留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

观赏石榴表型遗传多样性分析

火艳 招雪晴 黄厚毅 黄贤斌 许云方 祝遵凌 苑兆和

火艳, 招雪晴, 黄厚毅, 等. 观赏石榴表型遗传多样性分析[J]. 浙江农林大学学报, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
引用本文: 火艳, 招雪晴, 黄厚毅, 等. 观赏石榴表型遗传多样性分析[J]. 浙江农林大学学报, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
LI Kai-quan, ZHOULan-jiang, ZHANG Ying-hua. Ultrasonic and backflow technologies to extract ursolic acid from Eriobotrya japonica leaves[J]. Journal of Zhejiang A&F University, 2007, 24(2): 239-241.
Citation: HUO Yan, ZHAO Xueqing, HUANG Houyi, et al. Phenotypic genetic diversity of ornamental pomegranate cultivars[J]. Journal of Zhejiang A&F University, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619

观赏石榴表型遗传多样性分析

DOI: 10.11833/j.issn.2095-0756.20190619
基金项目: 国家自然科学基金资助项目(31770752);江苏省自然科学基金资助项目(BK20180768);江苏省高校优势学科建设工程项目(PAPD);江苏省“333工程”项目(BRA2018065);江苏省科技支撑计划项目(BM2013478);南京林业大学高层次人才科研启动基金项目(GXL2014070,GXL2018032)
详细信息
    作者简介: 火艳,博士研究生,从事园林植物栽培与遗传育种研究。E-mail: yanhuo@njfu.edu.cn
    通信作者: 祝遵凌,教授,博士生导师,从事园林植物栽培与应用研究。E-mail: zhuzunling@njfu.edu.cn。苑兆和,教授,博士生导师,从事经济林与果树遗传育种研究。E-mail: zhyuan88@hotmail.com
  • 中图分类号: S685.99;Q949.99

Phenotypic genetic diversity of ornamental pomegranate cultivars

  • 摘要:   目的  探究观赏石榴Punica granatum表型遗传多样性,为中国观赏石榴种质资源的鉴定与评价提供理论依据。  方法  对24个观赏石榴品种的株型、枝型、花色、花的尺寸、花瓣数、瓣化雄蕊数等13个观赏性状进行表型调研与多样性分析,在此基础上进行主成分分析与聚类分析,并利用流式细胞仪对24个品种进行倍性及C值测定。  结果  多样性指数检测发现:观赏石榴数量性状(1.715)大于质量性状(1.148),质量性状中花瓣色、花萼色、花型、1年生小枝颜色的多样性指数较大。数量性状中瓣化雄蕊数和花瓣数的变异系数分别为117.59%和78.86%,表现出丰富的表型多样性,说明花瓣数增多、雄蕊瓣化是观赏石榴的选育方向。瓣化雄蕊数和花瓣数的多样性指数变化趋势与变异系数变化趋势不一致,说明其变异范围很大,且变异分布不均匀。主成分分析结果表明:前4个主成分特征值均大于1,累计贡献率达80.10%,枝的形态与颜色、花大小、花瓣数及花瓣形成、株型、花色是造成观赏石榴表型差异的主要影响因子。聚类分析表明:供试的24个观赏石榴品种可分为3个组群,其遗传聚类与花型、颜色、株型关系密切。橙色花品种与粉色花品种、白色花品种的亲缘关系较近,与复色花品种的亲缘关系较远。单瓣品种与所有的复瓣品种、大部分重瓣品种的亲缘关系较近,小部分重瓣品种与台阁品种的亲缘关系较近,与主流的花型演化观点一致。流式细胞仪分析表明:24个观赏石榴均为二倍体,说明石榴品种遗传稳定。  结论  观赏石榴表型多样性丰富,测试品种均为二倍体。图1表8参48
  • 农业面源污染已成为全球许多国家流域水污染和水体富营养化的首要污染来源[1-2]。近年来,国内诸多流域尺度的污染源调查解析表明:中国许多河湖、水库等地表水体中的氮磷输入主要来自农田种植、畜禽水产养殖等农业生产以及农村生活所产生的非点源污染,其中种植业所引起的农田退水污染正逐步成为污染的主要贡献者[3-5]。农田退水污染具有排放时间瞬时多变,迁移途径复杂多样,污染负荷时空变化幅度大等特点,治理难度相对更大[1-2]。目前基于生态工程原理的生态沟渠、人工湿地等技术受到格外重视[6-8]。此类通常建立在培植大型水生植物基础上的生态拦截工程具有建设成本低且可控、技术难度低、生态友好等优点,近年来在中国许多地区特别是生态敏感区域得到了较大规模的推广应用。2018年以来,浙江省在全省范围内实施了300项农田面源污染氮磷生态拦截沟渠示范推广项目[9]。研究已表明:水生植物对包括氮磷营养物质在内的众多污染物的净化效率及其稳定性具有重要的影响[10-11]。沉水植物占据了根系-基质(根际)、水-基质和植物茎叶-水3个关键微界面,由其介导形成的微环境结构更为复杂,往往能够表现出更加稳定和持续的水质净化潜力[12-14]。近几年以沉水植物为先锋物种的“水下植被”技术拓展应用到农业面源污染的拦截处理[15-17]。目前,国内外对挺水植物型人工湿地去污动力学已开展了比较深入的研究[18-20],但对“水下植被”型净化系统污染物去除动力学特征还十分欠缺,特别是对拦截净化农田退水、池塘养殖尾水等具有瞬间排放特点的非点源污染的除磷动力学研究至今还未见报道。在动力学模型应用研究方面,一级动力学、Grau二级动力学和Monod动力学因具有模型构式可线性化处理、参数求解过程简单、适用范围广等优点而被广泛采用[19-22];近年来,修正的Gompertz模型作为一种多参数非线性模型在污染物去除动力学研究领域逐步被重视,并且已被成功应用于新型生物处理系统的工艺设计和污染物去除效率的预测[23-25]。本研究以苦草Vallisneria natans和金鱼藻Ceratophyllum demersum等2种典型沉水植物为供试材料,研究苦草型和金鱼藻型2种“水下植被”型净化系统对农田退水中磷污染的净化效率。在此基础上,采用一级动力学、Grau二级动力学、Monod 动力学和修正的Gompertz模型模拟总磷的去除过程并进行统计验证,获取相关动力学参数,进而探讨2种沉水植物净化系统除磷效率的差异,以期为“水下植被”型生态净化系统的工艺调控及其设计应用提供理论依据和技术参考。

    选择不同生长型的沉水植物苦草和金鱼藻作为供试植物,这2种植物均为长江中下游流域常见的优势沉水植物,偏好于富营养化水体,在溪沟、河流、池塘、湖泊等水域中均有分布。2种供试植物均取自浙江农林大学乌镇大学生实践基地。采集时选取生长状态良好且株高相近的植株,运至实验基地培养10 d,统一修剪至株高25 cm,去离子水清洗干净后用作试验材料。

    受降雨强度、降雨历时、施肥量、土壤类型、土地利用类型等因素影响,农田退水中总磷质量浓度波动极大,低值时可低于地表水Ⅳ类标准,而峰值时高达5.00 mg·L−1以上[26-27]。本研究人工配置中,农田退水总磷质量浓度处于相对较高水平,试验原水取自浙江农林大学平山实验基地内的池塘,原水中总磷质量浓度为 0.17 mg·L−1,铵态氮(NH3-N)质量浓度为0.39 mg·L−1,重铬酸盐指数(CODcr)为8.56 mg·L−1。经配置后的试验用水总磷质量浓度为4.17 mg·L−1

    考虑到农田退水排放的瞬间性、间歇性等特征以及池塘、相对封闭河道等受纳水体的水动力特点,本研究采用批式试验考察2种供试植物净化系统对农田退水总磷的去除效果及其动力学特征。试验共设置3组,分别为苦草组、金鱼藻组和无植物对照组,每组均重复3次。试验于浙江农林大学平山实验基地温室大棚内进行,试验装置采用白色聚乙烯塑料箱(长×宽×高为40 cm×80 cm×60 cm),各塑料箱内注入试验用水,试验水深50 cm,计为160 L。每个塑料箱底部铺设1层厚度为10 cm的火山石基质(过10目筛)。为避免植物直接定植在基质上导致基质分布不均,先将经预培养的供试植物(鲜质量300 g)定植于渗排水网垫网上(厚度为5 mm),然后再铺设于基质层上。

    试验周期共计49 d (2018年7—8月),试验期间平均最高气温为34.0 ℃,平均最低气温为25.0 ℃,隔1周采样1次。采用虹吸管抽取方式采集水样,分别于水面以下15和25 cm处采集等体积水样组成混合样(100 mL)。每次取样后添加去离子水以弥补蒸发、蒸腾以及取样所带来的水损耗。水样及试验用水总磷采用过硫酸钾氧化-钼锑抗分光光度法测定。

    分别利用一级动力学[20]、Grau二级动力学[18]、Monod动力学[20]和修正的Gompertz模型[28]对批式试验数据进行拟合分析。

    1.3.1   总磷去除负荷

    总磷去除负荷表达式为:

    $$ \sum\limits_{t = 0}^t {C'} = \frac{{\left( {{C_0} - {C_t}} \right)V}}{{L W}}{\text{。}} $$ (1)

    式(1)中:t为反应时间(d);C0为总磷初始质量浓度(mg·L−1);Ct为反应时间t时的总磷质量浓度(mg·L−1);C′为总磷累计去除负荷(mg·m−2);V为试验用水体积(L);L为试验装置长度(m);W为试验装置宽度(m)。

    1.3.2   一级动力学

    一级动力学模型通用表达式在边界条件下积分处理为:

    $$\ln \left( {\frac{{{C_0}}}{{{C_t}}}} \right) = {F_{\rm{a}}}t{\text{。}}$$ (2)

    式(2)中:Fa为总磷一级动力学速率常数(d−1)。

    1.3.3   Grau二级动力学

    Grau二级动力学通用表达式边界条件下积分并线性化处理为:

    $$\frac{{{C_0}t}}{{{C_0} - {C_t}}} = t + \frac{{{C_0}}}{{{S_{\rm{a}}}X}}{\text{。}}$$ (3)

    令:m=C0/SaX,则式(3)可整理成:

    $$\frac{{{C_0}t}}{{{C_0} - {C_t}}} = m + nt{\text{。}}$$ (4)

    式(4)中:mn为Grau二级动力学常数。其中:n为接近1的无量纲常数;m代表总磷去除效率(d),其值越大,去除效率越低。

    1.3.4   Monod动力学

    Monod动力学通用表达式经积分和线性化处理为:

    $${C_0} - {C_t} + {C_{\rm{h}}}\ln \frac{{{C_0}}}{{{C_t}}} = {M_{\max }}t{\text{。}}$$ (5)

    式(5)中:Mmax为Monod动力学总磷最大体积去除速率常数(mg·m−3·d−1);Ch为Monod动力学总磷半饱和速率常数(mg·L−1),取0.2 mg·L−1[22]

    1.3.5   修正的Gompertz模型

    Gompertz模型经修正可用于描述污染物质量浓度与处理时间的定量关系。表达式为[28]

    $${C_t} = {C_0} - {C_0}\exp \left\{ { - \exp \left[ {\frac{{{\rm{e}} {G_{{\rm{max}}}}}}{{{C_0}}}\left( {{t_{\rm{a}}} - t} \right) + 1} \right]} \right\}{\text{。}}$$ (6)

    式(6)可转化为:

    $$R_{\rm{E}} = 100 \times \exp \left\{ { - \exp \left[ {\frac{{{\rm{e}} {G_{{\rm{max}}}}}}{{{C_0}}}\left( {{t_{\rm{a}}} - t} \right) + 1} \right]} \right\}{\text{。}}$$ (7)

    式(7)中:RE为总磷去除率(%);Gmax为Gompertz模型总磷最大体积去除速率常数(mg·m−3·d−1);ta为迟滞时间(d);e为数学常数。

    采用Excel和SPSS进行数据统计与分析(显著水平设为P<0.05),采用Origin 9.1软件进行模型创建、拟合和图形绘制。图表中所列数据均为3个重复的平均值。引入判定系数(R2)和相对均方根误差(RRMSE)评价动力学模型的准确性和适用性。其中:R2反映2组数据线性回归拟合优度,该值接近于1(取值为0~1)表明两者之间高度线性相关;RRMSE反映模型预测值与试验实测值之间的整体偏差,RRMSE越小(取值为0~∞),表明预测值与实测值间越接近。各统计参数计算公式为:

    $${R^2} = \frac{{\displaystyle \sum\limits_{i = 1}^N {{{\left[ {\left( {{X_i} - \overline X} \right)\left( {{Y_i} - \overline Y} \right)} \right]}^2}} }}{{\displaystyle \sum\limits_{i = 1}^N {{{\left( {{X_i} - \overline X} \right)}^2}} \displaystyle \sum\limits_{i = 1}^N {{{\left( {{Y_i} - \overline Y} \right)}^2}} }};$$ (8)
    $$R_{\rm{RMSE}} = \frac{{\sqrt {\dfrac{1}{N}\displaystyle \sum\limits_{i = 1}^N {{{\left( {{Y_i} - {{\hat Y}_i}} \right)}^2}} } }}{{\overline Y}}{\text{。}}$$ (9)

    式(8)~(9)中:XiYi分别为2组数据(反应时间和试验实测值),$\overline X$$\overline Y$分别为2组数据的平均值;${\hat Y_i}$为动力学模型预测值;N为样本数。

    随着处理时间的延长,2组植物净化系统总磷累计去除负荷呈逐渐增加趋势(图1)。至试验结束时(第49 天),苦草组和金鱼藻组净化系统的累计去除负荷分别为1 151.17和1 167.50 mg·m−2,对应总磷去除率分别为82.8%和84.0%。方差分析表明:试验结束时2组植物系统总磷去除效率无显著差异(P>0.05),但均显著好于无植物的对照组(P<0.05)。进一步对各周总磷去除负荷分析发现(图2):2组植物系统各周之间的总磷去除负荷均存在较大波动,并且均在第3周出现峰值,单周贡献了整个试验期间(共7周)总磷累计去负荷的28.5%(苦草组)和16.7%(金鱼藻组)。无植物的对照组总磷去除负荷在第1周出现峰值。

    图 1  沉水植物净化系统总磷累计去除负荷随处理时间的变化
    Figure 1  Total phosphorus removal loading over treatment time in the submerged plant treatment systems
    图 2  沉水植物净化系统各周总磷去除负荷
    Figure 2  Total phosphorus weekly removal loading for the submerged plant treatment systems

    在不同时间尺度上比较2组植物净化系统总磷去除效率发现(图1):尽管在试验结束时(第49 天)和试验中期(第21 天和第28 天)两者差异不显著,但在试验初期(第7 天和第14 天)和中后期(第35 天和第42 天)2组植物净化系统总磷去除效率存在差异显著(P<0.05)。其中试验初期,金鱼藻组净化系统总磷去除效率显著高于苦草组净化系统;而当处理时间增至35和42 d时,苦草组又显著高于金鱼藻组。这种不同沉水植物系统除磷效率的差异在不同时间尺度上出现偏离甚至逆转的现象可能具有一定的普通性,如文献[29]、文献[30]和文献[31]的研究中均存在这种现象。值得注意的是,忽视植物效应差异的不确性,可能会导致水生植物净化系统工艺优化,特别是水生植物的筛选结果出现偏离甚至失真,因此,有必要借助污染物去除动力学模拟分析获取用于指示和预测污染物去除效率的相关特征参数。

    分别运用一级动力学[公式(2)]和Grau二级动力学[公式(4)]模型对2组沉水植物净化系统试验数据进行拟合,并进行模型统计验证分析,结果见图3表1。一级动力学模型具有较高的拟合度(判定系数R2>0.930),模型预测值与实测值之间吻合程度较好(相对均方根误差RRMSE<0.200),表明一级动力学模型可用来描述沉水植物净化系统批式运行周期内总磷的去除过程。2组净化系统回归求得的总磷去除一级动力学常数(Fa)分别为0.039 d−1(苦草组)和0.035 d−1(金鱼藻组)。不同于一级动力学,Grau二级动力学模型拟合度较差(R2<0.600),表明该模型不适用于模拟本试验沉水植物净化系统总磷的去除过程,获取的动力学参数(nm)也不具有现实意义。

    图 3  2种沉水植物净化系统总磷去除一级动力学模型拟合曲线
    Figure 3  Regression of first-order kinetic model for TP removal over time in the submerged plant treatment systems
    表 1  2种沉水植物净化系统总磷去除一级动力学和Grau二级动力学拟合结果
    Table 1  Fitting result of First-order and Grau second-order kinetic models for total phosphorus removal in the submerged plant treatment systems
    沉水植物型生态净化系统一级动力学模型Grau二级动力学模型
    Fa/d−1R2RRMSEm/dnR2RRMSE
    苦草组 0.0390.9310.196109.90−1.350.5880.324
    金鱼藻组0.0350.9370.16957.250.030.0810.127
    下载: 导出CSV 
    | 显示表格

    一级动力学模型已被广泛应用于挺水植物型人工湿地系统中有机物、营养物、悬浮物等污染物去除效果的预测[19-22],但该模型是否适用于模拟沉水植物型净化系统的污染物去除动力学至今还未得到证实。本研究发现:一级动力学模型可用于描述沉水植物型净化系统在批式模式下的总磷去除过程。

    一级动力学常数(Fa)代表着反应器系统在相对稳定运行状态下的去污能力,该参数不仅可用于反应器放大设计所需有效体积或面积的测算,还可以用于处理系统的工艺调控和比较优化。如在同等污染物质量浓度水平下,Fa越大,达到同一出水质量浓度所需的处理时间越短,即污染物的去除效率越高。方差分析结果表明:2组沉水植物系统的总磷去除一级动力学常数Fa存在显著差异(P<0.05),说明植物种类对总磷的净化效率产生显著影响。基于Fa及其物理意义可知:试验条件下苦草组净化系统的总磷去除效率显著好于金鱼藻组净化系统。

    图4为Monod动力学模型f(C0, Ct, Ch)与净化处理时间(t)之间的回归曲线,表2列出了由回归系数求得的总磷最大体积去除速率常数(Mmax)以及统计验证参数。结果表明:Monod动力学模型可以较好地拟合2组沉水植物系统总磷的去除过程(R2>0.970,RRMSE<0.110)。2组植物系统拟合得到的总磷最大体积去除速率分别为87.14 mg·m−3·d−1(苦草组)和78.15 mg·m−3·d−1(金鱼藻组),并且差异达到显著性水平(P<0.05)。

    图 4  2种沉水植物净化系统总磷去除Monod动力学拟合曲线
    Figure 4  Regression of Monod kinetic model for total phosphorus removal over time in the submerged plant treatment systems
    表 2  2种沉水植物净化系统总磷去除Monod动力学和修正的Gompertz模型拟合结果
    Table 2  Fitting result of Monod kinetic and modified Gompertz model for total phosphorus removal in the submerged plant treatment systems
    沉水植物型生态净化系统Monod动力学模型修正的Gompertz模型
    Mmax/(mg·m−3·d−1)R2RRMSEGmax/(mg·m−3·d−1)ta/dR2RRMSE
    苦草组 87.14 a0.9740.108107.96 a8.70 a0.9910.062
    金鱼藻组78.15 b0.9990.02084.82 b3.37 b0.9920.041
      说明:不同字母表示差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格

    Monod动力学模型表征了污染物去除速率与其质量浓度之间的关系由一级向零级反应过渡的状态,因而可以避免单纯使用一级动力学模型时可能造成的设施尺寸过大问题。作为一种在经典的米-门方程基础上建立起来的半经验模型,Monod动力学模型起初主要用于辅助活性污泥法、生物接触氧化法等污水生物处理工程设计。近年来Monod动力学模型越来越多地被应用于挺水植物型人工湿地系统有机物和氮素污染物去除能力的预测[19-22]。本研究证实:Monod动力学模型可用于沉水植物型净化系统批式运行模式下总磷去除过程的模拟及其去除效果的预测 (表2)。

    自FAN等[28]于2004年首次对Gompertz模型进行修正,并将其用于描述好氧生化处理过程中邻苯二甲酸降解动力学特征以来,这种可以同时输出用于指示污染物去除效率和初始延迟时间的多参数模型越来越多地应用于厌氧反应器、好氧反应器等工艺系统污染物去除过程的模拟[23-25]。本研究采用修正的Gompertz模型[公式(7)]对2组沉水植物型净化系统总磷去除过程进行非线性拟合,结果见图5表2

    图 5  2种沉水植物净化系统总磷去除Gompertz模型动力学拟合曲线
    Figure 5  Regression of modified Gompertz model for total phosphorus removal over time in the submerged plant treatment systems

    结合图5表2可以看出:修正的Gompertz模型可以很好地拟合本试验条件下沉水植物净化系统总磷去除效率与处理时间之间的关系(R2>0.990,RRMSE<0.110)。2组植物净化系统拟合获得的总磷最大体积去除速率和除磷延迟时间均有所不同(P<0.05),其中苦草组净化系统总磷最大体积去除速率为107.96 mg·m−3·d−1,显著高于金鱼藻组净化系统(84.82 mg·m−3·d−1) (P<0.05),表明苦草组净化系统总磷去除效率显著高于金鱼藻组净化系统。但苦草组净化系统拟合获得的除磷延迟时间(8.70 d)显著长于金鱼藻组净化系统(3.37 d),表明苦草型沉水植物净化系统相较于金鱼藻型需要更长的生境适应周期。

    污染物去除动力学是指导工程设计的重要基础。许多动力学模型已用于模拟污水生物处理和人工湿地系统污染物的去除过程,其中一级动力学、Grau二级动力学和Monod 动力学模型简化了污染物去除过程中所涉及的生物、化学、物理及其相互影响等复杂过程,模型构式可线性化处理而使得参数求解十分简单,拟合求得的动力学参数又可以较好地代表处理系统污染物的去除能力。这些有利因素促使此类模型越来越多地应用到包括水平潜流[32]、垂直流[33]、潮汐流[34]、静止状态[35]及其组合工艺[19]等多种人工湿地系统中污染物的去除动力学特征的研究。但近年来研究发现:此类建立在众多假定条件基础上的表观动力学模型的适用性,不仅与湿地工艺类型(水平潜流和垂直流)及其水动力模式(推流或完全混合态)有关,还与所描述的污染物类型有关[19-20]。本研究结果表明:一级动力学和Monod 动力学模型均可以用来描述沉水植物型净化系统批式试验周期内的总磷去除过程,而Grau二级动力学却不适用;相较于一级动力学,Monod 动力学模型具有更高的拟合优度。

    近年来,修正的Gompertz模型作为一种多参数非线性模型,在污染物去除动力学研究领域逐步被重视。众多研究已发现:这种非线性预测模型描述异养硝化菌、厌氧氨氧化等新型好氧或厌氧生物处理系统的脱氮除磷效果具有较好的拟合精确度[23-25]。但该模型能否用于模拟人工湿地、植物塘等生态处理系统中污染物的去除过程至今还未见报道。本研究发现:修正的Gompertz模型可以很好地模拟沉水植物净化系统总磷的去除动力学过程。相较于一级动力学和Monod动力学模型,修正的Gompertz模型的拟合除了可以输出代表着污染物去除能力的关键性能参数(如最大体积去除速率),还可以输出可用于指示前期阶段污染物去除的迟缓时间。这些参数的获取有助于对污染物去除机制的理解,也可用于协助工艺系统的优化设计和过程调控。

    本研究发现:2组植物系统总磷去除效率的差异在时间尺度上存在明显的不确定性;这种不同种类植物净化效率的差异,在时间尺度上出现偏离甚至逆转的现象极有可能普遍存在。如李琳等[31]针对不同种类沉水植物氮磷净化效率的对比研究发现:当处理时间为7和21 d时金鱼藻组总磷净化效率显著好于苦草组(P<0.05),但持续处理至第35 天时,两者总磷的净化效率无显著差异。究其原因,一方面可能是由于不同种类的沉水植物对磷的吸收量存在时间变异,但更为重要的原因可能是不同植物所介导的间接增效作用也存在时间尺度上的差异。

    众多研究已表明:在由沉水植物、基质(自然沉积物或人工填料)、微生物和水体四大基本要素构成的水生态系统或由其衍生而来的“水下植被”型生态拦截净化系统中,沉水植物、基质和微生物以及三者相互之间通过一系列物理(沉积、挥发等)、化学(基质吸附、沉淀等)和生物(动植物吸收、微生物降解转化等)作用,实现对污染物的有效去除,其中沉水植物的作用被证实是磷去除的主要机制[6, 30]。一直以来,植物的直接吸收作用被认为是“水下植被”净化系统除磷的主要途径,但近年来越来越多的证据显示:因沉水植物所介导的间接增效作用(如根际效应、茎叶生物膜效应等)对总磷去除的贡献强度远超过植物的直接吸收作用,并且该作用途径对总磷去除的贡献强度也与植物的种类密切相关[30-31]。这种尚未引起重视的现象给水生植物的筛选带来了不确定性,有必要借助诸如动力学模型分析等手段加以分析。本研究通过动力学分析发现:2组沉水植物系统总磷去除一级动力学速率常数Fa、Monod动力学速率常数Mmax以及修正的Gompertz模型拟合常数Gmax均存在显著差异,并且一致地表现为苦草组指标大于金鱼藻组指标。据此可以推断,苦草型净化系统对总磷的去除效率好于金鱼藻型。

    苦草型和金鱼藻型2种植物净化系统总磷去除效率无显著差异,总磷去除率分别为82.8%和84.0%,但两者总磷去除效率在不同时间尺度上的差异存在不确定性。4种动力学模型模拟与验证结果表明:除Grau二级动力学外,一级动力学、Monod 动力学模型和修正的Gompertz模型均可以有效描述2种沉水植物型净化系统试验条件下总磷的去除过程,其中Monod动力学和Gompertz模型的模拟具有更高的拟合优度,模型预测值与实测值之间吻合程度更好。3种有效模型拟合获得的动力学常数在植物种类之间均存在显著差异(P<0.05),其中指示除磷效率的动力学速率常数一致表现为苦草组大于金鱼藻组,表明苦草型净化系统对总磷的去除效率好于金鱼藻型。但苦草组除磷延迟时间显著长于鱼藻组(P<0.05),表明其生境适应周期相对较长。

  • 图  1  观赏石榴品种表型性状聚类图

    Figure  1  Clustering figure of ornamental pomegranate cultivars based on phenotypic characters

    表  1  24个观赏石榴品种名称及来源

    Table  1.   List of 24 ornamental pomegranate cultivars

    序号品种名类型引种地
    1‘泰安红牡丹’‘Taianhongmudan’重瓣中国山东
    2‘榴缘白’‘Double red-white ’台阁美国  
    3‘青皮月季’‘Qingpiyueji’重瓣中国山东
    4‘峄城重瓣红皮酸’‘Yichengchongbanhongpisuan’重瓣中国山东
    5‘峄城粉红牡丹’‘Yichengfenhongmudan’复瓣中国山东
    6‘峄城红花重瓣紫皮酸’‘Yichenghonghuachongbanzipisuan’复瓣中国山东
    7‘榴花雪’‘Hakubatan’重瓣美国  
    8‘峄城粉红重瓣白皮甜’‘Yichengfenhongchongbanbaipitian’重瓣中国山东
    9‘峄城重瓣玛瑙’‘Yichengchongbanmanao’重瓣中国山东
    10‘洛阳白马寺’‘Luoyangbaimasi’重瓣中国河南
    11‘礼泉重瓣红花青皮酸’‘Liquanchongbanhonghuaqingpisuan’重瓣中国陕西
    12‘峄城重瓣白花酸’‘Yichengchongbanbaihuasuan’复瓣中国山东
    13‘峄城单瓣粉红酸’‘Yichengdanbanfenhongsuan’单瓣中国山东
    14‘榴花红’‘Nochi-shibori’重瓣美国  
    15‘紫皮甜’‘Zipitian’单瓣中国山东
    16‘峄城单瓣粉红甜’‘Yichengdanbanfenhongtian’单瓣中国山东
    17‘突尼斯软籽软枝’‘Tunisiruanziruanzhi’单瓣突尼斯 
    18‘墨石榴’‘Moshiliu’单瓣中国山东
    19‘宫灯石榴’‘Gongdengshiliu’单瓣中国山东
    20‘泰山红’‘Taishanhong’单瓣中国山东
    21‘南林重瓣红’‘Nanlinchongbanhong’重瓣中国江苏
    22‘南林单瓣红’‘Nanlindanbanhong’单瓣中国江苏
    23‘南林重瓣白’‘Nanlinchongbanbai’复瓣中国江苏
    24‘南林重瓣玛瑙’‘Nanlinchongbanmanao’重瓣中国江苏
    下载: 导出CSV

    表  2  观赏石榴品种质量性状描述分级

    Table  2.   Description and grouping of qualitative characters of ornamental pomegranate cultivars

    分级株型枝型花型1年生小枝颜色花瓣色花萼色
    1乔木状直立复瓣粉红白色浅黄 
    2矮生 开张单瓣玫红橙黄黄色 
    3垂枝重瓣紫红橙红浅橙黄
    4台阁浅棕红色橙黄 
    5浅绿粉红橙红 
    6复色红色 
    下载: 导出CSV

    表  3  观赏石榴品种质量性状频率分布及多样性

    Table  3.   Frequency distribution and diversity of qualitative characteristics of ornamental pomegranate cultivars

    性状频率/%多样性指数(H')
    1级2级3级4级5级6级
    株型      79.17 20.83 0.512
    枝型      37.50 58.33 4.17 0.815
    花型      33.33 16.67 45.83 4.17 1.155
    1年生小枝颜色 62.50 4.17 8.33 8.33 16.67 1.139
    花瓣色     16.67 25.00 25.00 4.17 16.67 12.50 1.683
    花萼色     8.33 16.67 8.33 41.67 8.33 16.67 1.583
    下载: 导出CSV

    表  4  观赏石榴品种数量性状统计

    Table  4.   Morphological diversity of statistics of quantitative of ornamental pomegranate cultivars

    性状 花长/cm 花宽/cm 花萼长/cm 花萼宽/cm 花萼瓣数/片 花瓣数/片 瓣化雄蕊数/片
    平均值 4.43±0.61 4.70±1.25 3.09±0.57 3.60±0.92 6.48±0.76 41.94±33.08 57.11±67.15
    最大值 5.42 6.43 4.11 4.87 8 134 276.67
    最小值 3.03 2.33 1.63 2.00 5 6 0
    变异系数/% 13.85 26.60 18.40 25.64 11.76 78.86 117.59
    下载: 导出CSV

    表  5  不同观赏石榴品种群形态多样性指数

    Table  5.   Morphological diversity index of different ornamental pomegranate cultivars

    性状单瓣品种群复瓣品种群重瓣品种群平均值性状单瓣品种群复瓣品种群重瓣品种群平均值
    株型   0.5620.0000.5860.383枝型     0.9740.5620.6890.742
    花型   0.0000.0000.0000.0001年生小枝颜色0.9000.6931.0300.874
    花瓣色  1.0821.0401.7201.281花萼色    1.3211.0401.2901.217
    花长   1.5601.0401.6661.422花宽     0.9000.5621.2950.919
    花萼长  1.3211.0401.6731.344花萼宽    0.9740.5621.0670.868
    花萼瓣数 0.9740.6931.5941.087花瓣数    0.0000.0001.2640.421
    瓣化雄蕊数0.0000.5621.1620.575平均值    0.8130.6001.1570.856
    下载: 导出CSV

    表  6  观赏石榴品种多样性的主成分分析

    Table  6.   Principle component analysis of morphological diversity of ornamental pomegranate cultivars

    性状主成分性状主成分
    PC1PC2PC3PC4PC1PC2PC3PC4
    株型 0.16 −0.48 0.21 −0.24 枝型 0.43 0.07 −0.14 −0.09
    花型 0.10 −0.53 0.20 −0.13 1年生小枝颜色 0.43 0.00 −0.22 −0.02
    花瓣色 0.25 0.17 0.42 0.02 花萼色 0.39 0.14 −0.23 0.12
    花长 0.41 −0.11 0.13 0.11 花宽 −0.11 0.29 −0.32 −0.36
    花萼长 0.01 0.00 0.09 0.81 花萼宽 0.42 0.08 −0.25 −0.04
    花萼瓣数 −0.10 −0.24 −0.42 0.33 花瓣数 0.14 0.18 0.43 0.03
    瓣化雄蕊数 0.01 0.48 0.27 −0.03 特征值 4.52 2.62 2.06 1.22
    累积贡献率/% 34.74 20.17 15.82 9.39 累积贡献率/% 34.74 54.91 70.73 80.12
    下载: 导出CSV

    表  7  观赏石榴各组群形态特征

    Table  7.   Morphological characteristics of different ornamental pomegranate cultivars groups after cluster

    性状花长/cm花宽/cm花萼长/cm花萼宽/cm花萼瓣数/片花瓣数/片瓣化雄蕊数/片
    组群Ⅰ4.565.153.214.006.0453.62 63.66
    组群Ⅱ4.293.502.972.646.26 9.70 3.15
    组群Ⅲ4.415.953.064.537.7376.60141.13
    下载: 导出CSV
    性状株型枝型花型1年生小枝颜色花瓣色花萼色
    组群Ⅰ1(9),2(1)1(4),2(6)2(4),3(6)1(5),4(1),5(4)1(4),2(1),3(3),5(2)1(2),2(4),4(4)
    组群Ⅱ1(6),2(3)1(4),2(4),3(1)1(8),3(1)1(6),3(2),4(1)2(4),3(3),5(2)3(2),4(4),5(1),6(2)
    组群Ⅲ1(4),2(1)1(1),2(4)3(4),4(1)1(4),2(1)2(1),3(1),6(3)4(2),5(1),6(2)
      说明:括号中数值表示品种数,括号外数值表示类型
    下载: 导出CSV

    表  8  观赏石榴倍性及C

    Table  8.   Ploidy level and C-value of 24 ornamental pomegranate cultivars

    序号品种名荧光强度变异系数/%C值/pg倍性序号品种名荧光强度变异系数/%C值/pg倍性
    1 ‘泰安红牡丹’     9 560 6.66 0.32 二倍体 13 ‘峄城单瓣粉红酸’ 9 645 4.54 0.32 二倍体
    2 ‘榴缘白’       9 951 4.61 0.33 二倍体 14 ‘榴花红’     11 142 6.66 0.37 二倍体
    3 ‘青皮月季’      11 614 6.84 0.39 二倍体 15 ‘紫皮甜’     10 368 6.47 0.34 二倍体
    4 ‘峄城重瓣红皮酸’   8 435 5.04 0.28 二倍体 16 ‘峄城单瓣粉红甜’ 9 370 7.42 0.31 二倍体
    5 ‘峄城粉红牡丹’    10 024 6.17 0.33 二倍体 17 ‘突尼斯软籽软枝’ 10 151 5.82 0.34 二倍体
    6 ‘峄城红花重瓣紫皮酸’ 9 437 4.58 0.31 二倍体 18 ‘墨石榴’     9 257 7.10 0.31 二倍体
    7 ‘榴花雪’       10 622 5.67 0.35 二倍体 19 ‘宫灯石榴’    11 138 5.51 0.37 二倍体
    8 ‘峄城粉红重瓣白皮甜’ 9 801 6.56 0.33 二倍体 20 ‘泰山红’     10 331 7.28 0.34 二倍体
    9 ‘峄城重瓣玛瑙’    9 967 5.99 0.33 二倍体 21 ‘南林重瓣红’   9 511 6.57 0.32 二倍体
    10 ‘洛阳白马寺’     11 078 5.94 0.37 二倍体 22 ‘南林单瓣红’   10 580 7.34 0.35 二倍体
    11 ‘礼泉重瓣红花青皮酸’ 10 168 5.71 0.34 二倍体 23 ‘南林重瓣白’   10 329 4.26 0.34 二倍体
    12 ‘峄城重瓣白花酸’   9 160 4.88 0.30 二倍体 24 ‘南林重瓣玛瑙’  9 100 6.80 0.30 二倍体
    下载: 导出CSV
  • [1] 苑兆和. 中国果树科学与实践: 石榴[M]. 西安: 陕西科学技术出版社, 2015: 81.
    [2] YUAN Zhaohe, FANG Yanming, ZHANG Taikui, et al. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology [J]. Plant Biotechnol J, 2018, 16(7): 1363 − 1374.
    [3] 祝遵凌. 园林树木栽培学[M]. 2版. 南京: 东南大学出版社, 2015: 261.
    [4] 苑兆和, 吕菲菲. 石榴文化艺术与功能利用[M]. 北京: 中国农业出版社, 2018: 13.
    [5] JEONG H J, PARK M Y, KIM S. Identification of chromosomal translocation causing inactivation of the gene encoding anthocyanidin synthase in white pomegranate (Punica granatum L.) and development of a molecular marker for genotypic selection of fruit colors [J]. Hortic Environ Biotechnol, 2018, 59: 857 − 864.
    [6] NAFEES M, JASKANI M J, AHMED S, et al. Morpho-molecular characterization and phylogenetic relationship in pomegranate germplasm of Pakistan [J]. Pak J Agric Sci, 2015, 52(1): 97 − 106.
    [7] SARKHOSH A, ZAMANI Z, FATAHI R, et al. Genetic diversity of Iranian soft-seed pomegranate genotypes as revealed by fluorescent-AFLP markers [J]. Physiol Mol Biol Plants, 2011, 17(3): 305 − 311.
    [8] ATTANAYAKE S R M R, KUMARI S A S M, WEERAKKODY W A P, et al. Molecular diversity and genetic relationships of Sri Lankan pomegranate Punica granatum landraces assessed with inter simple sequence repeat (ISSR) regions [J]. Nordic J Bot, 2017, 35(4): 385 − 394.
    [9] SHINDE A S, MAHAJAN S R, KAKDE S H. RAPD based molecular diversity analysis of different varieties of pomegranate (Punica granatum L.) [J]. Int J Agric Sci, 2015, 11(1): 141 − 145.
    [10] 陈芸, 王继莲, 丁晓丽, 等. 新疆石榴种质资源遗传多样性的SRAP分析[J]. 西北植物学报, 2016, 36(5): 916 − 922.

    CHEN Yun, WANG Jilian, DING Xiaoli, et al. Genetic diversity of germplasm collection of pomegranate in Xinjiang using SRAP markers [J]. Acta Bot Boreali-Occident Sin, 2016, 36(5): 916 − 922.
    [11] 马丽, 侯乐峰, 郝兆祥, 等. 82个石榴品种遗传多样性的ISSR分析[J]. 果树学报, 2015, 32(5): 741 − 750.

    MA Li, HOU Lefeng, HAO Zhaoxiang, et al. Genetic diversity analysis of 82 pomegranate (Punica granatum L.) cultivars by ISSR markers [J]. J Fruit Sci, 2015, 32(5): 741 − 750.
    [12] 韩玲玲, 苑兆和, 冯立娟, 等. 不同石榴品种果实成熟期酚类物质组分与含量分析[J]. 果树学报, 2013, 30(1): 99 − 104.

    HAN Lingling, YUAN Zhaohe, FENG Lijuan, et al. Analyses on polyphenol composition and contents of different pomegranate cultivars at fruit maturation stage [J]. J Fruit Sci, 2013, 30(1): 99 − 104.
    [13] FERRARA G, CAVOSKI I, PACIFICO A, et al. Morpho-pomological and chemical characterization of pomegranate (Punica granatum L.) genotypes in Apulia region, Southeastern Italy [J]. Sci Hortic, 2011, 130(3): 599 − 606.
    [14] TEH H E, YOKOYAMA W H, GERMAN J B, et al. Hypocholesterolemic effects of expeller-pressed and solvent-extracted fruit seed oils and defatted pomegranate seed meals [J]. J Agric Food Chem, 2019, 67(22): 6150 − 6159.
    [15] ELFALLEH W, HANNACHI H, GUETAT A, et al. Storage protein and amino acid contents of Tunisian and Chinese pomegranate (Punica granatum L.) cultivars [J]. Genet Resour Crop Evolut, 2012, 59(6): 999 − 1014.
    [16] HASNAOUI N, JBIR R, MARS M, et al. Organic acids, sugars and anthocyanins contents in juices of Tunisian pomegranate fruits [J]. Int J Food Prop, 2011, 14(4): 741 − 757.
    [17] ELFALLEH W, YING M, NASRI N, et al. Fatty acids from Tunisian and Chinese pomegranate (Punica granatum L.) seeds [J]. Int J Food Sci Nutr, 2011, 62(3): 200 − 206.
    [18] MARTINEZ-NICOLAS J J, MELGAREJO P, LEGUA P, et al. Genetic diversity of pomegranate germplasm collection from Spain determined by fruit, seed, leaf and flower characteristics [J]. Peer J, 2016, 4: e2214.
    [19] 陈俊愉, 程绪珂. 中国花经[M]. 上海: 上海文化出版社, 1994: 200 − 204.
    [20] 汪小飞. 石榴品种分类研究[D]. 南京: 南京林业大学, 2007.

    WANG Xiaofei. Studies on the Cultivar Classification of Punica granatum L.[D]. Nanjing: Nanjing Forestry University, 2007.
    [21] 王庆军, 马丽, 郝兆祥, 等. 观赏石榴种质资源遗传多样性的ISSR分析[J]. 浙江农业学报, 2018, 30(2): 236 − 241.

    WANG Qingjun, MA Li, HAO Zhaoxiang, et al. Analysis on germplasm genetic diversity of ornamental pomegranate (Punica granatum L.) by ISSR markers [J]. Acta Agric Zhejiang, 2018, 30(2): 236 − 241.
    [22] HUANG Hui, TONG Yan, ZHANG Qunjie, et al. Genome size variation among and within Camellia species by using flow cytometric analysis [J]. PLoS One, 2013, 8(5): e64981.
    [23] QIN Gaihua, XU Chunyan, MING R, et al. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis [J]. Plant J, 2017, 91: 1108 − 1128.
    [24] 刘丽, 陈延惠, 曹尚银, 等. 大籽石榴倍性育种研究初探[C]. 中国园艺学会石榴分会. 中国石榴研究进展(一). 北京: 中国农业出版社, 2010: 106 − 110.
    [25] SHAO Jianzhu, CHEN Chunli, DENG Xiuxin. In vitro induction of tetraploid in pomegranate (Punica granatum) [J]. Plant Cell Tiss Organ Cult, 2003, 75(3): 241 − 246.
    [26] 国家林业局. 植物新品种特异性、一致性、稳定性测试指南: 石榴属 GB/T 35566−2017[S]. 北京: 中国标准出版社, 2017.
    [27] 林峰, 肖月娥, 周翔宇, 等. 25份鸢尾属植物基因组DNA C值的流式测定[J]. 草地学报, 2018, 26(4): 985 − 990.

    LIN Feng, XIAO Yue’e, ZHOU Xiangyu, et al. Estimation of genomic C value of 25 samples of Iris plants by flow cytometry [J]. Acta Agrestia Sin, 2018, 26(4): 985 − 990.
    [28] 王业社, 侯伯鑫, 索志立. 紫薇品种表型多样性分析[J]. 植物遗传资源学报, 2015, 16(1): 71 − 79.

    WANG Yeshe, HOU Boxin, SUO Zhili. Phenotypic diversity of Lagerstroemia indica cultivars [J]. J Plant Genet Resour, 2015, 16(1): 71 − 79.
    [29] 蔡翠萍, 汪书丽, 权红, 等. 藏药材喜马拉雅紫茉莉种质资源的形态多样性[J]. 西南师范大学学报(自然科学版), 2013, 38(12): 61 − 66.

    CAI Cuiping, WANG Shuli, QUAN Hong, et al. On morphological diversity in germplasm resources of Tibertan herbal medicine Mirabilis himalaica [J]. J Southewst China Norm Univ Nat Sci Ed, 2013, 38(12): 61 − 66.
    [30] 马育华. 田间实验和统计方法[M]. 北京: 农业出版社, 1979.
    [31] YAN Jiajun, ZHANG Jianbo, SUN Kaiyan, et al. Ploidy level and DNA content of Erianthus arundinaceus as determined by flow cytometry and the association with biological characteristics[J]. PLoS One, 2016, 11(3): e0151948. doi: 10.1371/journal.pone.0151948.
    [32] DENWAR N N, AWUKU F J, DIERS B, et al. Genetic diversity, population structure and key phenotypic traits driving variation within soyabean (Glycine max) collection in Ghana [J]. Plant Breeding, 2019, 138(5): 577 − 587.
    [33] 颉刚刚, 欧阳丽婷, 谢军, 等. 新疆地区欧洲李叶片表型性状多样性及亲缘关系分析[J]. 植物资源与环境学报, 2018, 27(3): 72 − 78.

    XIE Ganggang, OUYANG Liting, XIE Jun, et al. Analyses on diversity of leaf phenotypic traits and genetic relationships of Prunus domestica in Xinjiang region [J]. J Plant Resour Environ, 2018, 27(3): 72 − 78.
    [34] LIU Li, KAKIHARA F, KATO M. Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit [J]. Euphytica, 2004, 135: 305 − 313.
    [35] SZAMOSI C, SOLMAZ I, SARI N, et al. Morphological evaluation and comparison of Hungarian and Turkish melon (Cucumis melo L.) germplasm [J]. Sci Hortic, 2010, 124(2): 170 − 182.
    [36] 张海平, 房伟民, 陈发棣, 等. 部分睡莲属植物形态性状的多样性分析[J]. 南京农业大学学报, 2009, 32(4): 47 − 52.

    ZHANG Haiping, FANG Weimin, CHEN Fadi, et al. Investigation on the morphological diversity of taxa in genus Nymphaea [J]. J Nanjing Agric Univ, 2009, 32(4): 47 − 52.
    [37] TILMAN D. The ecological consequences of changes in biodiversity: a search for general principles [J]. Ecology, 1999, 80(5): 1455 − 1474.
    [38] 程淑媛. 中国杜鹃花栽培品种资源与分类研究[D]. 赣州: 赣南师范大学, 2017: 71 − 72.

    CHENG Shuyuan. Study on Resources and Classification of Azalea Cultivars in China[D]. Ganzhou: Gannan Normal University, 2017: 71 − 72.
    [39] LIU Caixian, HE Yehong, GOU Tianyun, et al. Identification of molecular markers associated with the double flower trait in Petunia hybrida [J]. Sci Hortic, 2016, 206: 43 − 50.
    [40] NAKATSUKA T, SAITO M, YAMADA E, et al. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian [J]. BMC Plant Biol, 2015, 15(1): 182.
    [41] 胡标林, 万勇, 李霞, 等. 水稻核心种质表型性状遗传多样性分析及综合评价[J]. 作物学报, 2012, 38(5): 829 − 839.

    HU Biaolin, WAN Yong, LI Xia, et al. Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and its comprehensive assessment [J]. Acta Agron Sin, 2012, 38(5): 829 − 839.
    [42] 陈俊愉. “二元分类”: 中国花卉品种分类新体系[J]. 北京林业大学学报, 1998, 20(2): 1 − 5.

    CHEN Junyu. “Dual classification”: a new classification system for Chinese flower cultivars [J]. J Beijing For Univ, 1998, 20(2): 1 − 5.
    [43] 张启翔. 紫薇品种分类及其在园林中的应用[J]. 北京林业大学学报, 1991, 13(4): 57 − 66.

    ZHANG Qixiang. Studies on cultivars of crape-myrtle (Lagerstroemia indica) and their uses in urban greening [J]. J Beijing For Univ, 1991, 13(4): 57 − 66.
    [44] MOSLEMI M, ZAHRAVI M, KHANIKI G B. Genetic diversity and population genetic structure of pomegranate (Punica granatum L.) in Iran using AFLP markers [J]. Sci Hortic, 2010, 126(4): 441 − 447.
    [45] JBIR R, HASNAOUI N J, MARS M, et al. Characterization of Tunisian pomegranate (Punica granatum L.) cultivars using amplified fragment length polymorphism analysis [J]. Sci Hortic, 2008, 115(3): 231 − 237.
    [46] 赵丽华, 李名扬, 王先磊, 等. 石榴种质资源遗传多样性及亲缘关系的ISSR分析[J]. 果树学报, 2011, 28(1): 66 − 71.

    ZHAO Lihua, LI Mingyang, WANG Xianlei, et al. Genetic diversity and genetic relationship of pomegranate (Prunica granatum) germplasm evaluated by ISSR markers [J]. J Fruit Sci, 2011, 28(1): 66 − 71.
    [47] GRAHAM S A, CAVALCANTI G T B. New chromosome counts in the Lythraceae and a review of chromosome numbers in the family [J]. Syst Bot, 2001, 26(3): 445 − 458.
    [48] 刘亚琼. 中国紫薇属植物倍性研究及其cpDNA多样性分析[D]. 郑州: 河南农业大学, 2010.

    LIU Yaqiong. Ploidy Determination in Lagerstroemia L. Using Flow Cytometry and Its Polymorphism of cpDNA[D]. Zhengzhou: Henan Agricultural University, 2010.
  • [1] 王爽, 董彬, 王艺光, 赵宏波.  不同梅品种花果特性分析与评价 . 浙江农林大学学报, 2024, 41(1): 113-123. doi: 10.11833/j.issn.2095-0756.20230213
    [2] 詹利云, 刘琏, 曾燕如, 喻卫武, 戴文圣.  雄性榧树天然居群表型多样性及优株初选 . 浙江农林大学学报, 2020, 37(6): 1120-1127. doi: 10.11833/j.issn.2095-0756.20190676
    [3] 刘翠玉, 闫明, 黄贤斌, 苑兆和.  石榴耐盐性研究与指标筛选 . 浙江农林大学学报, 2018, 35(5): 853-860. doi: 10.11833/j.issn.2095-0756.2018.05.009
    [4] 朱咪咪, 张迟, 常爱玲, 党婉誉, 周彩红, 俞狄虎, 吴莹莹, 张敏.  ‘无籽’瓯柑小孢子母细胞减数分裂特性基因RAD51和MS1的表达差异分析 . 浙江农林大学学报, 2016, 33(6): 921-927. doi: 10.11833/j.issn.2095-0756.2016.06.001
    [5] 张广来, 李璐, 廖文梅.  基于主成分分析法的中国林业产业竞争力水平评价 . 浙江农林大学学报, 2016, 33(6): 1078-1084. doi: 10.11833/j.issn.2095-0756.2016.06.022
    [6] 杨静怡, 夏玉芳, 谢钊俊, 陶兴月, 丁小霞.  核桃不同单株种子化学成分傅立叶红外光谱差异性分析 . 浙江农林大学学报, 2015, 32(3): 420-425. doi: 10.11833/j.issn.2095-0756.2015.03.014
    [7] 吴月燕, 陶巧静, 李波, 许丹叶.  西洋杜鹃SRAP体系优化及遗传多样性分析 . 浙江农林大学学报, 2013, 30(6): 844-851. doi: 10.11833/j.issn.2095-0756.2013.06.007
    [8] 郑蓉.  产地绿竹笋品质及土壤养分的主成分与典型相关分析 . 浙江农林大学学报, 2012, 29(5): 710-714. doi: 10.11833/j.issn.2095-0756.2012.05.012
    [9] 刘雨, 李登武, 秦廷松, 刘伟.  宁夏贺兰山杜松天然群体的表型多样性 . 浙江农林大学学报, 2011, 28(4): 619-627. doi: 10.11833/j.issn.2095-0756.2011.04.016
    [10] 汪荣.  福建滨海水鸟栖息地主成分分析与评价 . 浙江农林大学学报, 2011, 28(3): 472-478. doi: 10.11833/j.issn.2095-0756.2011.03.020
    [11] 杨建华, 李淑芳, 范志远, 习学良, 邹伟烈, 刘娇, 潘莉.  美国山核桃主要经济性状的主成分分析及良种选择 . 浙江农林大学学报, 2011, 28(6): 907-910. doi: 10.11833/j.issn.2095-0756.2011.06.011
    [12] 金潇潇, 陈发棣, 陈素梅, 房伟民.  20个菊花品种花瓣的营养品质分析 . 浙江农林大学学报, 2010, 27(1): 22-29. doi: 10.11833/j.issn.2095-0756.2010.01.004
    [13] 沈俊岭, 倪慧群, 陈晓阳, 黄少伟.  麻疯树遗传多样性的相关序列扩增多态性(SRAP)分析 . 浙江农林大学学报, 2010, 27(3): 347-353. doi: 10.11833/j.issn.2095-0756.2010.03.005
    [14] 莫文娟, 袁德义, 段经华, 邹锋.  新高系梨9个品种SSR 标记分析 . 浙江农林大学学报, 2009, 26(5): 639-643.
    [15] 邓恒芳, 王克勤.  土壤水分对石榴光合速率的影响 . 浙江农林大学学报, 2005, 22(3): 277-281.
    [16] 景芸, 梁一池, 杨华.  不同锥栗无性系果实营养成分的比较分析 . 浙江农林大学学报, 2004, 21(2): 176-179.
    [17] 梁健, 孙婷.  延安林区啮齿动物群落的聚类分析 . 浙江农林大学学报, 2004, 21(1): 70-74.
    [18] 唐娟娟, 范义荣, 朱睦元.  黄山松群体遗传多样性分析 . 浙江农林大学学报, 2003, 20(1): 23-26.
    [19] 刘安兴.  树高曲线聚类分析研究 . 浙江农林大学学报, 2001, 18(3): 228-232.
    [20] 黄必恒.  浙江省各市县国民经济状况统计分析 . 浙江农林大学学报, 1999, 16(4): 420-424.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190619

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2020/5/939

图(1) / 表(9)
计量
  • 文章访问数:  1391
  • HTML全文浏览量:  470
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-21
  • 修回日期:  2020-05-13
  • 网络出版日期:  2020-10-10
  • 刊出日期:  2020-08-20

观赏石榴表型遗传多样性分析

doi: 10.11833/j.issn.2095-0756.20190619
    基金项目:  国家自然科学基金资助项目(31770752);江苏省自然科学基金资助项目(BK20180768);江苏省高校优势学科建设工程项目(PAPD);江苏省“333工程”项目(BRA2018065);江苏省科技支撑计划项目(BM2013478);南京林业大学高层次人才科研启动基金项目(GXL2014070,GXL2018032)
    作者简介:

    火艳,博士研究生,从事园林植物栽培与遗传育种研究。E-mail: yanhuo@njfu.edu.cn

    通信作者: 祝遵凌,教授,博士生导师,从事园林植物栽培与应用研究。E-mail: zhuzunling@njfu.edu.cn。苑兆和,教授,博士生导师,从事经济林与果树遗传育种研究。E-mail: zhyuan88@hotmail.com
  • 中图分类号: S685.99;Q949.99

摘要:   目的  探究观赏石榴Punica granatum表型遗传多样性,为中国观赏石榴种质资源的鉴定与评价提供理论依据。  方法  对24个观赏石榴品种的株型、枝型、花色、花的尺寸、花瓣数、瓣化雄蕊数等13个观赏性状进行表型调研与多样性分析,在此基础上进行主成分分析与聚类分析,并利用流式细胞仪对24个品种进行倍性及C值测定。  结果  多样性指数检测发现:观赏石榴数量性状(1.715)大于质量性状(1.148),质量性状中花瓣色、花萼色、花型、1年生小枝颜色的多样性指数较大。数量性状中瓣化雄蕊数和花瓣数的变异系数分别为117.59%和78.86%,表现出丰富的表型多样性,说明花瓣数增多、雄蕊瓣化是观赏石榴的选育方向。瓣化雄蕊数和花瓣数的多样性指数变化趋势与变异系数变化趋势不一致,说明其变异范围很大,且变异分布不均匀。主成分分析结果表明:前4个主成分特征值均大于1,累计贡献率达80.10%,枝的形态与颜色、花大小、花瓣数及花瓣形成、株型、花色是造成观赏石榴表型差异的主要影响因子。聚类分析表明:供试的24个观赏石榴品种可分为3个组群,其遗传聚类与花型、颜色、株型关系密切。橙色花品种与粉色花品种、白色花品种的亲缘关系较近,与复色花品种的亲缘关系较远。单瓣品种与所有的复瓣品种、大部分重瓣品种的亲缘关系较近,小部分重瓣品种与台阁品种的亲缘关系较近,与主流的花型演化观点一致。流式细胞仪分析表明:24个观赏石榴均为二倍体,说明石榴品种遗传稳定。  结论  观赏石榴表型多样性丰富,测试品种均为二倍体。图1表8参48

English Abstract

火艳, 招雪晴, 黄厚毅, 等. 观赏石榴表型遗传多样性分析[J]. 浙江农林大学学报, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
引用本文: 火艳, 招雪晴, 黄厚毅, 等. 观赏石榴表型遗传多样性分析[J]. 浙江农林大学学报, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
LI Kai-quan, ZHOULan-jiang, ZHANG Ying-hua. Ultrasonic and backflow technologies to extract ursolic acid from Eriobotrya japonica leaves[J]. Journal of Zhejiang A&F University, 2007, 24(2): 239-241.
Citation: HUO Yan, ZHAO Xueqing, HUANG Houyi, et al. Phenotypic genetic diversity of ornamental pomegranate cultivars[J]. Journal of Zhejiang A&F University, 2020, 37(5): 939-949. DOI: 10.11833/j.issn.2095-0756.20190619
  • 石榴Punica granatum是千屈菜科Lythraceae石榴属Punica落叶小乔木或灌木,在中国约2 000 a的栽培史,200余个品种[1-2]。常分为食用石榴和观赏石榴,观赏石榴株型优美,花期长,花色艳,春叶红、秋叶黄,果实奇特,可观性果实宿存树体时间长,是春、夏、秋3季可赏的重要花木,广泛应用于园林绿化、盆栽、盆景等[2-3]。目前国内外的研究主要集中于利用分子标记对石榴种质资源遗传多样性的分析和评价[4-11],以及对食用石榴果实形态及生化指标的测定分析[12-17],对观赏资源的遗传多样性研究较少。MARTINEZ-NICOLAS等[18]对53个西班牙品种的果实、种子、叶、花等性状进行过表型研究,但没有针对树型、枝型、花型、瓣化雄蕊数等观赏性状的综合分析。陈俊愉等[19]根据株型、花、果、叶片大小将国内观赏石榴分为花石榴和果石榴,其中花石榴分为一般种与矮生种,再依据花色和单、重瓣分类。汪小飞[20]将包括观赏石榴在内的全国87个石榴品种分为单瓣、复瓣、重瓣、台阁4个品种群。王庆军等[21]对35份种质资源进行了表型性状的初步调查,但未对表型性状多样性及亲缘关系进行综合评价。表型多样性是遗传多样性与观赏植物评价的重要基础,全面了解石榴种质的优异性状,可为石榴种质资源的鉴定、保存和推广提供参考。C值指生物体单倍体细胞核的DNA总质量,C值的变异对研究物种的亲缘关系以及系统发育具有重要意义,结合倍性水平分析也可用来鉴定杂交物种[22]。目前中国石榴品种‘泰山红’‘Taishanhong’大笨籽’‘Dabenzi’和‘大籽’‘Dazi’被鉴定为二倍体,美国品种‘Nana’为四倍体[23-25]。多倍体植物具有花大、果实大、植株健壮、抗逆性强等优点,是育种的好材料。流式细胞术作为快速准确测定倍性与基因组含量的先进技术,可为石榴种质资源的创新与遗传育种提供理论基础。本研究对24个观赏石榴品种的株型、枝型、花型、1年生小枝颜色、花瓣色、花萼色、花长、花宽、花萼长、花萼宽、花萼瓣数、花瓣数、瓣化雄蕊数等13个观赏性状进行了表型多样性分析、主成分分析与聚类分析,并利用流式细胞仪对24个品种进行了倍性及C值测定,为观赏石榴种质资源的评价、创新与遗传育种提供理论基础。

    • 供试材料为生长良好且无病虫害的24个观赏石榴品种(表1),其中单瓣品种群(single-flower group)8个、复瓣品种群(semi-double-flower group)4个、重瓣品种群(double-flower group)11个、台阁品种群(proliferation-flower group)1个。

      表 1  24个观赏石榴品种名称及来源

      Table 1.  List of 24 ornamental pomegranate cultivars

      序号品种名类型引种地
      1‘泰安红牡丹’‘Taianhongmudan’重瓣中国山东
      2‘榴缘白’‘Double red-white ’台阁美国  
      3‘青皮月季’‘Qingpiyueji’重瓣中国山东
      4‘峄城重瓣红皮酸’‘Yichengchongbanhongpisuan’重瓣中国山东
      5‘峄城粉红牡丹’‘Yichengfenhongmudan’复瓣中国山东
      6‘峄城红花重瓣紫皮酸’‘Yichenghonghuachongbanzipisuan’复瓣中国山东
      7‘榴花雪’‘Hakubatan’重瓣美国  
      8‘峄城粉红重瓣白皮甜’‘Yichengfenhongchongbanbaipitian’重瓣中国山东
      9‘峄城重瓣玛瑙’‘Yichengchongbanmanao’重瓣中国山东
      10‘洛阳白马寺’‘Luoyangbaimasi’重瓣中国河南
      11‘礼泉重瓣红花青皮酸’‘Liquanchongbanhonghuaqingpisuan’重瓣中国陕西
      12‘峄城重瓣白花酸’‘Yichengchongbanbaihuasuan’复瓣中国山东
      13‘峄城单瓣粉红酸’‘Yichengdanbanfenhongsuan’单瓣中国山东
      14‘榴花红’‘Nochi-shibori’重瓣美国  
      15‘紫皮甜’‘Zipitian’单瓣中国山东
      16‘峄城单瓣粉红甜’‘Yichengdanbanfenhongtian’单瓣中国山东
      17‘突尼斯软籽软枝’‘Tunisiruanziruanzhi’单瓣突尼斯 
      18‘墨石榴’‘Moshiliu’单瓣中国山东
      19‘宫灯石榴’‘Gongdengshiliu’单瓣中国山东
      20‘泰山红’‘Taishanhong’单瓣中国山东
      21‘南林重瓣红’‘Nanlinchongbanhong’重瓣中国江苏
      22‘南林单瓣红’‘Nanlindanbanhong’单瓣中国江苏
      23‘南林重瓣白’‘Nanlinchongbanbai’复瓣中国江苏
      24‘南林重瓣玛瑙’‘Nanlinchongbanmanao’重瓣中国江苏
    • 试验于2018年5月在中国石榴种质资源圃(峄城)和南京林业大学进行,每品种随机选择3株生长健壮、无病虫害、长势一致的植株进行各表型性状的调查和统计。其中质量性状6个:株型(plant form,PF)、枝型(brach type,BT)、花型(flower pattern,FP)、1年生小枝颜色(color of branch,BC)、花瓣色(color of petal,PC)、花萼色(color of sepal,SC)。数量性状7个:花长(flower length,FL)、花宽(flower diameter,FD)、花萼长(sepal length,SL)、花萼宽(sepal diameter,SD)、花萼瓣数(number of sepals,NOS)、花瓣数(number of petals,NOP)、瓣化雄蕊数(number of petaloid stamens,NOPS)。用直尺或游标卡尺测量长度,小数点后保留2位有效数;用国际通用的英国皇家园艺学会比色卡(RHSCC)测量颜色,记录数字编码。调查取样标准根据《植物新品种特异性、一致性、稳定性测试指南 石榴属》的操作进行[26]

    • 以二倍体石榴‘大笨籽’为外标,选用LB01解离液。滤网、荧光染料、鞘液、培养皿、试剂均购自南京博巧生物技术有限公司。分别取各石榴品种嫩叶,用流式细胞仪(Influx,美国BD公司)测定倍性与C值,具体参照林峰等[27]方法进行。

    • 质量性状均以1~6级进行分级和赋值(表2),数量性状根据平均值(X)和标准差(δ)分为10级,1级<X−2δ,10级≥X+2δ,中间每级相差0.5δ[28-29]。各性状的遗传多样性采用Shannon’s信息指数(H')进行评价:H' = −∑(Pi)(lnPi),其中Pi表示第i种变异类型出现的频率[30]。采用Excel进行性状数据(平均值、最大值、最小值、极差和变异系数等)的基本统计。使用SPSS 24.0软件计算表型数据的KMO检验值及Bartlett球形度检验的显著性。种质间距为平方欧式距离,聚类方法采用Ward法。

      表 2  观赏石榴品种质量性状描述分级

      Table 2.  Description and grouping of qualitative characters of ornamental pomegranate cultivars

      分级株型枝型花型1年生小枝颜色花瓣色花萼色
      1乔木状直立复瓣粉红白色浅黄 
      2矮生 开张单瓣玫红橙黄黄色 
      3垂枝重瓣紫红橙红浅橙黄
      4台阁浅棕红色橙黄 
      5浅绿粉红橙红 
      6复色红色 
    • 荧光染料PI的激发波长为488 nm,收集通道为FL2(670 nm±30 nm),检测PI的发射荧光强度。使用Influx自带软件FACSTM Sortware进行分析。‘大笨籽’基因组大小为328 Mbp[23]C值为0.33 pg,根据公式[31]:待测样本的细胞核DNA含量或倍性=对照样本细胞核DNA含量或倍性×(待测样本G0/G1峰荧光强度/对照样本G0/G1峰荧光强度)。变异系数(VC)控制在8%以内。

    • 根据表2对观赏石榴品种的6个主要质量性状进行分级和赋值,统计各性状的频率分布和多样性指数,由表3可知:各性状多样性指数为0.512~1.683,平均为1.148。多样性指数最大的性状为花瓣色,其次为花萼色、花型和1年生小枝颜色,多样性指数均大于1.000;其中,花瓣色以橙黄(25.00%)、橙红(25.00%)为主,花萼色以橙黄(41.67%)为主,花型以重瓣为主(45.83%),1年生小枝颜色以粉红(62.50%)为主。多样性指数最小的性状是株型,其次是枝型;其中,株型主要为乔木型(79.17%),枝型主要为开张型(58.33%)。

      表 3  观赏石榴品种质量性状频率分布及多样性

      Table 3.  Frequency distribution and diversity of qualitative characteristics of ornamental pomegranate cultivars

      性状频率/%多样性指数(H')
      1级2级3级4级5级6级
      株型      79.17 20.83 0.512
      枝型      37.50 58.33 4.17 0.815
      花型      33.33 16.67 45.83 4.17 1.155
      1年生小枝颜色 62.50 4.17 8.33 8.33 16.67 1.139
      花瓣色     16.67 25.00 25.00 4.17 16.67 12.50 1.683
      花萼色     8.33 16.67 8.33 41.67 8.33 16.67 1.583
    • 24个观赏石榴的7个数量性状表现了广泛的变异,变异系数为11.76%~117.59%(表4),多样性指数为1.456~1.910,多样性指数平均为1.715,高于质量性状,说明观赏石榴数量性状多样性更丰富。7个性状中瓣化雄蕊数的变异系数最大,达117.59%,花瓣数次之,为78.86%,而花萼瓣数、花长、花萼长的变异系数较小。多样性指数最大的性状是花萼长(1.910),其次是花长(1.906)、花宽(1.802)、花萼宽(1.683)、花瓣数(1.630)、花萼瓣数(1.619)、瓣化雄蕊数(1.456),多样性指数均大于1.600。

      表 4  观赏石榴品种数量性状统计

      Table 4.  Morphological diversity of statistics of quantitative of ornamental pomegranate cultivars

      性状 花长/cm 花宽/cm 花萼长/cm 花萼宽/cm 花萼瓣数/片 花瓣数/片 瓣化雄蕊数/片
      平均值 4.43±0.61 4.70±1.25 3.09±0.57 3.60±0.92 6.48±0.76 41.94±33.08 57.11±67.15
      最大值 5.42 6.43 4.11 4.87 8 134 276.67
      最小值 3.03 2.33 1.63 2.00 5 6 0
      变异系数/% 13.85 26.60 18.40 25.64 11.76 78.86 117.59
    • 根据汪小飞[20]方法将观赏石榴品种划分为3个品种群,即单瓣品种群、复瓣品种群、重瓣品种群。由表5可知:3个品种群的表型性状多样性指数分别为0.813、0.600和1.157,其平均多样性指数为0.856,表明不同观赏石榴品种群之间,表型性状的多样性指数均有不同程度的差异。其中,重瓣品种群表型多样性指数最高,除枝型外,其他12个性状均高于所有品种相应性状的平均值,特别是花瓣数、瓣化雄蕊数、花萼宽、花宽和1年生小枝颜色。单瓣品种群的株型、枝型、1年生小枝颜色、花萼色、花长和花萼宽的多样性指数均高于所有品种相应性状的平均值。由此可见:3个品种群中,重瓣品种群的表型性状遗传多样性最丰富,其次是单瓣品种群,复瓣品种群的表型遗传多样性最低。

      表 5  不同观赏石榴品种群形态多样性指数

      Table 5.  Morphological diversity index of different ornamental pomegranate cultivars

      性状单瓣品种群复瓣品种群重瓣品种群平均值性状单瓣品种群复瓣品种群重瓣品种群平均值
      株型   0.5620.0000.5860.383枝型     0.9740.5620.6890.742
      花型   0.0000.0000.0000.0001年生小枝颜色0.9000.6931.0300.874
      花瓣色  1.0821.0401.7201.281花萼色    1.3211.0401.2901.217
      花长   1.5601.0401.6661.422花宽     0.9000.5621.2950.919
      花萼长  1.3211.0401.6731.344花萼宽    0.9740.5621.0670.868
      花萼瓣数 0.9740.6931.5941.087花瓣数    0.0000.0001.2640.421
      瓣化雄蕊数0.0000.5621.1620.575平均值    0.8130.6001.1570.856
    • 供试观赏石榴表型性状的KMO检验值为0.622(高于0.600),Bartlett球形度检验显著性为0.000(低于0.050),符合主成分分析条件。以特征值大于1为标准提取主成分,前4个主成分的累计贡献率为80.10%,认为这4个主成分能充分反映13个表型性状(表6)。第1主成分的特征值为4.52,贡献率为34.74%,特征向量绝对值较大的为枝型、1年生小枝颜色、花长、花萼宽,说明第1主成分是枝的形态颜色与花大小的综合反映。第2主成分的特征值为2.62,贡献率为20.17%,特征向量绝对值较大的为花型、株型、瓣化雄蕊数,说明第2主成分是花瓣数及花瓣形成、株型的综合反映。第3主成分的特征值为2.06,贡献率为15.82%,特征向量绝对值较大的为花瓣数、花萼瓣数、花瓣色,说明第3主成分是花瓣数、花大小、花色的综合反映。第4主成分的特征值为1.22,贡献率为9.39%,特征向量绝对值较大的为花萼长,说明第3主成分是花大小的综合反映。由此得出:枝的形态与颜色、花大小、花瓣数及花瓣形成、株型、花色是造成观赏石榴表型差异的主要影响因子。

      表 6  观赏石榴品种多样性的主成分分析

      Table 6.  Principle component analysis of morphological diversity of ornamental pomegranate cultivars

      性状主成分性状主成分
      PC1PC2PC3PC4PC1PC2PC3PC4
      株型 0.16 −0.48 0.21 −0.24 枝型 0.43 0.07 −0.14 −0.09
      花型 0.10 −0.53 0.20 −0.13 1年生小枝颜色 0.43 0.00 −0.22 −0.02
      花瓣色 0.25 0.17 0.42 0.02 花萼色 0.39 0.14 −0.23 0.12
      花长 0.41 −0.11 0.13 0.11 花宽 −0.11 0.29 −0.32 −0.36
      花萼长 0.01 0.00 0.09 0.81 花萼宽 0.42 0.08 −0.25 −0.04
      花萼瓣数 −0.10 −0.24 −0.42 0.33 花瓣数 0.14 0.18 0.43 0.03
      瓣化雄蕊数 0.01 0.48 0.27 −0.03 特征值 4.52 2.62 2.06 1.22
      累积贡献率/% 34.74 20.17 15.82 9.39 累积贡献率/% 34.74 54.91 70.73 80.12
    • 根据表型性状和主成分分析结果进行变量筛选,单因素方差分析发现:对聚类贡献较大的变量为花萼长、花萼瓣数、花瓣数、瓣化雄蕊数、株型、枝型、花型、1年生小枝颜色和花瓣色9个指标,构建聚类图(图1)。在遗传距离为11~12时,观赏石榴品种分为3个组群:组群Ⅰ、组群Ⅱ、组群Ⅲ。其中,组群Ⅰ包括6个重瓣品种群和4个复瓣品种群;组群Ⅱ包括8个单瓣品种群和1个重瓣品种群;组群Ⅲ包括4个重瓣品种群和1个台阁品种群。在遗传距离14~15时,组群Ⅰ和组群Ⅱ聚在一起,说明组群Ⅰ和组群Ⅱ遗传关系较近,两者与组群Ⅲ的遗传关系均较远。进一步分析,4个白花类品种(‘峄城重瓣白花酸’‘南林重瓣白’‘洛阳白马寺’‘榴花雪’)聚在一起,1年生小枝颜色为浅绿色的品种也都是白花品种,全部聚在一起,说明白花品种的遗传关系较近。3个复色品种(‘榴缘白’‘峄城重瓣玛瑙’‘南林重瓣玛瑙’)也聚在一起。除了‘青皮月季’以外,4个矮生品种(‘榴花雪’‘榴花红’‘墨石榴’‘宫灯石榴’)聚在一起,表明矮生品种间遗传关系较近。

      图  1  观赏石榴品种表型性状聚类图

      Figure 1.  Clustering figure of ornamental pomegranate cultivars based on phenotypic characters

      对各类组群个体的数量性状取平均值,质量性状计算个数,得到各组群的特征(表7)。组群Ⅰ的特征为:花长最大、花萼长最大、花萼瓣数最少,绝大多数为乔木型,主要为开张型,重瓣略多于复瓣,1年生小枝主要为粉红色和浅绿色,花瓣色主要为白色、粉色、橙红,花萼色主要为橙黄、黄色。组群Ⅱ的特征为:花长最小、花宽最小、花萼长最小、花萼宽最小、花瓣数最小、瓣化雄蕊数最小,主要为乔木型,直立型和开张型各占一半,绝大多数为单瓣,1年生小枝颜色主要为粉红色,花瓣色主要为橙黄和橙红,花萼色主要为橙黄。组群Ⅲ的特征为:花宽最大、花萼宽最大、花萼瓣数最大、花瓣数最大、瓣化雄蕊数最大,主要为乔木型、开张型、重瓣,1年生小枝颜色主要为粉红色,花瓣色主要为复色,花萼色主要为橙黄和红色。

      表 7  观赏石榴各组群形态特征

      Table 7.  Morphological characteristics of different ornamental pomegranate cultivars groups after cluster

      性状花长/cm花宽/cm花萼长/cm花萼宽/cm花萼瓣数/片花瓣数/片瓣化雄蕊数/片
      组群Ⅰ4.565.153.214.006.0453.62 63.66
      组群Ⅱ4.293.502.972.646.26 9.70 3.15
      组群Ⅲ4.415.953.064.537.7376.60141.13
      性状株型枝型花型1年生小枝颜色花瓣色花萼色
      组群Ⅰ1(9),2(1)1(4),2(6)2(4),3(6)1(5),4(1),5(4)1(4),2(1),3(3),5(2)1(2),2(4),4(4)
      组群Ⅱ1(6),2(3)1(4),2(4),3(1)1(8),3(1)1(6),3(2),4(1)2(4),3(3),5(2)3(2),4(4),5(1),6(2)
      组群Ⅲ1(4),2(1)1(1),2(4)3(4),4(1)1(4),2(1)2(1),3(1),6(3)4(2),5(1),6(2)
        说明:括号中数值表示品种数,括号外数值表示类型
    • 流式细胞仪测定结果表明(表8):24个观赏石榴品种均为二倍体,C值范围为0.28~0.39 pg,品种间C值差异较大。其中,单瓣品种群、复瓣品种群、重瓣品种群及台阁品种群的平均C值分别为0.34、0.32、0.34和0.33 pg,可见由花型划分的各品种群之间C值相差不大。白花品种群、粉花品种群、红花品种群及复色花品种群的平均C值分别为0.34、0.32、0.34和0.32 pg,可见由花色划分的各品种群之间C值相差不大。中国品种、美国品种、突尼斯品种的平均C值分别为0.33、0.35和0.34 pg,各地品种C值相差不大。

      表 8  观赏石榴倍性及C

      Table 8.  Ploidy level and C-value of 24 ornamental pomegranate cultivars

      序号品种名荧光强度变异系数/%C值/pg倍性序号品种名荧光强度变异系数/%C值/pg倍性
      1 ‘泰安红牡丹’     9 560 6.66 0.32 二倍体 13 ‘峄城单瓣粉红酸’ 9 645 4.54 0.32 二倍体
      2 ‘榴缘白’       9 951 4.61 0.33 二倍体 14 ‘榴花红’     11 142 6.66 0.37 二倍体
      3 ‘青皮月季’      11 614 6.84 0.39 二倍体 15 ‘紫皮甜’     10 368 6.47 0.34 二倍体
      4 ‘峄城重瓣红皮酸’   8 435 5.04 0.28 二倍体 16 ‘峄城单瓣粉红甜’ 9 370 7.42 0.31 二倍体
      5 ‘峄城粉红牡丹’    10 024 6.17 0.33 二倍体 17 ‘突尼斯软籽软枝’ 10 151 5.82 0.34 二倍体
      6 ‘峄城红花重瓣紫皮酸’ 9 437 4.58 0.31 二倍体 18 ‘墨石榴’     9 257 7.10 0.31 二倍体
      7 ‘榴花雪’       10 622 5.67 0.35 二倍体 19 ‘宫灯石榴’    11 138 5.51 0.37 二倍体
      8 ‘峄城粉红重瓣白皮甜’ 9 801 6.56 0.33 二倍体 20 ‘泰山红’     10 331 7.28 0.34 二倍体
      9 ‘峄城重瓣玛瑙’    9 967 5.99 0.33 二倍体 21 ‘南林重瓣红’   9 511 6.57 0.32 二倍体
      10 ‘洛阳白马寺’     11 078 5.94 0.37 二倍体 22 ‘南林单瓣红’   10 580 7.34 0.35 二倍体
      11 ‘礼泉重瓣红花青皮酸’ 10 168 5.71 0.34 二倍体 23 ‘南林重瓣白’   10 329 4.26 0.34 二倍体
      12 ‘峄城重瓣白花酸’   9 160 4.88 0.30 二倍体 24 ‘南林重瓣玛瑙’  9 100 6.80 0.30 二倍体
    • 种质资源的调查和评价是研究品种起源、演化、驯化的基础,对优异资源筛选、品种选育具有重要意义[32]。利用表型性状分析种质资源的遗传多样性直观易行,能快速了解植物的遗传变异水平[33]。本研究发现:24个观赏石榴品种具有丰富的表型多样性,平均形态多样性指数为1.453,数量性状多样性指数(1.715)大于质量性状(1.148),与前人对紫薇Lagerstroemia indica[28]、香瓜Cucumis melo[34-35]等的表型多样性研究观点基本相符。其中,花瓣色、花萼色2个质量性状和花长、花宽、花萼长、花萼宽、花萼瓣数、花瓣色、瓣化雄蕊数7个数量性状变异明显,多样性指数高于1.400。

      值得注意的是,各数量性状的多样性指数与变异系数变化趋势不一致。与其他数量性状相比,瓣化雄蕊数和花瓣数的多样性指数较小,分别为1.456和1.630,小于平均值(1.715);但两者的变异系数最大,分别为117.59%和78.86%,大于平均值41.82%。多样性指数代表变异分布的均匀度,变异系数代表变异的离散程度。不一致的变化趋势说明变异的范围很大,且变异的分布不均匀,与张海平等[36]对睡莲Nymphaea tetragona的表型研究类似,同时符合TILMAN[37]关于多样性指数和变异系数之间关系的观点。另外,变异系数在一定程度上反映了进化的快慢,瓣化雄蕊数和花瓣数的变异系数大说明重瓣和雄蕊瓣化程度高的品种,自然品种形成较晚;人工育种加速了雄蕊瓣化和花瓣数量的增多,这与杜鹃花Rhododendron simsii[38]、矮牵牛Petunia hybrid[39]、日本龙胆花Gentiana scabra[40]等观赏植物品种选育方向一致,说明观赏石榴的选育也是朝着花瓣数增多、雄蕊瓣化的方向进行。

      胡标林等[41]认为:利用株高、芒等表型性状能够明确水稻Oryza sativa核心种质的亲缘关系。本研究聚类结果表明:24个观赏石榴品种可划分为3个组群,其遗传聚类与花型、颜色、株型关系密切。其中,单瓣品种与复瓣品种、部分重瓣品种的亲缘关系较近,另一部分重瓣品种与台阁品种的亲缘关系较近,这与陈俊愉[42]的花卉品种分类体系提出的花型演化观点相同。而依据花瓣色划分,橙色花品种与粉色花品种、白色花品种的亲缘关系较近,与复色花品种的亲缘关系较远,与张启翔[43]对紫薇品种群的划分方法相同。

      MOSLEMI等[44]、JBIR等[45]在对突尼斯和伊朗石榴的研究中认为:石榴品种间亲缘关系与地理环境的相关性不强。本研究聚类结果表明:来源南京的品种并没有聚在一起,分散在3个组群中,该结果同样支持上述观点。王庆军等[21]通过内部简单序列重复(ISSR)将峄城35个观赏石榴分为6个组群,发现依据分子标记划分的大类中有不同的花色和花型,认为基于分子性状的亲缘关系与基于花色、花型等表型性状的亲缘关系不一致。本研究中,基于多个表型性状的聚类结果只有小部分与王庆军等[21]的分子标记划分结果一致;赵丽华等[46]在利用ISSR对47个石榴栽培品种的聚类研究中也发现了同样的矛盾。观赏石榴品种在繁殖栽培过程中大量的地区间引种交流以及长期的自然选择和人工选择下积累了丰富的遗传变异,使得某些品种在遗传信息上可聚为一类,但形态特征和地理来源却有较大差异,因此,对观赏石榴品种的遗传关系的研究时,需进一步选择合适的分子标记开展分子水平的亲缘关系分析,结合本研究的形态聚类结果共同评判与讨论。

      千屈菜科倍性复杂,大多为多倍体物种[47]。该科的紫薇属Lagerstroemia中,桂林紫薇L. guilinensis是四倍体,云南紫薇L.intermedia、大花紫薇L.speciosa和西双紫薇L.venusta是六倍体,毛萼紫薇L. balansae为非整倍体[48]。本研究发现:引种自各地的24个观赏石榴品种均为二倍体,说明从倍性来看,石榴属品种遗传相对稳定,可进一步探究石榴多倍体育种的可能性,比较二倍体石榴与多倍体石榴的表型差异与遗传差异。

      本研究中观赏石榴品种主要是单瓣类、复瓣类、重瓣类,而台阁类品种的数量较少。故还需广泛收集不同类别的品种资源,并结合分子生物学证据,开展更为广泛的观赏石榴遗传多样性、品种分类研究。

    • 观赏石榴种质资源具有丰富的表型遗传多样性,以花的数量性状最为突出,其中瓣化雄蕊数和花瓣数的变异系数分别为117.59%和78.86%。聚类分析可分为3大组群,组群Ⅰ和组群Ⅱ聚在一起,两者与组群Ⅲ的亲缘关系均较远,其遗传聚类与花型、颜色、株型关系密切,暗示着花色、花型在栽培观赏石榴的驯化育种过程中的重要指示性作用。24个观赏石榴品种均为二倍体,显示出石榴观赏品种较强的遗传稳定性。

参考文献 (48)

目录

/

返回文章
返回