留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻草不同还田量对土壤动物群落结构的影响

罗熳丽 段均华 姚恒 卢昌泰 肖玖金 张健

陈雪冰, 刘聪, 程赫, 等. 毛果杨ZHD家族全基因组水平鉴定及在干旱胁迫下的表达分析[J]. 浙江农林大学学报, 2022, 39(3): 465-474. DOI: 10.11833/j.issn.2095-0756.20210373
引用本文: 罗熳丽, 段均华, 姚恒, 等. 稻草不同还田量对土壤动物群落结构的影响[J]. 浙江农林大学学报, 2020, 37(1): 85-92. DOI: 10.11833/j.issn.2095-0756.2020.01.011
CHEN Xuebing, LIU Cong, CHENG He, et al. Genome-wide identification of ZHD gene family of Populus trichocarpa and its expression under drought stress[J]. Journal of Zhejiang A&F University, 2022, 39(3): 465-474. DOI: 10.11833/j.issn.2095-0756.20210373
Citation: LUO Manli, DUAN Junhua, YAO Heng, et al. Effects of different rice straw returning quantities on soil fauna community structure[J]. Journal of Zhejiang A&F University, 2020, 37(1): 85-92. DOI: 10.11833/j.issn.2095-0756.2020.01.011

稻草不同还田量对土壤动物群落结构的影响

DOI: 10.11833/j.issn.2095-0756.2020.01.011
基金项目: 

国家自然科学基金青年科学基金资助项目 31400457

四川省科技计划资助项目 19YYJC1544

四川省景观与游憩研究中心资助项目 JGYQ2018032

详细信息
    作者简介: 罗熳丽, 从事森林植被恢复与生态重建研究。E-mail:ml.luo@qq.com
    通信作者: 卢昌泰, 副教授, 从事森林资源经营管理、森林游憩管理研究。E-mail:lctwjy@163.com
  • 中图分类号: S718.6

Effects of different rice straw returning quantities on soil fauna community structure

  • 摘要:   目的  研究稻草不同还田量下土壤动物群落结构特征。  方法  在5 m×5 m的样方内,以未进行稻草还田的处理为对照(ck),采用手拣法和干、湿漏斗分离法,调查稻草还田后2个月和稻草还田后5个月,不同还田量[0.8(T20)、0.4(T10)、0.2(T5)和0 kg·m-2(ck)]处理下耕地土壤动物群落特征。  结果  试验共捕获土壤动物1 194只,隶属于3门11纲19目44科,平均密度4.45×105只·m-2;稻草还田处理后的样地土壤动物密度和类群数明显增加(P < 0.05),土壤动物类群数排序为T20(37)> T10(30)> T5(28)> ck(17)。土壤动物群落垂直分布明显,土壤动物密度随着土层加深而降低,具有明显的表聚性特征。稻草还田2个月后T20处理的土壤动物多样性指数、均匀度指数、丰富度指数均最高,稻草还田后5个月T10处理优势度指数最高。  结论  农业生产上稻草切碎后覆盖还田宜选择0.8 kg·m-2还田量。
  • 植物在生长发育过程中会通过不断调整基因的表达来适应各种逆境,而转录因子(TFs)是其调控过程的关键因子[1]。研究表明:锌指同源结构域(ZF-HD)转录因子作为一种同源异形盒(HB)蛋白在调控植物生长发育以及响应多种生物和非生物胁迫方面发挥着重要作用[2-3]。ZF-HD不仅具有同源结构域(HD),还包括1个高度保守的锌指结构域(ZF)[4],ZF是由2对保守的半胱氨酸(Cys)和/或组氨酸(His)残基结合单个锌离子组成的指环状结构蛋白,可特异性与DNA/RNA序列结合,并参与蛋白质互作[2, 5];HD是1个约60个氨基酸的DNA结合域(DBD),这段序列折叠成一个识别螺旋附着在DNA的大沟上,特异性地结合DNA来激活或抑制靶基因的表达[6]。为了方便研究该家族的进化史,HU等[7]将ZF-HD重新命名为ZHD。

    ZHD蛋白可分ZHD和小锌指(MIF)两类,两者都含有ZF结构域,但MIF缺少HD结构域[8]。2001年ZHD首次在黄花菊Flaveria trinervia中被鉴定出来[9],随后拟南芥Arabidopsis thaliana[10]、水稻Oryza sativa[11]、葡萄Vitis vinifera[8]、大白菜Brassica rapa ssp. pekinensis[2]、番茄Solanum lycopersicum[3]、茶树Camellia sinensis[5]和黄瓜Cucumis sativus[12]等的ZHD被陆续发现。研究表明:ZHD能够调控植物的抗逆性,如过表达AtZHD1可以提高拟南芥的耐旱性[13]OsZHD1基因过表达导致水稻叶片卷曲下垂,降低水稻的耐旱性[14];在大豆Glycine max中,过表达GmZF-HD1和GmZF-HD2会与编码钙调蛋白的GmGaM4基因启动子结合增强大豆的抗病能力[15]TaZFHD1参与小麦Triticum aestivum生长发育过程中茉莉酸(JA)、脱落酸(ABA)和乙烯(ET)信号转导过程,调节小麦对胁迫的抗性[16];大白菜中的BraZF-HD受光、低温等非生物胁迫诱导表达[2];此外,水稻ZHDsOsDREB1B基因的启动子结合调节水稻对低温、干旱和机械损伤的抗性[17]。ZHD广泛存在于植物中,在植物对环境胁迫响应过程中起着重要的作用。

    毛果杨Populus trichocarpa是研究木本植物生长发育、材质材性以及抗逆性状的重要模式植物,但是目前毛果杨ZHD (PtrZHD)家族及非生物胁迫响应特性的研究尚无报道。本研究通过生物信息学手段鉴定了毛果杨全基因组内的PtrZHDs基因,并对其编码蛋白特征、系统发育、基因扩张、基因结构与保守基序、启动子顺式作用元件和表达特性进行分析,为研究该家族基因的功能提供科学依据。

    将来自中国科学院分子植物科学卓越创新中心的野生型毛果杨‘Nisqually-1’通过组织培养扩繁后,选取长势一致的4周龄组培苗随机分成6组,用质量分数为8%的聚乙二醇(PEG 6000,来自邢台鑫蓝星科技有限公司)水溶液处理0、3、12、24、48和72 h,分别采集各处理组植株的根、茎和叶部组织,经液氮速冻后保存于−80 ℃冰箱,每组处理重复3次。

    利用拟南芥ZHD家族成员的氨基酸序列比对Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html)网站中毛果杨基因组数据库获得候选序列,将得到的序列上传到Pfam (http://pfam.xfam.org/)和SMART(http://smart.embl-heidelberg.de/)数据库,去除不含ZF-HD_dimer (PF04770)结构域的序列得到全部的PtrZHDs[12]。从Phytozome数据库中获取PtrZHD家族基因的染色体位置、基因序列以及开放阅读框长度等信息,并根据基因所在染色体号及位置对其进行命名。在ExPasy (https://web.expasy.org/protparam/)网站预测PtrZHD家族分子质量、等电点和氨基酸序列长度。

    将鉴定出的毛果杨ZHD氨基酸序列与已知的拟南芥[10]、水稻[11]和大白菜[2]的ZHD氨基酸序列在MEGA X软件的ClustaW程序中进行多重序列比对,采用邻近法(NJ)构建系统进化树,步长设为10000次,得到系统发育进化树数据[18],经EvolView(https://www.evolgenius.info/ evolview/)网站可视化。

    PtrZHD家族基因的蛋白质编码序列(CDs)在美国国家生物信息中心(NCBI)网站(https://blast.ncbi.nlm.nih.gov/Blast.cgi)进行BLAST比对,以超过300 bp且同源性超过80%为标准鉴定同源基因对[19],同源关系经TBtools[20]软件可视化。利用TBtools计算同源基因的KsKa以及Ka/Ks[20-21]

    从毛果杨数据库(https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism= Ptrichocarpa)获得PtrZHD外显子和内含子长度及位置信息,并通过TBtools软件可视化。使用MEME (https://meme-suite.org/meme/tools/meme)网站对PtrZHD家族进行保守基序分析,保守域数目设置为15,结果由TBtools软件可视化。

    利用TBtools软件从毛果杨基因组数据中提取PtrZHD家族起始密码子前2 000 bp的序列作为启动子区域,上传至PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html)网站进行顺式作用元件分析[22],获得的数据通过TBtools软件可视化。

    1.7.1   组织表达特异性

    将野生型毛果杨通过组织培养扩繁后,挑选长势一致的4周龄组培苗,分别采集根、茎和叶组织,提取RNA后反转录成cDNA,用于实时荧光定量PCR (qRT-PCR)分析。每组处理重复3次,采用2−∆∆CT法计算相对表达量,并通过TBtools软件可视化。

    1.7.2   干旱胁迫下的响应特性

    将长势一致的1月龄组培苗随机分成6组。用质量分数为8%的PEG 6000处理0、6、12、24、48和72 h。分别采集各处理组植株的根、茎和叶组织,提取RNA后反转录成cDNA进行qRT-PCR分析。每组处理重复3次,采用$2^{-\Delta\Delta{\rm{C}}_{\rm{t}}} $法计算相对表达量,并通过TBtools软件可视化。

    1.7.3   RNA提取、反转录及qRT-PCR分析

    利用植物总RNA试剂盒(TSP412,北京擎科生物科技有限公司)提取总RNA,然后采用PrimeScriptTMRT reagent Kit [Perfect Real Time,宝生物工程(大连)有限公司 ] 试剂盒反转录RNA,获得cDNA后进行qRT-PCR分析。将PtrZHD家族蛋白质编码区序列上传至上海生工定量引物设计网站(https://www.sangon.com/new PrimerDesign)设计定量引物,以PtrActin为内参基因[19]。在赛默飞ABI 7500荧光定量PCR仪上进行试验,体系如下:2×TransStart TOP/Tip Green qPCR Super mix 10 μL、定量引物上下游混合引物(10 μmol·L−1) 0.4 μL、cDNA 1.5 μL,Passive Reference DyeⅡ(50×) 0.4 μL,加去离子水补充至20 μL体系。反应程序:94 ℃预变性30 s;94 ℃变性5 s,60 ℃退火15 s,72 ℃延伸35 s,40次循环。

    将所有含ZF-HD_dimer (PF04770)结构域的序列上传到Pfam和SMART数据库,去除冗余序列后从毛果杨基因组中鉴定出21个PtrZHD (表1),根据基因所在染色体及染色体上的位置信息,将它们分别命名为PtrZHD1~PtrZHD21。PtrZHD家族基因编码蛋白的基本特征分析表明:各PtrZHD所编码蛋白的长度为73~339个、分子量为8.28~37.98 kDa、等电点为6.39~9.31、编码序列长度为222~1 020 bp,蛋白长度、分子量、等电点和编码序列长度差异明显。表明PtrZHD家族基因及其编码蛋白特征存在较大差异,即该家族各个成员的生物学功能发生了分化。

    表 1  毛果杨ZHD家族基因概况
    Table 1  Overview of ZHD gene family in P. trichocarpa
    登录号基因名基因位置蛋白长度/个分子量/kDa等电点编码序列长度/bp
    Potri.002G035200.1 PtrZHD1 Chr02: 2259632..2261632 293 32.84 8.22 882
    Potri.002G102900.1 PtrZHD2 Chr02: 7442579..7444098 262 27.92 7.28 789
    Potri.003G000400.1 PtrZHD3 Chr03: 70322..71164 253 28.01 7.71 762
    Potri.003G146700.1 PtrZHD4 Chr03: 16229434..16229655 73 8.28 7.73 222
    Potri.004G11.300.1 PtrZHD5 Chr04: 12287585..12289662 334 36.77 8.70 1005
    Potri.004G126600.1 PtrZHD6 Chr04: 12337842..12338677 130 14.17 6.81 393
    Potri.004G135100.1 PtrZHD7 Chr04: 15528323..15529129 268 29.44 8.83 807
    Potri.004G229600.1 PtrZHD8 Chr04: 23480758..23482600 271 30.06 8.39 816
    Potri.005G11.300.1 PtrZHD9 Chr05: 9522291..9525287 339 37.98 9.19 1020
    Potri.005G158800.1 PtrZHD10 Chr05: 16017482..16019310 257 27.73 6.43 774
    Potri.005G227900.1 PtrZHD11 Chr05: 23746838..23749246 290 32.32 8.88 873
    Potri.007G024100.1 PtrZHD12 Chr07: 1814109..1816426 331 36.75 9.31 996
    Potri.008G086000.1 PtrZHD13 Chr08: 5402319..5403293 324 35.57 8.83 975
    Potri.010G169400.1 PtrZHD14 Chr10: 17139193..17140688 332 36.41 9.21 999
    Potri.012G040900.1 PtrZHD15 Chr12: 3680805..3681724 182 20.66 6.39 549
    Potri.013G108900.1 PtrZHD16 Chr13: 12226035..12227366 281 31.74 7.71 846
    Potri.015G032700.1 PtrZHD17 Chr15: 2637644..2638216 190 21.44 6.17 573
    Potri.017G082700.1 PtrZHD18 Chr17: 9830334..9831749 161 17.36 5.93 486
    Potri.017G082900.1 PtrZHD19 Chr17: 9903467..9905775 337 37.23 8.23 1014
    Potri.019G021400.1 PtrZHD20 Chr19: 2418959..2419646 132 14.83 8.83 399
    Potri.019G081300.1 PtrZHD21 Chr19: 11464924..11465688 184 20.87 9.91 555
    下载: 导出CSV 
    | 显示表格
    表 2  同源基因的Ka/Ks及同源性
    Table 2  Ka/Ks values and homologous status of homologous genes
    同源基因非同义替换率(Ka)同义替换率(Ks)Ka/Ks同源片段长度/bp同源性
    基因1基因2
    PtrZHD1 PtrZHD11 0.06 0.32 0.19 787 0.90
    PtrZHD2 PtrZHD10 0.04 0.19 0.21 711 0.92
    PtrZHD3 PtrZHD8 0.08 0.36 0.22 682 0.86
    PtrZHD5 PtrZHD19 0.08 0.35 0.23 779 0.88
    PtrZHD6 PtrZHD18 0.07 0.18 0.39 357 0.91
    PtrZHD9 PtrZHD12 0.08 0.29 0.28 875 0.85
    PtrZHD13 PtrZHD14 0.09 0.36 0.25 838 0.85
    PtrZHD15 PtrZHD17 0.05 0.27 0.19 496 0.90
    下载: 导出CSV 
    | 显示表格

    利用双子叶植物(拟南芥、毛果杨和大白菜)与单子叶植物(水稻)的ZHD蛋白序列构建系统进化树(图1),PtrZHD家族分为2个种类(ZHD和MIF),这2个种类可以分成7个亚族(Ⅰ~Ⅶ)[5, 8, 12],PtrZHD不同亚族中即包括单子叶植物又包括双子叶植物,表明该基因家族的分化早于单双子叶植物的分化。

    图 1  毛果杨、拟南芥、水稻和大白菜ZHD家族系统进化树
    Figure 1  Phylogenetic tree of ZHD protein family in P. trichocarpa, A. thaliana , O. sativa and B. rapa ssp. pekinensis

    PtrZHD家族成员在毛果杨染色体上的分布(图2)显示:21个PtrZHD不均匀地分布在毛果杨12条染色体上;4、5号染色体上分别分布4和3个ZHD,2、3、17和19号染色体上各分布2个ZHD,7、8、10、12、13和15号染色体上只分布1个ZHD,1、6、9、11、14、16和18号染色体上无ZHD分布。PtrZHD家族编码序列Blast结果表明:PtrZHD1和PtrZHD11、PtrZHD2和PtrZHD10、PtrZHD3和PtrZHD8、PtrZHD5和PtrZHD19、PtrZHD6和PtrZHD18、PtrZHD9和PtrZHD12、PtrZHD13和PtrZHD14以及PtrZHD15和PtrZHD17有共线性关系(图2表2),同源片段长度大于300 bp且同源性超过80%,是进化过程中由于全基因组复制和串联复制而形成的同源基因[3, 22],表明PtrZHD可能通过全基因组复制和串联复制进行家族扩张。8对同源基因的Ka/Ks均小于1(表2),说明PtrZHD家族在进化过程中经历了纯化选择,留存的基因较为保守[3]

    图 2  PtrZHD家族基因染色体定位及同源性分析
    Figure 2  Chromosome localization and homology analysis of PtrZHD gene

    PtrZHD家族21个成员中有11个成员含有内含子(图3B),这与之前报道的其他物种ZHD家族中有内含子的成员数量较少的研究结果稍有不同[5, 12]。PtrZHD蛋白具有2个保守性较高的基序:同源结构域序列(Motif 1)和锌指结构域序列(Motif 2)(图3C)。Motif 2与DNA的特异性结合有关;Motif 1与蛋白二聚体的形成有关[7]。所有的PtrZHD蛋白都具有Motif 1,而且除了PtrZHD4和亚族Ⅴ(MIF)的成员之外,其他家族成员都含Motif 2,说明该家族成员在进化过程中比较保守。

    图 3  PtrZHD家族基因结构和蛋白保守基序分析
    Figure 3  Analysis of gene structure and protein conserved motif of PtrZHD gene

    PtrZHD家族启动子区顺式作用元件可分为2个大类(图4):第一大类为植物激素响应元件,共有5种,分别为生长素响应元件(AuxRR-core、TGA-element),水杨酸响应元件(TCA-element),茉莉酸甲酯响应元件(CGTC-motif、TGACG-motif),脱落酸响应元件(ABRE)和赤霉素响应元件(P-box、GARE-motif);第二大类为非生物胁迫响应元件,共有4种,分别为厌氧诱导元件(ARE)、干旱诱导性结合位点(MBS)、抗病和胁迫诱导元件(TC-rich repeats)和低温响应元件(LTR)。PtrZHD家族各基因启动子区存在不同类型的作用元件,但处于同一亚族的各基因含有相似的作用元件(图4),亚族Ⅰ主要包含茉莉酸甲酯响应元件、脱落酸响应元件、赤霉素响应元件和厌氧诱导元件;亚族Ⅱ主要包含水杨酸响应元件和茉莉酸甲酯响应元件;亚族Ⅲ主要包含厌氧诱导元件、MYB干旱诱导性结合位点以及抗病和胁迫诱导元件;亚族Ⅳ主要包含生长素响应元件,水杨酸响应元件,茉莉酸甲酯响应元件,脱落酸响应元件和厌氧诱导元件;亚族Ⅴ主要包含水杨酸响应元件、赤霉素响应元件、厌氧诱导元件和MYB干旱诱导性结合位点;亚族Ⅵ主要包含茉莉酸甲酯响应元件、厌氧诱导元件、MYB干旱诱导性结合位点和低温响应元件;亚族Ⅶ主要包含水杨酸响应元件、茉莉酸甲酯响应元件和厌氧诱导元件。以上结果说明:PtrZHD家族可能对植物激素和逆境胁迫有响应能力,虽然不同基因之间响应元件种类存在差异,但是同一亚族基因启动子区顺式作用元件种类基本相同。

    图 4  PtrZHD家族基因启动子区顺式作用元件分析
    Figure 4  Analysis of cis-acting elements in promoter region of PtrZHD gene

    为了了解ZHD在毛果杨生长发育和环境响应中的潜在功能,利用qRT-PCR对毛果杨ZHD家族成员在根、茎和叶组织中的表达模式进行分析。结果(图5)表明:毛果杨21个PtrZHDs中有1、7和13个分别在根、茎和叶部组织偏好表达。亚族Ⅰ和Ⅲ的成员主要在叶中高表达;亚族Ⅱ和Ⅳ的成员全都在叶中高表达;亚族Ⅴ成员主要在茎中高表达;亚族Ⅵ成员主要在茎和叶中高表达;亚族Ⅶ成员在茎中高表达。毛果杨ZHD家族成员在根、茎和叶中有不同的表达特性,但同一亚族各成员偏好表达部位基本相同,说明ZHD在毛果杨根、茎和叶部组织中的生物学功能产生了分化,但同一亚族各成员功能相似。

    图 5  PtrZHDs组织表达特异性分析
    Figure 5  Analysis of tissue expression specificity of PtrZHDs gene

    图6可知:在根中,随着干旱胁迫时间的增加,部分PtrZHD的表达量显著上调,达到峰值后逐渐降低,PtrZHD3、PtrZHD8、PtrZHD9、PtrZHD10、PtrZHD11、PtrZHD5、PtrZHD13和PtrZHD14在干旱胁迫下表达量呈持续上升趋势,PtrZHD1、PtrZHD6在干旱胁迫下表达量下降;在茎中,大部分PtrZHD在干旱胁迫后显著上调表达,达到峰值后逐渐降低,而PtrZHD2、PtrZHD3、PtrZHD5、PtrZHD6和PtrZHD7在干旱胁迫下表达量呈持续上升趋势;在叶中,大部分PtrZHD在干旱胁迫后表达量同样呈先升后降的趋势,PtrZHD5、PtrZHD7和PtrZHD20在干旱胁迫下表达量持续下降,而PtrZHD1和PtrZHD18在干旱胁迫下表达量呈持续上升趋势。从响应速度来看,根中大部分PtrZHD基因响应干旱胁迫的快速上升期发生在6、12或72 h,而在茎和叶中的快速上升期发生在6或12 h。表明毛果杨ZHD家族各成员响应干旱胁迫且在胁迫中发挥不同的作用。

    图 6  不同组织中PtrZHDs在干旱胁迫下的表达谱分析
    Figure 6  Expression profile analysis of PtrZHDs gene in different tissues under drought stress

    ZHD是植物特有的转录因子,在植物生长发育和逆境胁迫响应中起着重要作用[6, 15]。本研究从全基因水平鉴定出21个PtrZHDs家族成员,进化分析表明(图1):21个PtrZHDs可以分为2个不同的种类(ZHD和MIF)、7个亚族(Ⅰ~Ⅶ),这与葡萄[8]、茶树[5]和黄瓜[12]中的分类基本一致。

    PtrZHD家族有76%的成员涉及全基因组复制和串联复制现象,说明该基因家族扩张的主要方式是全基因组复制和串联复制[22-23],基因复制可以提供丰富的遗传物质有助于毛果杨适应外界环境。PtrZHD家族同源基因的Ka/Ks均小于1,表明纯化作用在该基因家族进化过程中存在一定的选择压力[3],说明PtrZHD家族基因具有较强的保守性。同时,PtrZHD家族基因编码蛋白保守基序分析发现:21个PtrZHD蛋白具有2个保守性较高的基序Motif 1和Motif 2,进一步说明PtrZHD家族在进化过程中较为保守。

    启动子分析发现:虽然PtrZHD家族启动子区顺式作用元件的种类不同,但处于同一亚族基因启动子区顺式作用元件类型基本相同,同时,同一亚族基因编码蛋白的保守基序也基本相同,表明PtrZHD家族不同亚族的生物学功能产生了分化,但同一亚族各基因的生物学功能基本相同;PtrZHD家族成员在毛果杨根、茎和叶部组织中具有偏好性表达特征,但同一亚族基因的偏好表达部位基本相同。

    毛果杨中具有内含子的ZHD占比(52%)多于拟南芥(0%)[2]、水稻(33%)[24]、玉米Zea mays(13%)[24]、黄瓜(38%)[14]、苦荞麦Fagopyrum tataricum (20%)[25]、大白菜(3%)[2]和番茄(4%)[3]等草本植物,内含子增多可以加大转录本的多样性,提高生物的抗逆能力[26]。因此,毛果杨ZHD的内含子比草本植物多的原因可能是毛果杨生命周期长、生存空间大,需要应对更为复杂的环境挑战,所以进化出了更多含有内含子的基因以保证其正常生长发育。

    ZHD能够调控植物的生长发育和对干旱胁迫的抗性,如过表达AtZHD1可以提高拟南芥的耐旱性[13]OsZHD1基因过表达导致水稻叶片卷曲下垂,降低水稻的耐旱性[14];毛果杨亚族Ⅱ中的PtrZHD2、PtrZHD10与AtZHD1、OsZHD1聚类在一起,且同时在叶部组织中高表达,表明PtrZHD2和PtrZHD10可能通过调控毛果杨叶片的生长发育来响应干旱胁迫的。生物在遭受胁迫时,基因的相关顺势作用元件会影响其自身的转录以响应胁迫[27]PtrZHD家族基因启动子区含有MYB干旱诱导性结合位点,而且PtrZHD家族基因在干旱胁迫下的表达量会随着胁迫时间的增加而发生变化,进一步说明在毛果杨干旱胁迫的响应中,PtrZHD家族基因发挥着重要的调控作用。

    本研究在全基因组水平上鉴定出21个PtrZHDs,通过系统发育将其分为7个亚族;同源性及KaKs分析表明:PtrZHD通过全基因组复制和串联复制进行家族扩张且在进化过程中经历了纯化选择;启动子顺式作用元件分析表明:PtrZHD家族基因能够响应干旱胁迫信号;基因结构和基序分析表明:PtrZHD家族基因功能发生了分化但同一亚族基因生物学功能基本相同;组织表达特异性和干旱胁迫下的表达模式表明:毛果杨ZHD在不同组织中行使特定的生物学功能且能够响应干旱胁迫。

  • 图  1  各生境土壤动物水平分布变化

    Figure  1  Each horizontal distribution of soil fauna habitat change

    图  2  各生境不同体型土壤动物分布变化

    Figure  2  Each horizontal size distribution of soil fauna in the different levels of change

    图  3  各生境土壤动物垂直分布变化

    Figure  3  Each vertical distribution of soil fauna habitat change

    表  1  不同样地土壤动物群落密度统计

    Table  1.   Compositions of soil fauna community in the different plots

    类群 还田2个月/(只·m-2) 还田5个月/(只·m-2) 总计/(只·m-2) 多度
    T20 T10 T5 ck T20 T10 T5 ck
    线虫纲Nematoda 60.13 52.13 38.43 82.41 77.79 88.00 87.51 73.90 72.16 +++
    懒甲螺科Nothridae 26.03 27.45 49.36 5.40 0.09 0 0 0 11.09 +++
    蚁科Formicidae 0.84 0.01 6.35 0.46 9.03 0 0.35 15.58 4.33 ++
    线蚓科Enchytraeidae 0 0 0 1.80 6.08 8.45 6.31 2.90 4.00 ++
    绥螨科Sejidae 4.24 3.62 3.00 4.50 1.07 1.57 1.40 2.54 2.41 ++
    丽甲螨科Liacaridae 0.61 0 0 0 5.28 0.69 2.28 3.98 1.95 ++
    双翅目幼虫Diptera larvae 0.20 13.12 0 1.80 0 0 0 0 1.59 ++
    棘䖴科Onychiuridae 0.81 0.35 1.23 2.25 0.27 0.10 0.70 0.36 0.62 +
    跳虫科Poduridae 1.21 0.17 0.53 0 0 0.10 0.35 0.72 0.32 +
    露尾甲科Nitidulidae 1.21 0 0 0 0 0.79 0 0 0.26 +
    白蚁科Termitidae 2.42 0 0 0 0 0 0 0 0.22 +
    蝴蛛目Araneae 0.01 1.04 0.18 0 0 0.20 0 0 0.17 +
    叶蝉科Cicadellidae 0 0.69 0.18 0.90 0 0 0 0 0.17 +
    蚁甲亚科Pselaphidae 0 0 0.18 0.45 0 0 0.53 0 0.11 +
    叶甲科Chrysomelidae 0.20 0.52 0.18 0 0 0 0 0 0.10 +
    幺蚰科Scutigerellidae 0 0.17 0 0 0.27 0.10 0 0 0.09 +
    长角长䖴科Orchesellidae 0.81 0 0 0 0 0 0 0 0.07 +
    蜈蚣目Scolopendromorpha 0.21 0.17 0 0 0 0 0.18 0 0.06 +
    圆䖴科Sminthuridae 0.20 0.35 0 0 0 0 0 0 0.06 +
    蜚蠊科Blattidae 0.01 0 0 0 0 0 0.35 0 0.04 +
    拟步甲科Tenebrionidae 0.41 0 0.01 0 0 0 0 0 0.04 +
    派盾螨科Parholaspididae 0.20 0 0.18 0 0 0 0 0 0.04 +
    木螱科Kalotermitidae 0.20 0.17 0 0 0 0 0 0 0.04 +
    等节䖴科Isotomidae 0 0 0 0 0.09 0 0 0 0.02 +
    蟋蟀科Gryllidae 0 0 0.18 0 0 0 0 0 0.02 +
    小蚓类Microdrile oligochaetes 0.02 0.03 0.02 0.01 0 0 0 0 0.01 +
    蠼螋科Labiduridae 0 0 0 0 0.01 0 0 0 0 +
    鼠妇科Porcellionidae 0.01 0 0 0 0 0 0.01 0 0 +
    蝼蛄科Gryllotalpidae 0 0 0 0 0 0 0.01 0 0 +
    步甲科Carabidae 0 0 0 0 0 0 0.01 0 0 +
    姬马陆科Julidae 0.01 0 0 0 0 0 0 0 0 +
    金龟甲科幼虫Scarabaeidae larvae 0 0 0 0 0 0 0 0 0 +
    石蜈蚣目Lithobiomorpha 0 0 0 0 0 0 0 0 0 +
    猎蝽科Reduviidae 0 0 0 0 0 0 0 0 0 +
    隐翅虫科Staphylinidae 0 0 0 0 0 0 0 0 0 +
    蛭纲Hirudinea 0 0 0 0 0 0 0 0 0 +
    叩甲科Elateridae 0 0 0 0 0 0 0 0 0 +
    天牛科Cerambycidae 0 0 0 0 0 0 0 0 0 +
    瓢甲科Coccinellidae 0 0 0 0 0 0 0 0 0 +
    蝗科Acrididae 0 0 0 0 0 0 0 0 0 +
    角板盲蛛科Ceratolasmatidae 0 0 0 0 0 0 0 0 0 +
    缘蝽科Coreidae 0 0 0 0 0 0 0 0 0 +
    夜蛾科Noctuidae 0 0 0 0 0 0 0 0 0 +
    锹甲科Lucanidae 0 0 0 0 0 0 0 0 0 +
    合计 41 302.01 48 277.34 47 269.99 37 009.33 93 197.35 84 846.68 47 524.66 46 007.99 445 435.35
    总类群数 30 20 21 11 22 20 19 11 44
    下载: 导出CSV

    表  2  稻草不同还田量下土壤动物群落的多样性特征

    Table  2.   Diversity characteristics of soil fauna in each habitat

    处理 还田2个月 还田5个月
    H' J C D H' J C D
    T20 1.15±0.12 a 0.47±0.05 a 0.44±0.12 a 1.06±0.10 a 0.68±0.15 a 0.29±0.05 ab 0.68±0.08 a 0.78±0.20 a
    T10 0.79±0.13 a 0.39±0.06 a 0.60±0.07 a 0.60±0.29 b 0.37±0.13 a 0.19±0.06 b 0.83±0.07 a 0.47±0.17 b
    T5 0.87±0.10 a 0.42±0.04 a 0.54±0.06 a 0.67±0.06 b 0.50±0.80 a 0.25±0.03 ab 0.78±0.04 a 0.66±0.10 ab
    ck 0.69±0.24 a 0.41±0.16 a 0.68±0.13 a 0.47±0.14 b 0.74±0.08 a 0.39±0.06 a 0.64±0.07 a 0.53±0.09 ab
    说明:数据为平均值±标准误。同列不同小写字母表示处理间差异显著(P<0.05)
    下载: 导出CSV
  • [1] 尹文英.中国土壤动物[M].北京:科学出版社, 2000:11-198.
    [2] 张桂玲.秸秆和生草覆盖对桃园土壤养分含量、微生物数量及土壤酶活性的影响[J].植物生态学报, 2011, 35(12):1236-1244.

    ZHANG Guiling. Effects of straw and living grass mulching on soil nutrients, soil microbial quantities and soil enzyme activities in a peach orchard[J]. Chin J Plant Ecol, 2011, 35(12):1236-1244.
    [3] 康轩, 黄景, 姜建初, 等.免耕稻草覆盖种植红薯对稻田土壤碳库及微生物数量的影响[J].广西农业科学, 2010, 41(3):236-239.

    KANG Xuan, HUANG Jing, JIANG Jianchu, et al. Effects of no-tillage and straw covering for sweet potato on paddy soil carbon pool and quantity of soil microorganism[J]. Guangxi Agric Sci, 2010, 41(3):236-239.
    [4] 吴建富, 曾研华, 潘晓华, 等.稻草还田方式对双季水稻产量和土壤碳库管理指数的影响[J].应用生态学报, 2013, 24(6):1572-1578.

    WU Jianfu, ZENG Yanhua, PAN Xiaohua, et al. Effects of rice straw returning mode on rice grain yield and soil carbon pool management index in double rice-cropping system[J]. Chin J Appl Ecol, 2013, 24(6):1572-1578.
    [5] 黄伟生, 黄道友, 汪立刚, 等.稻草覆盖对坡地红壤培肥及作物增产的效果[J].农业工程学报, 2006, 22(10):102-104.

    HUANG Weisheng, HUANG Daoyou, WANG Ligang, et al. Effects of straw mulching to slope red soil on fertility maintaining and crop yield[J]. Trans Chin Soc Agric Eng, 2006, 22(10):102-104.
    [6] 叶文培, 谢小立, 王凯荣, 等.不同时期秸秆还田对水稻生长发育及产量的影响[J].中国水稻科学, 2008, 22(1):65-70.

    YE Wenpei, XIE Xiaoli, WANG Kairong, et al. Effects of rice straw manuring in different periods on growth and yield of rice[J]. Chin J Rice Sci, 2008, 22(1):65-70.
    [7] 张水清, 钟旭华, 黄农荣, 等.稻草覆盖还田对水稻氮素吸收和氮肥利用率的影响[J].中国生态农业学报, 2010, 18(3):611-616.

    ZHANG Shuiqing, ZHONG Xuhua, HUANG Nongrong, et al. Effect of straw-mulch-incorporation on nitrogen uptake and N fertilizer use efficiency of rice (Oryza sativa L.)[J]. Chin J Eco-Agric, 2010, 18(3):611-616.
    [8] 张水清, 钟旭华, 黄农荣, 等.稻草覆盖还田对华南双季晚稻物质生产和产量的影响[J].中国水稻科学, 2011, 25(3):284-290.

    ZHANG Shuiqing, ZHONG Xuhua, HUANG Nongrong, et al. Effects of straw mulching on dry matter production and grain yield of double cropping late-season rice (Oryza sativa) in south China[J]. Chin J Rice Sci, 2011, 25(3):284-290.
    [9] 曾研华, 吴建富, 何虎, 等.机械化稻草全量还田下双季早稻生长发育、产量及品质的响应[J].江西农业大学学报, 2011, 33(5):840-844.

    ZENG Yanhua, WU Jianfu, HE Hu, et al. Effect of mechanized total returning of straw to field on growth, yield and quality of early rice[J]. Acta Agric Univ Jiangxi, 2011, 33(5):840-844.
    [10] 邢协加, 王振中, 张友梅, 等.杀虫双农药对土壤螨类和弹尾类影响的研究[J].湖南师范大学自然科学学报, 1997, 20(1):80-85.

    XING Xiejia, WANG Zhenzhong, ZHANG Youmei, et al. Studies on the effects of dimethypo pesticide on the soil nemaloda and collembola[J]. Acta Sci Nat Univ Norm Hunan, 1997, 20(1):80-85.
    [11] 王一华, 傅荣恕.辛硫磷农药对土壤螨类影响的研究[J].山东师范大学学报(自然科学版), 2003, 18(4):72-75.

    WANG Yihua, FU Rongshu. Simulating toxicity tests of phoxim pesticide to soil mites[J]. J Shandong Norm Univ Nat Sci, 2003, 18(4):72-75.
    [12] 尹文英.中国土壤动物检索图鉴[M].北京:科学出版社, 1998:236-239.
    [13] 李鸿兴, 隋敬之, 周世秀.昆虫分类检索[M].北京:农业出版社, 1987:1236-1244.
    [14] 钟觉民.幼虫分类学[M].北京:农业出版社, 1990:1527-1532.
    [15] 黄玉梅, 张健, 杨万勤.巨桉人工林中小型土壤动物类群分布规律[J].应用生态学报, 2006, 17(12):2327-2331.

    HUANG Yumei, ZHANG Jian, YANG Wanqin. Distribution pattern of meso-micro soil fauna in Eucalyptus grandis plantation[J]. Chin J Appl Ecol, 2006, 17(12):2327-2331.
    [16] 肖玖金, 黄晓丽, 朱万强, 等.猕猴桃园春季土壤动物群落结构特征[J].应用与环境生物学报, 2013, 19(3):454-458.

    XIAO Jiujin, HUANG Xiaoli, ZHU Wanqiang, et al. Community structure of soil fauna in kiwifruit orchards in spring[J]. Chin J Appl Environ Biol, 2013, 19(3):454-458.
    [17] 崔宁洁, 张丹桔, 刘洋, 等.马尾松人工林不同大小林窗植物多样性及其季节动态[J].植物生态学报, 2014, 38(5):477-490.

    CUI Ningjie, ZHANG Danju, LIU Yang, et al. Plant diversity and seasonal dynamics in forest gaps of varying sizes in Pinus massoniana plantations[J]. Chin J Plant Ecol, 2014, 38(5):477-490.
    [18] 申燕.茶园土壤动物群落结构特征及影响因素研究[D].成都: 四川农业大学, 2010.

    SHEN Yan. Study on Dynamic Change of the Characteristics of Soil Fauna Community Structure in Tea Plantation and Its Effect Factor[D]. Chengdu: Sichuan Agricultural University, 2010.
    [19] 董炜华, 殷秀琴, 顾卫, 等.农牧交错带不同土地类型土壤动物生态特征研究:以内蒙古卓资山为例[J].干旱区地理, 2008, 31(5):693-700.

    DONG Weihua, YIN Xiuqin, GU Wei, et al. Ecological characteristics of soil fauna in different soil types of agro-pasture ecotone:a case of Zhuozi Mountain, Inner Mongolia[J]. Arid Land Geogr, 2008, 31(5):693-700.
    [20] 刘迎新, 王凯荣, 谢小立, 等.稻草覆盖对亚热带红壤旱坡地玉米旱期生长的生理调节作用及其产量效应[J].生态与农村环境学报, 2007, 23(4):18-23, 56.

    LIU Yingxin, WANG Kairong, XIE Xiaoli, et al. Effect of straw mulching on physiological adjustment and output of maize growing on subtropical red soil slope-land in dry season[J]. J Ecol Rural Environ, 2007, 23(4):18-23, 56.
    [21] 赵睿宇, 李正才, 王斌, 等.毛竹林地表稻草覆盖后翻耕对土壤有机碳的影响[J].生态学杂志, 2017, 36(8):2118-2126.

    ZHAO Ruiyu, LI Zhengcai, WANG Bin, et al. Effects of straw mulching and scarification on soil labile organic carbon pool in a Phyllostachys edulis plantation[J]. Chin J Ecol, 2017, 36(8):2118-2126.
    [22] ZHU Xinyu, ZHU Bo. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China[J]. Soil Tillage Res, 2015, 146:39-46.
    [23] 苟丽琼, 肖玖金, 黄进平, 等.土壤动物群落对楠木人工林凋落物和草本层去除的初期响应[J]. 2017, 34(5): 895-906.

    GOU Liqiong, XIAO Jiujin, HUANG Jinping, et al. Soil fauna community after removal of litter and herb layers in an artificial Phoebe zhennan plantaion[J]. 2017, 34(5): 895-906.
    [24] 连旭, 隋玉柱, 武海涛, 等.秸秆还田对黑土农田土壤甲螨群落结构的影响[J].农业环境科学学报, 2017, 36(1):134-142.

    LIAN Xu, SUI Yuzhu, WU Haitao, et al. Effect of on-site recycling of straw on community structure of soil Oribatida in black soil farmland[J]. J Agro-Environ Sci, 2017, 36(1):134-142.
  • [1] 张川英, 李婷婷, 龚笑飞, 潘江炎, 龚征宇, 潘军, 焦洁洁, 吴初平.  遂昌乌溪江流域山蜡梅生境群落特征与物种多样性 . 浙江农林大学学报, 2023, 40(4): 848-858. doi: 10.11833/j.issn.2095-0756.20220570
    [2] 何水莲, 黄蓓, 李田园, 田敏.  无距虾脊兰根际土壤真菌与根系内生真菌多样性 . 浙江农林大学学报, 2023, 40(6): 1158-1166. doi: 10.11833/j.issn.2095-0756.20230179
    [3] 彭思利, 张鑫, 武仁杰, 蔡延江, 邢玮, 葛之葳, 毛岭峰.  杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应 . 浙江农林大学学报, 2023, 40(4): 792-800. doi: 10.11833/j.issn.2095-0756.20220640
    [4] 张忠钊, 谢文远, 张培林.  天台县大雷山夏蜡梅群落学特征分析 . 浙江农林大学学报, 2021, 38(2): 262-270. doi: 10.11833/j.issn.2095-0756.20200349
    [5] 周雨苗, 何刚辉, 马绍峰, 邵方雷, 费禹凡, 黄顺寅, 章海波.  土壤微塑料污染的生态效应 . 浙江农林大学学报, 2021, 38(5): 1040-1049. doi: 10.11833/j.issn.2095-0756.20200729
    [6] 曹春婧, 何建龙, 王占军, 魏淑花.  宁夏不同区域欧李园昆虫群落多样性 . 浙江农林大学学报, 2021, 38(6): 1253-1260. doi: 10.11833/j.issn.2095-0756.20200774
    [7] 吴世斌, 库伟鹏, 周小荣, 纪美芬, 吴家森.  浙江文成珍稀植物多脉铁木群落结构及物种多样性 . 浙江农林大学学报, 2019, 36(1): 31-37. doi: 10.11833/j.issn.2095-0756.2019.01.005
    [8] 左政, 郑小贤.  不同干扰等级下常绿阔叶次生林林分结构及树种多样性 . 浙江农林大学学报, 2019, 36(1): 21-30. doi: 10.11833/j.issn.2095-0756.2019.01.004
    [9] 肖玖金, 尤花, 罗熳丽, 赵波, 卢昌泰, 魏洪, 谢吉庆.  四川盆周西缘山地典型人工林下凋落物层跳虫群落结构特征 . 浙江农林大学学报, 2017, 34(1): 56-62. doi: 10.11833/j.issn.2095-0756.2017.01.009
    [10] 肖玖金, 林宏贵, 周鑫, 尤花, 李云, 张健.  不同坡位柳杉人工林夏季土壤动物群落特征 . 浙江农林大学学报, 2016, 33(2): 257-264. doi: 10.11833/j.issn.2095-0756.2016.02.010
    [11] 赵波, 肖玖金, 周泓杨, 张健.  引种栽培雷竹对秋季土壤动物群落结构的影响 . 浙江农林大学学报, 2016, 33(3): 409-417. doi: 10.11833/j.issn.2095-0756.2016.03.006
    [12] 陈建明, 傅柳芳, 钱新江, 张芬耀, 谢文远, 陈锋.  湖州市埭溪古樟树林群落学特征的初步研究 . 浙江农林大学学报, 2015, 32(3): 361-368. doi: 10.11833/j.issn.2095-0756.2015.03.005
    [13] 刘佳敏, 张慧, 黄秀凤, 徐华潮.  浙江3个自然保护区昆虫多样性及森林健康评价 . 浙江农林大学学报, 2013, 30(5): 719-723. doi: 10.11833/j.issn.2095-0756.2013.05.013
    [14] 王丽敏, 缪心栋, 严彩霞, 马凯, 马丹丹, 李根有.  浙江省小花花椒群落结构与物种多样性 . 浙江农林大学学报, 2013, 30(2): 215-219. doi: 10.11833/j.issn.2095-0756.2013.02.009
    [15] 余运威, 应叶青, 任丽萍, 胡加付, 赵阿勇.  浙江临安竹林土壤动物群落结构特征及多样性 . 浙江农林大学学报, 2012, 29(4): 581-587. doi: 10.11833/j.issn.2095-0756.2012.04.015
    [16] 魏琦, 楼炉焕, 冷建红, 包其敏, 钟潮亮, 沈年华.  毛枝连蕊茶群落结构与物种多样性 . 浙江农林大学学报, 2011, 28(4): 634-639. doi: 10.11833/j.issn.2095-0756.2011.04.018
    [17] 沈年华, 万志洲, 汤庚国, 王春, 程红梅.  紫金山栓皮栎群落结构及物种多样性 . 浙江农林大学学报, 2009, 26(5): 696-700.
    [18] 哀建国, 俞琳, 章丽英, 钱柳钦, 张腾超.  浙江雪胆群落学特征研究 . 浙江农林大学学报, 2007, 24(6): 706-710.
    [19] 李贵祥, 施海静, 孟广涛, 方向京, 柴勇, 和丽萍, 张正海, 杨永祥.  云南松原始林群落结构特征及物种多样性分析 . 浙江农林大学学报, 2007, 24(4): 396-400.
    [20] 梁健, 孙婷.  延安林区啮齿动物群落的聚类分析 . 浙江农林大学学报, 2004, 21(1): 70-74.
  • 期刊类型引用(1)

    1. 亚华金,沈莲文,周涛,李明谦,余文才,和丽岗. 白羽扇豆WRKY转录因子家族鉴定及生物信息学分析. 热带农业科学. 2022(12): 42-53 . 百度学术

    其他类型引用(2)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2020.01.011

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2020/1/85

图(3) / 表(2)
计量
  • 文章访问数:  1833
  • HTML全文浏览量:  560
  • PDF下载量:  35
  • 被引次数: 3
出版历程
  • 收稿日期:  2018-12-27
  • 修回日期:  2019-06-18
  • 刊出日期:  2020-02-20

稻草不同还田量对土壤动物群落结构的影响

doi: 10.11833/j.issn.2095-0756.2020.01.011
    基金项目:

    国家自然科学基金青年科学基金资助项目 31400457

    四川省科技计划资助项目 19YYJC1544

    四川省景观与游憩研究中心资助项目 JGYQ2018032

    作者简介:

    罗熳丽, 从事森林植被恢复与生态重建研究。E-mail:ml.luo@qq.com

    通信作者: 卢昌泰, 副教授, 从事森林资源经营管理、森林游憩管理研究。E-mail:lctwjy@163.com
  • 中图分类号: S718.6

摘要:   目的  研究稻草不同还田量下土壤动物群落结构特征。  方法  在5 m×5 m的样方内,以未进行稻草还田的处理为对照(ck),采用手拣法和干、湿漏斗分离法,调查稻草还田后2个月和稻草还田后5个月,不同还田量[0.8(T20)、0.4(T10)、0.2(T5)和0 kg·m-2(ck)]处理下耕地土壤动物群落特征。  结果  试验共捕获土壤动物1 194只,隶属于3门11纲19目44科,平均密度4.45×105只·m-2;稻草还田处理后的样地土壤动物密度和类群数明显增加(P < 0.05),土壤动物类群数排序为T20(37)> T10(30)> T5(28)> ck(17)。土壤动物群落垂直分布明显,土壤动物密度随着土层加深而降低,具有明显的表聚性特征。稻草还田2个月后T20处理的土壤动物多样性指数、均匀度指数、丰富度指数均最高,稻草还田后5个月T10处理优势度指数最高。  结论  农业生产上稻草切碎后覆盖还田宜选择0.8 kg·m-2还田量。

English Abstract

陈雪冰, 刘聪, 程赫, 等. 毛果杨ZHD家族全基因组水平鉴定及在干旱胁迫下的表达分析[J]. 浙江农林大学学报, 2022, 39(3): 465-474. DOI: 10.11833/j.issn.2095-0756.20210373
引用本文: 罗熳丽, 段均华, 姚恒, 等. 稻草不同还田量对土壤动物群落结构的影响[J]. 浙江农林大学学报, 2020, 37(1): 85-92. DOI: 10.11833/j.issn.2095-0756.2020.01.011
CHEN Xuebing, LIU Cong, CHENG He, et al. Genome-wide identification of ZHD gene family of Populus trichocarpa and its expression under drought stress[J]. Journal of Zhejiang A&F University, 2022, 39(3): 465-474. DOI: 10.11833/j.issn.2095-0756.20210373
Citation: LUO Manli, DUAN Junhua, YAO Heng, et al. Effects of different rice straw returning quantities on soil fauna community structure[J]. Journal of Zhejiang A&F University, 2020, 37(1): 85-92. DOI: 10.11833/j.issn.2095-0756.2020.01.011
  • 土壤动物及土壤微生物的活动能够改善土壤的通气状况、养分有效性, 在土壤形成、发育、演化及土壤肥力形成演变中发挥着重要的作用。土壤动物数量繁多, 通过参与一系列生命活动, 直接或间接改变土壤的性质[1], 对土壤形成、发育及生态系统物质循环都具有重要意义。稻草还田是一种有效的农田培肥措施[3], 在避免稻草焚烧造成环境污染的同时, 也为农业生产提供有机肥源。作为重要肥料来源和潜在的碳库能源[2], 还田的稻草在增加土壤养分[4], 培肥地力, 改善土壤理化性状[5], 优化农田生态环境, 提高作物产量与品质[6-9]等方面意义重大。本研究以未进行稻草还田的处理为对照, 设置不同质量稻草还田处理, 并调查不同处理下农田土壤动物群落特征, 分析不同稻草还田量对土壤动物群落结构的影响, 旨在为农田耕地环境的保护及可持续农业发展提供理论依据。

    • 研究区四川省都江堰市浦阳镇金凤村(31°0′23″N, 103°37′18″E)属四川盆地亚热带湿润气候, 年平均气温为15.2 ℃, 年降水量为1 243.8 mm, 空间分布不均, 呈东南向西北减少, 无霜期269.0 d, 年蒸发量为930.1 mm。土壤类型为山地黄壤。样地为水稻Oryza sativa-油菜Brassica campestris轮作模式, 水稻品种为‘川优6203’‘Chuanyou 6203’, 油菜品种为‘绵油88’‘Mianyou 88’。

    • 2016年4月, 在耕地内按照具有代表性的原则设置2个面积均为10 m × 30 m的样地; 各样地内设置面积为5 m × 5 m样方各4个, 保持各样方间间距大于2 m, 其中4个为重复样地。随机编号, 按照单位面积稻草的平均产生量, 选取最新收获的水稻稻草, 切成3~5段后按0(ck)、0.2(T5)、0.4(T10)、0.8 kg·m-2(T20)的稻草均匀铺撒在样方上进行还田。

      分别在还田2个月和5个月时, 在各样方内按"品"字形布点, 随机设置3个大小为50 cm × 50 cm的小样方, 采集0~5、5~10、10~15 cm深度土层。手捡法分层收集土壤中的大型动物, 并用体积分数为75%的乙醇将动物杀死, 带回实验室。环刀法(r=5 cm, V=100 cm3)自上而下依次取土样, 每层各取2个, 用尼龙网包好贴上标签迅速放入黑布袋带回实验室; 用Tullgren[10]干漏斗和Baermann[11]湿漏斗分离土壤中的中小型土壤动物, 分离时间为48 h, 其中湿生土壤动物每4 h观察1次。干生分离出的土壤动物用盛有体积分数为75%乙醇的器皿收集, 湿生土壤动物用清水收集, 解剖镜下进行分类鉴定和数量统计。

      所得土壤动物用双目解剖镜(Leica, EZ4HD)进行观察, 参照《中国土壤动物检索图鉴》[12]、《昆虫分类检索》[13]、《幼虫分类学》[14]进行分类鉴定, 一般鉴定到科, 同时统计个体数量。

    • 土壤动物多样性分析:采用Shannon-Wiener多样性指数(H′)、Margalef丰富度指数(D)[15]、Pielou均匀度指数(J)[16]、Simpson优势度指数(C)[17]。计算公式如下:Shannon-Wiener多样性指数${H^\prime } = - \sum\limits_{i = 1}^s {{P_i}} \ln {P_i}$。式中:Pi=ni/N, ni为第i个类群的个体数; N为所有类群的个体数。Margalef丰富度指数D=(S-1)/lnN。式中:S为类群数, N为所有类群的个体数。Pielou均匀度指数J=H′/lnS。式中:H′为Shannon-Wiener多样性指数, S为类群数。Simpson优势度指数$C = \sum\limits_{i = 1}^s {P_i^2} $。其中:ni为第i个类群的个体数; N为所有类群的个体数。

      类群数量等级划分:个体数量大于捕获总量的10.0%者为优势类群(+++), 大于等于1.0%小于等于10.0%者为常见类群(++), 小于1.0%者为稀有类群(+)。

      采用Excel 2010和SPSS 22.0完成数据处理和分析。用单因素方差分析(one-way ANOVA)对不同样方间土壤动物群落组成进行检验; 用LSD(方差齐性)法进行多重比较, 显著性水平设定为P=0.05[18]

    • 本研究共捕获土壤动物1 194只, 隶属于3门11纲19目44个类群, 类群数排序为T20>T10>T5>对照。优势类群为线虫纲Nematoda和懒甲螨科Nothridae, 分别占总捕获量的72.16%和11.09%;常见类群为蚁科Formicidae、线蚓科Enchytraeidae、绥螨科Sejidae、丽甲螨科Liacaridae、双翅目Diptera幼虫, 分别占总量的4.33%、4.00%、2.41%、1.95%和1.59%;棘科Onychiuridae、跳虫科Poduridae、露尾甲科Nitidulidae等构成稀有类群, 占总量的2.47%。

      表 1可见:还田2个月后各样地的优势类群都为线虫纲和懒甲螨科, 其中:T20样地2次捕获的土壤动物包含30个类群, 平均密度4.13×104只·m-2; T10样地2次捕获的土壤动物隶属于20科, 平均密度为4.83×104只·m-2; T5样地2次捕获的土壤动物隶属于21科, 平均密度4.73×104只·m-2; 对照样地2次捕获的土壤动物隶属于11科, 平均密度3.70×104只·m-2。还田5个月后T20、T10、T5样地的优势类群都为线虫纲, 对照样地优势类群为线虫纲和蚁科, 其中:T20样地2次捕获的土壤动物包含22科, 优势类群为线虫纲, 平均密度9.32×104只·m-2; T10样地2次捕获的土壤动物隶属于20科, 平均密度8.48×104只·m-2; T5样地2次捕获的土壤动物隶属于19科, 平均密度4.75×104只·m-2; 对照样地2次捕获的土壤动物隶属于11科, 平均密度4.60×104只·m-2

      表 1  不同样地土壤动物群落密度统计

      Table 1.  Compositions of soil fauna community in the different plots

      类群 还田2个月/(只·m-2) 还田5个月/(只·m-2) 总计/(只·m-2) 多度
      T20 T10 T5 ck T20 T10 T5 ck
      线虫纲Nematoda 60.13 52.13 38.43 82.41 77.79 88.00 87.51 73.90 72.16 +++
      懒甲螺科Nothridae 26.03 27.45 49.36 5.40 0.09 0 0 0 11.09 +++
      蚁科Formicidae 0.84 0.01 6.35 0.46 9.03 0 0.35 15.58 4.33 ++
      线蚓科Enchytraeidae 0 0 0 1.80 6.08 8.45 6.31 2.90 4.00 ++
      绥螨科Sejidae 4.24 3.62 3.00 4.50 1.07 1.57 1.40 2.54 2.41 ++
      丽甲螨科Liacaridae 0.61 0 0 0 5.28 0.69 2.28 3.98 1.95 ++
      双翅目幼虫Diptera larvae 0.20 13.12 0 1.80 0 0 0 0 1.59 ++
      棘䖴科Onychiuridae 0.81 0.35 1.23 2.25 0.27 0.10 0.70 0.36 0.62 +
      跳虫科Poduridae 1.21 0.17 0.53 0 0 0.10 0.35 0.72 0.32 +
      露尾甲科Nitidulidae 1.21 0 0 0 0 0.79 0 0 0.26 +
      白蚁科Termitidae 2.42 0 0 0 0 0 0 0 0.22 +
      蝴蛛目Araneae 0.01 1.04 0.18 0 0 0.20 0 0 0.17 +
      叶蝉科Cicadellidae 0 0.69 0.18 0.90 0 0 0 0 0.17 +
      蚁甲亚科Pselaphidae 0 0 0.18 0.45 0 0 0.53 0 0.11 +
      叶甲科Chrysomelidae 0.20 0.52 0.18 0 0 0 0 0 0.10 +
      幺蚰科Scutigerellidae 0 0.17 0 0 0.27 0.10 0 0 0.09 +
      长角长䖴科Orchesellidae 0.81 0 0 0 0 0 0 0 0.07 +
      蜈蚣目Scolopendromorpha 0.21 0.17 0 0 0 0 0.18 0 0.06 +
      圆䖴科Sminthuridae 0.20 0.35 0 0 0 0 0 0 0.06 +
      蜚蠊科Blattidae 0.01 0 0 0 0 0 0.35 0 0.04 +
      拟步甲科Tenebrionidae 0.41 0 0.01 0 0 0 0 0 0.04 +
      派盾螨科Parholaspididae 0.20 0 0.18 0 0 0 0 0 0.04 +
      木螱科Kalotermitidae 0.20 0.17 0 0 0 0 0 0 0.04 +
      等节䖴科Isotomidae 0 0 0 0 0.09 0 0 0 0.02 +
      蟋蟀科Gryllidae 0 0 0.18 0 0 0 0 0 0.02 +
      小蚓类Microdrile oligochaetes 0.02 0.03 0.02 0.01 0 0 0 0 0.01 +
      蠼螋科Labiduridae 0 0 0 0 0.01 0 0 0 0 +
      鼠妇科Porcellionidae 0.01 0 0 0 0 0 0.01 0 0 +
      蝼蛄科Gryllotalpidae 0 0 0 0 0 0 0.01 0 0 +
      步甲科Carabidae 0 0 0 0 0 0 0.01 0 0 +
      姬马陆科Julidae 0.01 0 0 0 0 0 0 0 0 +
      金龟甲科幼虫Scarabaeidae larvae 0 0 0 0 0 0 0 0 0 +
      石蜈蚣目Lithobiomorpha 0 0 0 0 0 0 0 0 0 +
      猎蝽科Reduviidae 0 0 0 0 0 0 0 0 0 +
      隐翅虫科Staphylinidae 0 0 0 0 0 0 0 0 0 +
      蛭纲Hirudinea 0 0 0 0 0 0 0 0 0 +
      叩甲科Elateridae 0 0 0 0 0 0 0 0 0 +
      天牛科Cerambycidae 0 0 0 0 0 0 0 0 0 +
      瓢甲科Coccinellidae 0 0 0 0 0 0 0 0 0 +
      蝗科Acrididae 0 0 0 0 0 0 0 0 0 +
      角板盲蛛科Ceratolasmatidae 0 0 0 0 0 0 0 0 0 +
      缘蝽科Coreidae 0 0 0 0 0 0 0 0 0 +
      夜蛾科Noctuidae 0 0 0 0 0 0 0 0 0 +
      锹甲科Lucanidae 0 0 0 0 0 0 0 0 0 +
      合计 41 302.01 48 277.34 47 269.99 37 009.33 93 197.35 84 846.68 47 524.66 46 007.99 445 435.35
      总类群数 30 20 21 11 22 20 19 11 44
    • 图 1A可知:还田5个月后各样地的土壤动物密度均高于还田2个月后的土壤密度。还田2个月后, 各样地的平均密度排序为T10>T5>T20>对照, 各样地间差异不显著(F=0.105, P=0.956)。还田5个月后, 各样地的平均密度排序为T20>T10>T5>对照, 样地间差异极显著(F=6.702, P=0.003);其中, T20样地与对照、T5样地的平均密度均呈极显著差异(P<0.01), T10与T5样地的平均密度均呈极显著差异(P<0.01), 与对照样地呈显著差异(P<0.05)。

      图  1  各生境土壤动物水平分布变化

      Figure 1.  Each horizontal distribution of soil fauna habitat change

      T20土壤动物的类群数均高于T10、T5和对照样地的土壤动物。统计分析显示(图 1B):还田2个月后样地间土壤动物类群数差异性极显著(F=9.312, P=0.001), 其中, T20样地和T10、T5、对照样地分别呈极显著差异(P<0.01);还田5个月后T10和T20样地的土壤动物类群数呈显著差异(F=1.299, P=0.011)。

    • 按照尹文英[12]对土壤动物体型的划分, 土壤动物可分为大型和中小型2类。由图 2可以看出:与对照相比, T20、T10、T5样地大型、中小型土壤动物的平均密度均较高。还田2个月后, 各处理大型土壤动物平均密度排序为T20>T10>T5>对照, 其中T20样地和对照差异显著(P<0.05), 其他样地间差异不显著; 中小型土壤动物以T10样地平均密度最高, 对照样地最低, 差异均不显著。还田5个月后, T20样地大型土壤动物密度最高, 占总密度的41.44%, 其余依次为T5(35.14%)、T10(18.02%)、对照(5.40%)。统计分析显示:还田5个月后, 各样地中小型土壤动物平均密度差异极显著(F=6.759, P=0.003), 对照分别与T10、T20呈显著差异(P<0.05), T5分别与T10、T20呈显著差异(P<0.05)。

      图  2  各生境不同体型土壤动物分布变化

      Figure 2.  Each horizontal size distribution of soil fauna in the different levels of change

    • 对不同稻草还田量下0~5、5~10和10~15 cm层的土壤动物密度进行比较, 结果显示: 0~5 cm层土壤动物平均密度最高, 随着土层加深土壤动物密度降低, 具有明显的表聚性(图 3A)。

      图  3  各生境土壤动物垂直分布变化

      Figure 3.  Each vertical distribution of soil fauna habitat change

      方差分析显示(图 3B):还田2个月后各样地所有土层土壤动物平均密度差异均不显著(P>0.05);还田5个月后各样地10~15 cm土层土壤动物平均密度差异不显著(F=1.556, P=0.237), 0~5 cm层(F=6.099, P=0.005)、5~10 cm层(F=5.942, P=0.006)差异显著。0~5 cm土层中, 对照与T20样地土壤动物密度差异显著(P<0.05), T5与T10、T20样地差异显著(P<0.05)。

    • 稻草还田提高了土壤动物的多样性指数。还田2个月后各处理下土壤动物多样性指数(H′)、丰富度指数(D)均高于对照, 优势度指数(C)均低于对照, 均匀度指数T20和T5高于对照, 但T10低于对照。还田5个月后对照土壤动物多样性指数和均匀度指数最高, T10处理下土壤动物优势度指数最高, T20处理下土壤动物丰富度指数最高(表 2)。

      表 2  稻草不同还田量下土壤动物群落的多样性特征

      Table 2.  Diversity characteristics of soil fauna in each habitat

      处理 还田2个月 还田5个月
      H' J C D H' J C D
      T20 1.15±0.12 a 0.47±0.05 a 0.44±0.12 a 1.06±0.10 a 0.68±0.15 a 0.29±0.05 ab 0.68±0.08 a 0.78±0.20 a
      T10 0.79±0.13 a 0.39±0.06 a 0.60±0.07 a 0.60±0.29 b 0.37±0.13 a 0.19±0.06 b 0.83±0.07 a 0.47±0.17 b
      T5 0.87±0.10 a 0.42±0.04 a 0.54±0.06 a 0.67±0.06 b 0.50±0.80 a 0.25±0.03 ab 0.78±0.04 a 0.66±0.10 ab
      ck 0.69±0.24 a 0.41±0.16 a 0.68±0.13 a 0.47±0.14 b 0.74±0.08 a 0.39±0.06 a 0.64±0.07 a 0.53±0.09 ab
      说明:数据为平均值±标准误。同列不同小写字母表示处理间差异显著(P<0.05)

      方差分析结果显示:还田2个月后, 各样地中土壤动物优势度指数(F=1.810, P=0.184)、多样性指数(F=2.049, P=0.145)、均匀性指数(F=0.270, P=0.846)的差异均不显著, 丰富度指数(F=9.764, P=0.001)T20样地与T10、T5、对照呈极显著差异(P<0.01)。还田5个月后, 各样地中土壤动物优势度指数(F=1.436, P=0.267)、多样性指数(F=1.795, P=0.186)差异均不显著, T20与T10样地的丰富度指数差异显著(P<0.05), 对照与T10样地的均匀度指数差异显著(P<0.05)。

    • 目前, 稻草还田已经作为农业上培肥地力的一项技术而普遍利用。本研究发现:还田2个月和5个月后, 土壤动物类群数排序均为T20>T10>T5>对照, 土壤动物密度排序为T10>T5>T20>对照。整体来看, 土壤动物平均密度和类群数差异不显著, 原因可能有以下几点。首先, 实验在夏季进行, 土壤温度高、湿度大, 微生物活动旺盛, 分解快, 还田5个月后(9月)未发现明显稻草的分解物, 说明腐熟高峰已过, 土壤营养处于下降状态, 因此土壤动物个体数量和类群数降低。其次, 稻草覆盖的还田方式增加了农田表层腐殖质的土壤水分和有机质, 提高了土壤保水保墒能力, 喜湿土壤动物幼虫数量明显增加, 土壤动物类群数量也随之增加, 其中, 稻草还田处理的土壤线虫数量最高达到ck处理的2.5倍; 再次, 单位面积上稻草还田较多, 则分解后养分较多, 有利于创造适宜土壤动物生存繁衍的环境[19-21]。相比于稻草还田处理, 对照土壤贫瘠, 土壤肥力较差, 因此土壤动物类群数和土壤动物密度都最低[22]。这与在楠木人工林凋落物和草本层对土壤动物群落的影响中得到相似的结论[23]

      各样地土壤动物密度剖面及类群分布具明显的表聚性特征, 2次采样所采集到的大型、中小型土壤动物的数量有一定的差异, 随着季节的不同土壤动物的多样性也各不相同。还田2个月和还田5个月, 不同量稻草还田对土壤动物多样性的影响不同, 具体来说, 土壤动物数量与类群在不同还田量稻草处理下差异明显, 稻草还田量大的样地土壤动物数量与类群明显多于稻草还田量少的样地。稻草还田2个月后各样地上土壤动物多样性指数、均匀度指数和丰富度指数均高于还田5个月的样地, 以线虫纲密度增加最为明显, 可能是因为稻草还田后线虫等中小型土壤动物对土壤环境敏感性强、响应明显; 优势度指数则低于还田5个月后, 与此同时对照组不同月份各指数差异变化不大, 说明稻草还田后, 样地的土壤动物种群更加丰富, 土壤的生态环境相对稳定良好, 一段时间后优势种群开始突出。

      综上所述, 与未进行稻草还田处理的普通样地相比, 稻草还田显著增加了土壤动物密度和类群数, 影响了区域内土壤动物群落结构; 稻草还田通过改变土壤理化性质, 促进了土壤动物的多样性和生态系统的稳定性, 提高了作物质量和产量[22, 24]。基于对生态系统稳定性及生产效率等因素的考虑, 建议农业生产上稻草切碎后覆盖还田选择0.8 kg·m-2还田量。本次研究历时较短, 仅研究了稻草覆盖还田对土壤动物群落的影响, 今后应继续对稻草还田腐烂程度等影响因素的土壤动物动态变化特征进行监测研究, 为农业生产提供更加科学的依据。

参考文献 (24)

目录

/

返回文章
返回