄智军, 等.不同光质对木荷、杉木幼苗叶片叶绿素荧光参数和抗氧化酶活性的影响[J].生态学杂志, 2018, 37(3):869-876.

    LIU Qingqing, MA Xiangqing, HUANG Zhijun, et al. Effects of light quality on leaf chlorophyll fluorescence parameters and antioxidant enzyme activities of Schima superba and Cunninghamia lanceolata seedlings[J]. Chin J Ecol, 2018, 37(3):869-876.
    [32] 杨宋琪, 韩梓霞, 赖金霞, 等. 5-氨基乙酰丙酸对不同温度下斜生栅藻叶绿素荧光诱导动力学的影响[J].西北植物学报, 2018, 38(5):932-938.

    YANG Songqi, HAN Zixia, LAI Jinxia, et al. Effect of 5-Aminolevulinic acid on fast chlorophyll fluorescence induction kinetics of Scenedesmus obliquus under different temperature conditions[J]. Acta Bot Boreal Occident Sin, 2018, 38(5):932-938.
    [33] 李伟成, 王曙光, 吴志庄, 等. 2种大型丛生竹对氮输入的可塑性响应[J].浙江大学学报(农业与生命科学版), 2012, 38(5):608-613.

    LI Weicheng, WANG Shuguang, WU Zhizhuang, et al. Plasticity response of two sympodial bamboo species to nitrogen levels[J]. J Zhejiang Univ Agric Life Sci, 2012, 38(5):608-613.
  • [1] 赵楠楠, 万琦, 张明如, 李清香, 张婷宇, 蔡益杭.  光强与氮肥施加对玉铃花幼苗光合生理参数的影响 . 浙江农林大学学报, 2022, 39(5): 1037-1044. doi: 10.11833/j.issn.2095-0756.20210605
    [2] 张婷宇, 张明如, 李清香, 赵楠楠, 万琦, 蔡益杭.  光强和氮素对紫茎幼苗光合特性的影响 . 浙江农林大学学报, 2022, 39(6): 1247-1256. doi: 10.11833/j.issn.2095-0756.20210771
    [3] 王佳佳, 张明如, 伊力塔, 张汝民, 何云核.  光照和氮素对芒萁克隆繁殖特性及生物量分配的影响 . 浙江农林大学学报, 2021, 38(1): 74-83. doi: 10.11833/j.issn.2095-0756.20200199
    [4] 金迪, 张明如, 王佳佳, 高磊, 侯平.  遮光与水分胁迫对盆栽芒萁光合与叶绿素荧光参数的影响 . 浙江农林大学学报, 2020, 37(6): 1054-1063. doi: 10.11833/j.issn.2095-0756.20190666
    [5] 卞赛男, 常鹏杰, 王宁杭, 刘志高, 张明如, 吴家胜, 申亚梅, 王小德.  氮素形态对喜树叶片生长、叶绿素荧光参数及叶绿体相关基因表达的影响 . 浙江农林大学学报, 2019, 36(5): 908-916. doi: 10.11833/j.issn.2095-0756.2019.05.009
    [6] 张志录, 刘中华, 彭舜磊, 吕秀立.  氮磷添加对考来木光合特性和叶绿素荧光的影响 . 浙江农林大学学报, 2019, 36(3): 459-467. doi: 10.11833/j.issn.2095-0756.2019.03.005
    [7] 徐琳煜, 刘守赞, 白岩, 丁恒, 胡晓甜, 吴学谦, 许海顺, 郑炳松.  不同光强处理对三叶青光合特性的影响 . 浙江农林大学学报, 2018, 35(3): 467-475. doi: 10.11833/j.issn.2095-0756.2018.03.010
    [8] 金桂宏, 张明如, 王立竹, 夏侯佐英, 许焱, 何云核.  光强对盆栽芒萁光响应过程与抗氧化酶系统的影响 . 浙江农林大学学报, 2018, 35(5): 836-844. doi: 10.11833/j.issn.2095-0756.2018.05.007
    [9] 李国栋, 田曼青, 沈仁芳.  拟南芥独脚金内酯突变体叶绿素荧光特性分析 . 浙江农林大学学报, 2017, 34(1): 36-41. doi: 10.11833/j.issn.2095-0756.2017.01.006
    [10] 温星, 程路芸, 李丹丹, 许馨露, 高岩, 张汝民.  毛竹叶片发育过程中光合生理特性的变化特征 . 浙江农林大学学报, 2017, 34(3): 437-442. doi: 10.11833/j.issn.2095-0756.2017.03.008
    [11] 王金平, 张金池, 岳健敏, 尤炎煌, 张亮.  油菜素内酯对氯化钠胁迫下樟树幼苗光合色素和叶绿素荧光参数的影响 . 浙江农林大学学报, 2017, 34(1): 20-27. doi: 10.11833/j.issn.2095-0756.2017.01.004
    [12] 吴兴波, 陈登举, 马元丹, 高岩, 温国胜, 张汝民.  氯霉素对毛竹幼苗色素质量分数及叶绿素荧光的影响 . 浙江农林大学学报, 2016, 33(2): 209-215. doi: 10.11833/j.issn.2095-0756.2016.02.004
    [13] 王巧, 聂鑫, 刘秀梅, 王华田, 孟宪鹏, 曹桂萍, 李健, 黄昌豹.  遮光对松属3个树种幼树光合特性和荧光参数的影响 . 浙江农林大学学报, 2016, 33(4): 643-651. doi: 10.11833/j.issn.2095-0756.2016.04.013
    [14] 叶飞英, 陈子林, 郑伟成, 刘菊莲, 周钰鸿, 章剑玉, 潘成椿, 季国华.  不同光强下濒危植物伯乐树幼苗叶片光合生理参数比较 . 浙江农林大学学报, 2015, 32(5): 716-721. doi: 10.11833/j.issn.2095-0756.2015.05.009
    [15] 吕铖香, 张明如, 邹伶俐.  模拟酸雨与光强处理对芒萁叶绿素及荧光特性的影响 . 浙江农林大学学报, 2015, 32(1): 52-59. doi: 10.11833/j.issn.2095-0756.2015.01.008
    [16] 高培军, 邱永华, 周紫球, 何仁华, 徐佳.  氮素施肥对毛竹生产力与光合能力的影响 . 浙江农林大学学报, 2014, 31(5): 697-703. doi: 10.11833/j.issn.2095-0756.2014.05.006
    [17] 郭安娜, 桂仁意, 宋瑞生, 潘月, 戎洁庆.  不同磷水平下雷竹幼苗叶绿素荧光特性 . 浙江农林大学学报, 2013, 30(1): 9-14. doi: 10.11833/j.issn.2095-0756.2013.01.002
    [18] 孙骏威, 李素芳, 金松恒.  5种悬钩子属植物的光合荧光特性 . 浙江农林大学学报, 2010, 27(6): 950-955. doi: 10.11833/j.issn.2095-0756.2010.06.025
    [19] 王利英, 楼炉焕, 王超, 黄奇, 顾敏.  3种冬青属植物气体交换参数及叶绿素荧光特性 . 浙江农林大学学报, 2009, 26(1): 27-31.
    [20] 温国胜, 王林和, 张国盛.  干旱胁迫条件下臭柏的气体交换与荧光特征 . 浙江农林大学学报, 2004, 21(4): 361-365.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.06.018

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2019/6/1199

图(2) / 表(3)
计量
  • 文章访问数:  3389
  • HTML全文浏览量:  1030
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-30
  • 修回日期:  2019-05-05
  • 刊出日期:  2019-12-20

光强和氮素对芒萁光响应及叶绿素荧光参数的影响

doi: 10.11833/j.issn.2095-0756.2019.06.018
    基金项目:

    国家自然科学基金资助项目 31570611

    浙江省自然科学基金资助项目 LY13C160012

    作者简介:

    王佳佳, 从事园林植物与观赏园艺研究。E-mail:1239513631@qq.com

    通信作者: 何云核, 教授, 从事野生植物资源研究。E-mail:yunhhe@163.com
  • 中图分类号: S685

摘要: 以亚热带森林退化植被"标志种"之一的芒萁Dicranopteris dichotoma为研究材料,采取盆栽控制实验,设置不同光强[透光率35.96%(L1)、13.00%(L2)和4.75%(L3)]和氮素水平[施氮(N1)和不施氮(N0)],探究盆栽芒萁对光强和氮素的光响应,分析叶绿素荧光参数变化。结果表明:光强对光响应特征参数有显著影响(P < 0.05)。未施氮组,L2处理下盆栽芒萁最大净光合速率(Pnmax)、光饱和点(PLS)最大,光补偿点(PLC)、暗呼吸速率(Rd)和表观量子效率(AQY)最小;施氮提高了3种光强下盆栽芒萁的Pnmax,但差异不显著(P>0.05)。未施氮组,净光合速率(Pn)和蒸腾速率(Tr)大小变化顺序为L2 > L1 >对照> L3,气孔导度(GS)为L1 >对照>L3 > L2,施氮组均为L1 > L2 > L3;2种氮素水平下,胞间二氧化碳浓度(Ci)大小顺序均为对照> L1 > L2 > L3。未施氮组,叶绿素a、叶绿素b、总叶绿素及类胡萝卜素随光强减弱而增加,叶绿素a/b随光强减弱而降低,且差异显著(P < 0.05)。L1光强下光合色素质量分数施氮组显著高于未施氮组(P < 0.05),其他光强下施氮组均降低。未施氮组盆栽芒萁叶绿素荧光参数随光强增加而下降;施氮组盆栽芒萁的初始荧光(F0)显著低于同等光强未施氮组,最大荧光(Fm)L1和L3光强低于未施氮组,L2则高于未施氮组;PSⅡ最大光化学效率(Fv/Fm)、PSⅡ潜在活性(Fv/F0)和以吸收光能为基础的性能指数(Piabs)L1和L2光强高于未施氮组,但差异不显著。由此认为:施氮一定程度上提高各光强盆栽芒萁的净光合速率,有利于缓解强光光抑制作用,但不利于L2和L3光强下光合色素的提高。

English Abstract

魏继华, 李佳益, 刘宏, 等. 沙棘根瘤内生菌株库构建与微生物多样性分析[J]. 浙江农林大学学报, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
引用本文: 王佳佳, 张明如, 许焱, 等. 光强和氮素对芒萁光响应及叶绿素荧光参数的影响[J]. 浙江农林大学学报, 2019, 36(6): 1199-1207. DOI: 10.11833/j.issn.2095-0756.2019.06.018
WEI Jihua, LI Jiayi, LIU Hong, et al. Construction of endophytic strain bank of seabuckthorn nodule and an analysis of microbial diversity[J]. Journal of Zhejiang A&F University, 2022, 39(2): 356-363. DOI: 10.11833/j.issn.2095-0756.20210246
Citation: WANG Jiajia, ZHANG Mingru, XU Yan, et al. Light response and chlorophyll fluorescence parameters in Dicranopteris dichotoma with light intensity and nitrogen treatments[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1199-1207. DOI: 10.11833/j.issn.2095-0756.2019.06.018
  • 在亚热带低山丘陵森林植被退化地区,芒萁Dicranopteris dichotoma和五节芒Miscanthus floridulus[1-2]以极强的扩散定居能力率先成为草本层的绝对优势种,形成单优草本层片[3]。芒萁是里白科Gleicheniaceae芒萁属Dicranopteris多年生常绿蕨类植物。野外调查发现,芒萁自然生长于杉木Cunninghamia lanceolata,马尾松Pinus massoniana和毛竹Phyllostachys edulis单优群落下层、杨梅Myrica rubra,茶园和林缘的土壤深厚肥沃立地上,也可生长于土层瘠薄全光地段和水土流失严重的红壤侵蚀区[4],适应于从暖性针叶群落下层遮光到全光、从植被退化后土壤资源剩余到资源流失等多种生境[5],被认为是亚热带森林退化植被的“标志种”[6]。光强和氮素是影响植物光合生理过程的重要生态因子,植物通过形态结构可塑和生理可塑响应光强和氮素的变化[7]。蔡建国等[8]发现:为适应全光照条件,绣球Hydrangea macrophylla var. macrophylla可通过提高叶片吸收光能向热耗散等PSⅡ调节性能量耗散途径的分配,削弱反应中心过量激发能的积累。万宏伟等[9]在羊草Leymus chinensis等的栽培土壤中添加氮素,发现植物叶绿素相对含量增加,光合作用能力提高。活地被物层优势种过度发育繁茂,会形成“生态筛(ecological filter)”[10-11]效应,即对林下植物多样性产生“过滤”,造成活地被物的植物物种多样性下降[12],并阻碍乔木树种种子更新[13-14],导致森林植被进展演替受阻。在此背景下,芒萁单优层片形成的原因成为有趣的生态问题。芒萁为强耐荫且具有一定喜光特性的多年生草本植物[5, 15],本项研究以盆栽芒萁为材料,从光强变化和氮素添加角度出发,模拟暖性针叶单优群落下层遮荫与土壤较为肥沃、灌草丛全光与土壤贫瘠等不同生境斑块下芒萁光合生理可塑性变化的规律,揭示芒萁对光强和氮素添加的光合生理响应特征,为亚热带低山丘陵区芒萁单优草本层片的调控、促进森林植被的进展演替提供理论依据。

    • 选取长势基本一致的1年生芒萁克隆分株苗,各株保留长10 cm左右的根状茎,采用盆栽法,于2017年3月栽植于规格为40 cm × 21 cm × 17 cm的花盆内,1株·盆-1;盆栽土壤为当地红黄壤,于双层遮光棚内缓苗2月。于2017年5月选取长势基本一致的盆栽芒萁分株,随机分成6组,10盆·组-1,分别置于3个遮光棚内,2组·棚-1,分别对2组进行施氮(N1)和不施氮(N0)处理。

      遮光棚分别覆盖1,2,3层黑色尼龙遮阳网,设置不同光强处理:透光率(35.96±0.04)%(L1),(13.00±0.01)%(L2)和(4.75±0.01)%(L3),以无遮光处理(透光率为100%)为对照(ck)。施氮量根据前人对草本植物氮沉降的研究设定[16-17],称取3 g硫酸铵[(NH42SO4]分析纯溶解于200 mL纯水中,均匀喷入盆内;不施氮处理组喷入等量的水。处理时间为芒萁快速生长期(5-7月),高温期间适当浇水以保证试验材料免受干旱影响。

    • 利用便携式光合测定系统Li-6800(Li-COR,美国)测定光响应曲线。于2017年9月晴天8:00-11:00,选取长势一致的功能叶片,3盆·组-1,重复3次取平均值;设定光合有效辐射梯度为2 000,1 500,1 200,1 000,800,500,300,100,50,30,10和0 μmol·m-2·s-1。测定净光合速率Pn(μmol·m-2·s-1)、气孔导度Gs(mmol·m-2·s-1)、胞间二氧化碳摩尔分数Ci(mmol·mol-1)和蒸腾速率Tr(mmol·m-2·s-1)。利用测定光响应曲线时获得的数据进行气体交换特征的比较,用直角双曲线修正模型对光响应进行拟合[18],根据模型计算最大净光合速率Pnmax(μmol·m-2·s-1)、光饱和点PLS(μmol·m-2·s-1)、光补偿点PLC(μmol·m-2·s-1)、表观量子效率AQY(mmol·mol-1)和暗呼吸速率Rd(μmol·m-2·s-1)。

    • 选择测定光响应曲线的叶片,先进行40 min的暗适应处理;利用YZQ-500动态荧光仪(翼鬃麒科技公司)测定叶片快速叶绿素荧光诱导动力学曲线(O-J-I-P曲线),得到初始荧光(Fo)、最大荧光(Fm)。并根据SRIVASTAVA等[19]方法计算得到可变荧光(Fv)、PSⅡ潜在活性(Fv/Fo)、PSⅡ最大光化学效率(Fv/Fm)以及以吸收光能为基础的性能指数(Piabs)。

    • 将测定叶绿素荧光的叶片摘下,丙酮浸提得到芒萁提取液,利用分光光度计测定浸提液在波长470,663和645 nm下光密度值,按照LICHTENTHALERD[20]的方法计算得到叶绿素a(mg·g-1)、叶绿素b(mg·g-1)和类胡萝卜素(mg·g-1)质量分数,总叶绿素(mg·g-1)以叶绿素a与叶绿素b的总和表示。

    • 所有数据均利用Excel,SPSS进行处理,利用Origin Pro 8.0制图。采用单因素方差分析(one-way ANOVA)和最小显著差法(LSD)比较不同数据组间的差异性。利用双因素方差分析(two-way AVOVA)检验光强、氮素及其交互作用对光合特征参数、各色素质量分数及荧光参数的影响。试验所有数据用平均值±标准误表示。

    • 不同光强和氮素处理,盆栽芒萁最大净光合速率(Pnmax)、光饱和点(PLS)、光补偿点(PLC)、暗呼吸速率(Rd)及表观量子效率(AQY)变化规律表现不一(表 1)。未施氮组中,盆栽芒萁PnmaxPLS随光强增加先升后降,且均在L2光强下出现最大值;PLCRd随光强增加呈“N”字形变化;PLCRdAQY在L2光强时出现最小值。施氮和未施氮,L1和L2光强下Pnmax均显著高于L3P<0.05),但L3和对照差异不显著(P>0.05)。施氮组与未施氮组相比,所有光强下盆栽芒萁的Pnmax均有所提高,且L1和L2下盆栽芒萁PLS上升,L3下降,但差异不显著(P>0.05);L1下盆栽芒萁的PLCRdAQY均降低,L2下均上升,L3下无统一变化规律。

      表 1  不同光强与施氮处理盆栽芒萁光合特征参数的变化

      Table 1.  Changes in photosynthetic characteristics of potted D. dichotoma under different light intensityies and nitrogen applications

      处理 Pnmax/(μmol·m-2·s-1 PLS/(μmol·m-2·s-1 PLC/(μmol·m-2·s-1 Rd/(μmol·m-2·s-1 AQY/(mmol·mol-1
      N0 L1 10.24 ± 0.32 a 1 158.06 ± 0.72 a 19.14 ± 0.78 a 1.21 ± 0.04 a 0.068 ± 0.00 a
      L2 10.52 ± 0.24 a 1 233.66 ± 20.01 a 5.39 ± 0.30 d 0.30 ± 0.00 c 0.057 ± 0.00 a
      L3 6.27 ± 0.41 b 1 174.26 ± 9.29 a 8.25 ± 0.77 cd 0.42 ± 0.08 c 0.058 ± 0.00 a
      ck 7.47 ± 0.23 b 1 008.87 ± 40.05 b 16.87 ± 0.96 ab 1.06 ± 0.04 a 0.069 ± 0.00 a
      N1 L1 12.03 ± 0.54 a 1 172.00 ± 14.65 a 13.29 ± 0.66 abc 0.84 ± 0.05 ab 0.067 ± 0.00 a
      L2 11.23 ± 0.25 a 1 255.00 ± 9.77 a 11.24 ± 1.18 bcd 0.62 ± 0.07 bc 0.058 ± 0.00 a
      L3 6.43 ± 0.29 b 1 158.22 ± 15.96 a 11.68 ± 1.27 bcd 0.45 ± 0.04 bc 0.038 ± 0.00 b
      ANOVA L *** ** ** *** *
      N ns ns ns ns ns
      L×N ns ns * * ns
      说明:*、**和***分别表示P<0.05,P<0.01和P<0.001,ns表示不显著。同列不同字母表示处理间差异显著(P<0.05)

      双因素方差分析表明(表 1):氮素对盆栽芒萁光合特征参数均影响不显著(P>0.05),光强对芒萁光合特征参数均影响显著(P<0.05),光强和氮素对盆栽芒萁光补偿点和暗呼吸速率具有显著性交互影响(P<0.05),对其他光合特征参数交互作用不显著。

    • 随着光合有效辐射的增加,盆栽芒萁Pn总体呈增加趋势。L1和L2光强下,施氮组盆栽芒萁Pn在光合有效辐射为1 500 μmol·m-2·s-1时,未施氮组在1 200 μmol·m-2·s-1时达到最大,随后下降(图 1A),L3下则未出现下降趋势。未施氮组盆栽芒萁Pn变化顺序为L2>L1>对照>L3,施氮组为L1>L2>L3。随光合有效辐射增加,芒萁Tr总体呈上升趋势;与未施氮相比,施氮组L2和L3光强下盆栽芒萁Tr降低。未施氮组盆栽芒萁Tr大小顺序为L2>L1>对照>L3,施氮组为L1>L2>L3图 1B)。随光合有效辐射增加,盆栽芒萁Ci总体呈降低趋势,与未施氮相比,施氮组L1和L2光强下盆栽芒萁Ci升高。未施氮组盆栽芒萁Ci大小变化顺序为对照>L1>L2>L3,施氮组为L1>L2>L3图 1C)。盆栽芒萁Gs随光合有效辐射的增加变化较为复杂(图 1D),L3光强下,盆栽芒萁Gs在光合有效辐射为1 000 μmol·m-2·s-1时达到最大,随后下降;未施氮组Gs大小变化为L1>对照>L3>L2;施氮组为L1>L2>L3。3种光强下,未施氮组盆栽芒萁Gs均高于施氮组。

      图  1  不同光强和氮素处理后盆栽芒萁气体交换参数的变化

      Figure 1.  Changes of gas exchange parameters of potted D. dichotoma in different light intensits and nitrogen treatments

    • 随光强降低,未施氮组盆栽芒萁叶片的叶绿素a、叶绿素b、总叶绿素和类胡萝卜素质量分数均增加(图 2),L2和L3光强下叶绿素a、叶绿素b、总叶绿素和类胡萝卜素质量分数均显著高于L1和对照(P<0.05)。叶绿素a/b随光强降低先升后降,且差异显著(P<0.05)。L1光强下,施氮组盆栽芒萁叶绿素a、叶绿素b、总叶绿素和类胡萝卜素质量分数均显著高于未施氮组(P<0.05),但L2和L3条件下,施氮组低于未施氮组。施氮组盆栽芒萁叶绿素a、叶绿素b、总叶绿素和类胡萝卜素质量分数及叶绿素a/b大小顺序均为L1>L3>L2,且差异达显著水平(P<0.05)。

      图  2  不同透光率和氮素处理后盆栽芒萁叶片色素质量分数变化

      Figure 2.  Pigment content of potted D. dichotoma under different light intensities and nitrogen treatments

      双因素方差分析结果表明(表 2):光强、氮素及光强×氮素处理对芒萁叶绿素a,叶绿素b,总叶绿素及类胡萝卜素质量分数的影响均达显著水平(P<0.05)。

      表 2  透光率和氮素对盆栽芒萁叶片色素相对含量的效应分析

      Table 2.  Effect of different light intensity (L), nitrogen (N) and light × nitrogen (L × N) on the pigment content of potted D. dichotoma

      处理 叶绿素a 叶绿素b 总叶绿素 类胡萝卜素
      光强 25.7*** 24.2*** 25.3*** 24.0***
      氮素 46.5*** 38.6*** 44.6*** 42.2***
      光强×氮素 94.0*** 90.2*** 93.3*** 89.5***
      说明:******分别表示P<0.05,P<0.01和P<0.001
    • 表 3可知:与未施氮组相比,施氮组3种光强下盆栽芒萁Fo均显著降低(P<0.05);L1和L3Fm,L3Fv/FmFv/FoPiabs降低;L2Fm,L1和L2Fv/FmFv/FoPiabs升高。未施氮组盆栽芒萁FoFmFv/FmFv/Fo的大小顺序表现均为对照<L1<L2<L3Piabs表现为对照>L3>L2>L1;施氮组盆栽芒萁FoFm表现为L2>L3>L1Fv/FmFv/FoPiabs表现为L2>L1>L3

      表 3  不同透光率与施氮处理后盆栽芒萁叶片叶绿素荧光参数的变化

      Table 3.  Changes of chlorophyll fluorescence parameters of potted D. dichotoma with different light intensity and nitrogen application

      处理 Fo Fm Fv/Fm Fv/Fo Piabs
      N0 L1 4 041.3 ± 50.2 bc 12 865.7 ± 105.9 bc 0.69 ± 0.00 ab 2.18 ± 0.06 bc 0.90 ± 0.03 c
      L2 4 244.3 ± 53.4 b 13 575.3 ± 389.2 b 0.69 ± 0.01 ab 2.20 ± 0.10 bc 0.93 ± 0.07 bc
      L3 4 845.3 ± 202.1 a 16 377.7 ± 340.1 a 0.70 ± 0.00 ab 2.37 ± 0.09 abc 1.00 ± 0.08 bc
      ck 2 059.7 ± 136.9 e 6 233.7 ± 554.3 d 0.67 ± 0.00 b 2.02 ± 0.08 c 1.22 ± 0.06 ab
      N1 L1 3 087.3 ± 77.5 d 11 056.3 ± 401.8 c 0.72 ± 0.00 a 2.58 ± 0.08 ab 1.22 ± 0.05 ab
      L2 3 795.0 ± 36.8 c 14 253.7 ± 340.2 b 0.73 ± 0.00 a 2.76 ± 0.11 a 1.31 ± 0.08 a
      L3 3 709.0 ± 75.4 c 11 423.0 ± 1071.4 c 0.67 ± 0.04 b 2.09 ± 033 bc 0.88 ± 0.19 c
      ANOVA L *** *** ns ns ns
      N *** ** ns ns *
      L×N * ** * * *
      说明:******分别表示P<0.05,P<0.01和P<0.001,ns表示不显著。同列不同字母表示处理间差异显著(P<0.05)

      双因素方差分析结果表明(表 3):光强、氮素及光强×氮素均显著影响了盆栽芒萁的初始荧光和最大荧光(P<0.05),但对PSⅡ最大光化学效率影响未达到显著水平(P>0.05),光强对吸收光能的性能指数无显著影响(P>0.05),氮素及光强×氮素则对其影响显著(P<0.05)。

    • 光照和氮素是植物生长发育的重要影响因子[21]。植物对光强改变最直接的生理响应就是光合作用能力的改变[22]。氮素影响植物的叶绿素质量分数,间接影响植物光合作用[23]。光合特征参数可反映植物光合作用和光能利用能力。本研究发现:光强对芒萁光合特征参数影响显著,但氮素对光合特征参数均影响不显著,而光强和氮素的交互作用对各色素质量分数影响极显著。无论施氮与否,L2下芒萁光饱和点(PLS)出现最大值,光补偿点(PLC)出现最小值,表明芒萁在此光强下具有较宽的光生态幅。研究可知,L3下芒萁Pnmax小于对照,显著小于L1Rd值显著小于对照和L1,认为芒萁通过降低呼吸消耗积累有机物质,体现了芒萁对弱光环境的适应。表观量子效率(AQY)反映了植物对弱光的利用能力。自然条件下长势良好的植物AQY为0.04~0.07[27]。本研究中,施氮组L3处理下芒萁AQY低于正常值,说明此处理下芒萁受到一定的胁迫。

      施氮提高了各光强下芒萁的Pnmax,说明施氮一定程度上提高了芒萁的光合作用能力。施氮组中L1芒萁的Pnmax,叶绿素a和叶绿素b质量分数均显著高于L2和L3,说明施氮提高了植株对光照的捕获能力和利用能力[24];L1较高的类胡萝卜素可吸收过多的光能,保护芒萁的光合器官免受伤害。叶绿素a/b提示了植物弱光条件下的捕光效率[26]。本研究发现:随光强降低,芒萁叶绿素a/b呈降低趋势,但施氮组L3的叶绿素a/b有所上升,说明芒萁能够通过改变叶绿素a和叶绿素b质量分数来适应弱光环境。早先研究认为施氮有利于增加植物叶片的叶绿素含量[23, 25]。本研究发现:相比于未施氮组,施氮组在L2和L3光强下,芒萁叶片叶绿素质量分数降低,可能是此光强不利于芒萁对氮素的吸收利用,出于对弱光的生理适应,芒萁需通过提高其他生理功能以提高对光能的吸收、传递和转换。

      植物光合速率的提高得益于气孔导度Gs和蒸腾速率Tr的提高[29],而植物光合速率的降低有气孔限制和非气孔限制两方面的因素,若Pn下降且GsCi同时下降,则为气孔限制,而非气孔限制因素主要是叶肉细胞羧化能力的降低造成[28]。本研究中施氮组芒萁Pn均为气孔限制,而未施氮组2种因素均存在。

      与“表观性”的气体交换指标相比,荧光测量参数具有反映“内在性”的特点,是无损研究光合作用的重要手段[30],同时能够反映植物对生长环境的适应和耐受能力[31]Fo为叶片暗适应后再完全开放、未发生光化学反应状态下的参数,Fo降低,植物热耗散增加;Fm为PSⅡ光体系完全关闭下的荧光产量,Fv/Fo表示捕获光能和热耗散能量的比例。本研究中FoFmFv/Fo随光强的增加而降低,表明芒萁增加了热耗散启动光保护机制,同时降低了PSⅡ电子传递能力。Fv/FmPiabs均能反映PSⅡ的功能[32],但Piabs主要反映植株的整体功能,Fv/Fm下降则植物受到光抑制。本研究中Fv/Fm随光强的增加而降低,Piabs在全光时出现最大值,说明光强增加使芒萁受到了光抑制作用;全光下植株启动体内其他防御系统从而保证植株的整体功能。李伟成等[33]研究发现:施氮能降低植物发生光抑制的可能;本研究发现:施氮使得L1和L2光强下芒萁的Fv/FmFv/Fo均增加,表明盆栽芒萁捕获光能增加的同时热耗散也增加,光抑制减弱。但是L3光强下施氮组各荧光参数均降低,可能是芒萁为偏阳性植物,虽然有一定的耐荫性,但极度弱光条件下施氮不能补偿光照的不足,反而降低了光合氮利用率,造成光合色素含量降低,从而降低了荧光辐射的可能。

      综上所述,光强对盆栽芒萁光合作用有显著影响,氮素主要影响光合色素质量分数。L2光强(透光率为13.00%)时盆栽芒萁光生态幅较宽;强光(L1)及较强光(L2)下盆栽芒萁出现光抑制,施氮能调整光能分配,增加热耗散减轻光抑制伤害;L3光强(透光率为4.75%)时,盆栽芒萁通过调整各光合色素质量分数来提高对弱光的吸收、传递和转换,较低的暗呼吸速率有利于积累光合有机物质;相比于未施氮组,施氮出现负补偿现象。未施氮盆栽芒萁净光合速率降低的原因有气孔限制和非气孔限制,而施氮盆栽芒萁净光合速率降低的原因均为气孔限制。

参考文献 (33)

目录

/

返回文章
返回