-
花榈木Ormosia henryi为豆科Leguminosae红豆属Ormosia重要木本药用植物,主要产于东南亚和南美洲,属于国家二级保护植物,在野外处于中度濒危状态[1]。花榈木常以根、根皮及茎、叶入药。《全国中草药汇编》记述,其性味归经为辛、温,有毒,具有活血化瘀、祛风、消肿之功。研究发现:红豆属植物含有生物碱、黄酮、苯丙素、萜类和挥发油等多种化学成分,其中萜类化合物是一类重要的活性物质[2]。迄今为止,已从红豆属不同植物中发现大量的萜类化合物,如丁香酚、苯乙醇、榄香素和棕榈酸等化合物,并发现多种物质具有消炎、抗氧化、抗菌的作用[3−4]。萜类物质是多种药用植物的主要活性化合物,并且是天然化合物中规模最大种类最多的一类物质[5−6],了解花榈木中萜类物质能够提高对花榈木的药用认知。
植物萜类化合物主要由甲基赤藓糖磷酸酯 (MEP) 途径或甲羟戊酸 (MVA) 途径产生的二甲基烯丙基二磷酸酯 (DMAPP) 和异戊烯基二磷酸酯 (IPP) 生成[7]。萜类化合物分子骨架是基于异戊二烯或其异构体二甲基烯丙基焦磷酸C5单元构成的,根据骨架碳链长度的不同,主要分为半萜、单萜、二萜、三萜等几种类型的萜类化合物[8]。MEP途径仅发生在质体中,MVA途径却分布在细胞质、内质网和过氧化物酶体之间[9]。IPP与DMAPP通过戊烯基转移酶的催化,缩合产生萜类化合物前体物质香叶酰二磷酸 (GPP)、法呢基二磷酸 (FPP) 和香叶基香叶基焦磷酸 (GGPP)。其中GPP是合成单萜类化合物前体物质,GGPP是合成二萜前体物质,FPP则是合成倍半萜和三萜化合物的前体物质[10−11]。随后通过萜类合成酶 (TPS) 和氧角鲨烯环化酶 (OSCs) 催化前体形成不同种萜类化合物,这2种酶的多样性使得萜类化合物的种类有很多[12−13]。
TPS基因家族主要分为7个亚家族,分别命名为TPS-a、TPS-b、TPS-c、TPS-d、TPS-e/f、TPS-g 和 TPS-h。其中TPS-a、TPS-b和TPS-g属于被子植物特有分支,这3个分支完全由专门的单萜、倍半萜或二萜生物合成基因组成,主要在植物生态相互作用中起作用。TPS-d是裸子植物特异性亚家族,主要包含特异性代谢的裸子植物TPSs[14]。TPS-c和TPS-e/f是被子植物与裸子植物所共有的亚家族,TPS-c分支成员只包含“DXDD”序类,是单功能柯巴基焦磷酸合酶 (CPS)。与TPS-c类似,TPS-e/f分支成员只包含“DDXXD”序类,是单功能的贝壳杉烯合成酶 (KS)[15−16]。植物OSC家族是一个超基因家族,主要包含达玛烯二醇合成酶 (DS) [17]、β-香树脂醇合成酶 (β-AS) [18]、α香树脂醇合成酶 (α-AS) [19]和羽扇豆醇合成酶 (LUS) [20]。近些年来对萜类的研究越来越广泛,但是豆科植物花榈木中的萜类化合物种类以及生物合成情况却未见报道。
本研究利用代谢组学测序数据首次对花榈木中的萜类物质进行鉴定,并结合转录组测序结果,利用生物信息学方法分析花榈木中萜类的主要合成情况,分析相关基因在花榈木不同组织部位中的表达水平,为研究花榈木的药用活性物质以及花榈木中萜类的代谢调控途径奠定基础。
-
2021年4月23日于华南农业大学 (中国广州) 苗圃中采集3年生花榈木新鲜的根、茎、树皮、老叶和幼叶5个组织部位样品,每样品重复4次,纯净水冲洗干净,立即在液氮中冷冻,并分成2个部分,一部分立即在−80 ℃下保存用于总RNA提取,另一部分在真空下冷冻干燥用于代谢物提取。
-
将采摘的根、茎、树皮、老叶和幼叶样品冻干磨粉后,精确称量各个样品粉末0.5 g,分别用5 mL体积分数为80%的HPLC级甲醇提取过夜,其中内标为1 μmol·L−1的白杨素。4 ℃下12 000 g离心30 min,取上清液装入样品瓶中,进行超高效液相色谱质谱 (UHPLC Q-TOF/MS) 分析。为了分离花榈木不同器官的代谢物,采用超高效液相色谱串联质谱法(Q Exactive Plus)进行测定。为保证平行试验每个样品平行4针。将1 μL样品进入2.1 mm×100.0 mm、1.9 μm粒径的Hypersil GOLD色谱柱,柱温30 ℃,流速0.3 mL·min−1。流动相A为体积分数0.1%的HPLC级甲酸,流动相B是HPLC级乙腈。梯度洗脱:0~2.0 min,0~10%流动相B;2.0~10.0 min,10%~55%流动相B;10.0~10.1 min,55%~80%流动相B;10.1~13.0 min,80%流动相B;13.0~14.0 min,80%~95%流动相B;14.0~18.0 min,95%~10%流动相B。全扫描质谱和数据关联扫描(dd-MS2)的分辨率分别设置为70 000和17 500,在正负离子模式下均使用加热的ESI源。在正负模式下,喷雾电压被设定为3.5和3.2 kV。毛细管温度被设定为320 ℃,辅助气体加热器的温度被设定为350 ℃。
使用Compound Discoverer 3.2对原始数据进行分析,然后根据综合分子量、质荷比 (m/z)、保留时间 (RT) 和二级光谱,与代谢物数据库mzCloud、mzVault和Chemspider进行对比。
-
总RNA由RNAprep Pure Assay试剂盒提取,RNA质量用NanoPhotometer®分光光度计测定。为了进行转录组测序,样品被送到百迈客生物技术公司。库的制备在Illumina Hiseq 2000平台上进行测序,并产生成对的读长 (reads)。首先,使用内部的perl脚本处理fastq原始数据,以去除含适配器的读数、含ploy-N的读数和低质量读数。经过Trinity软件组装获得一个非冗余的基因数据库 (universal gene, unigene),并进一步使用HMMER软件与Pfam数据库比对,获得unigene的注释信息。
-
以常用的基因表达水平估算方法中每千个碱基转录每百万映射读取的片断(fragments per kilobase million,FPKM) 值进行表达量统计。使用错误发现率(false discovery rate, FDR) ≤0.01 和 |log2CF| ≥2 (CF为差异倍数, fold change) 的阈值,写入R中的DESeq 2包,对花榈木不同部位样本进行差异基因表达分析[21]。使用TBtools构建差异显著基因 (DEGs) 的热图,京都基因和基因组百科全书(KEGG)对DEGs的富集分析是使用R中的Cluster Profiler包进行的,加权基因共表达网络(WGCNA)是在R包WGCNA的帮助下进行的,并使用相关P值建立统计学意义。
-
根据总离子流图所得到的化合物精确相对分子质量、出峰时间、二级碎片信息,与mzCloud和mzVault数据库比对,共鉴定出15种萜类化合物(表1)。为了分析花榈木不同组织部位中萜类化合物的分布情况,对5个部位的萜类化合物的相对含量进行了热图分析(图1A),发现不同部位的萜类相对含量差别较大。能明显看出幼叶、老叶与根中萜类相对含量较高,与之相反的是茎与皮中相对含量比较少,并发现甘草次酸 (enoxolone)、齐墩果酸 (oleanolic acid)、芳樟醇 (linalool) 和二氢丹参酮Ⅰ (dihydrotanshinone Ⅰ) 等具有抗氧化、抗炎免疫调节、抗心血管疾病和镇定作用的萜类化合物[22],表明萜类化合物可能是花榈木中主要的药用活性物质。
表 1 花榈木中萜类化合物质谱信息
Table 1. Mass spectral information of terpenoids in O. henryi
名称 分子式 质荷比 保留时间/min 峰面积 根 茎 老叶 皮 幼叶 齐墩果酸 C30H48O3 456.360 87 13.411 264 762 138 689 614 4 392 055 4 501 446 1 185 143 二氢丹参酮Ⅰ C18H14O3 278.093 90 7.125 293 469 237 564 453 110 77 252 839 415 872 759 45 119 942 Walleminone C15H24O3 252.172 21 12.877 27 142 310 25 925 485 38 139 793 90 127 128 102 273 216 甘草次酸1 C30H46O4 470.338 67 9.011 10 782 521 10 749 752 19 745 477 26 015 732 10 142 324 熊果酸 C30H48 O3 456.359 91 13.631 40 193 042 1 258 439 318 763 532 2 194 119 2 055 746 京尼平苷酸 C16H22O10 374.121 60 1.932 16 460 987 112 195 727 49 129 697 97 661 105 52 007 928 甘草次酸2 C30H46 O4 470.338 61 13.353 6 685 919 1 285 086 34 589 990 2 917 822 2 213 863 劳丹醇酸 C20H36O3 324.266 84 12.857 1 810 075 2 772 437 427 160 3 608 483 8 629 568 芳樟醇 C10H18O 154.135 49 12.167 2 423 647 2 992 083 1 182 137 4 399 836 13 100 226 脱落酸 C15H20O4 264.136 42 8.304 1 324 567 8 782 319 6 127 101 13 051 696 24 808 273 积雪草苷 C48H78O19 958.511 41 8.844 4 835 086 22 449 131 116 659 465 169 326 989 9 393 498 Lagochilin C20H36O5 356.255 49 12.385 1 032 268 511 236 837 844 660 680 27 515 252 木香烃内酯 C15H20O2 232.146 14 9.727 600 726 697 407 6 046 546 4 143 536 4 973 618 鸡蛋花素 C15H14O6 290.078 91 9.824 1 179 709 9 187 944 17 465 820 14 830 113 618 679 Prespatane C15H24 204.187 43 12.689 15 917 262 1 479 579 2 907 710 4 359 663 8 310 627 -
为了筛选花榈木中与萜类生物合成相关的潜在基因,利用RNA-seq对花榈木5个部位的所有转录组进行分析。使用Illumina Hiseq 2000平台进行测序,在去除低质量和短的读数后,总共获得了1.9~2.4 M的高质量待分析数据,共获得96 302个最长转录本,并与NR、eggNOG、TrEMBL、Pfam、SwissProt、KEGG、COG、KOG及GO等9个数据库比对,确定编码序类有47 809条,并对其进行功能注释。计算出FPKM值,代表每个基因的表达水平。对花榈木5个部位的转录组进行差异基因分析,共得到13 840个差异显著基因 (DEGs)。在差异基因分析中发现,与其他3个部位样本相比,叶的特异差异基因更多,茎中的特异差异基因最少(图2)。
-
根据其他物种萜类生物合成信息,花榈木萜类物质合成途径大致可分为萜类前体物质的合成、萜骨架的合成和后修饰3个阶段,其中萜类化合物的前体GPP、FPP和GGPP主要来自植物的MVA和MEP途径。MVA通路共鉴定到8个基因,包括2个乙酰辅酶A乙酰转移酶 (AACT, c68943.graph_c2, c73242.graph_c0)、2个羟甲基戊二酰辅酶A合成酶 (HMGS, c57495.graph_c0, c70166.graph_c1)、1个羟甲基戊二酰辅酶A还原酶 (HMGR, c68938.graph_c1)、1个甲羟戊酸激酶 (MK, c70988.graph_c0)、1个磷酸甲羟戊酸激酶 (PMK, c71400.graph_c0)、1个甲羟戊酸焦磷酸脱羧酶 (MVD, c76163.graph_c2);MEP通路共鉴定到10个基因,包括4个1-脱氧-D-木酮糖-5-磷酸合酶 (DXS, c62607.graph_c0, c70494.graph_c2, c75298.graph_c5, c75577.graph_c0)、1个1-脱氧-D-木酮糖-5-磷酸还原酶 (DXR, c71705.graph_c2),1个4-焦磷酸胞苷-2-甲基-D-赤藓醇激酶 (CMK, c73279.graph_c4)、1个2-甲基-D-赤藓醇-2,4-环焦磷酸合酶 (MDS, c62387.graph_c0)、1个羟甲基丁烯基-4-焦磷酸合酶 (HDS, c56719.graph_c0)、2个羟甲基丁烯基-4-磷酸还原酶 (HDR, c29394.graph_c0, c70095.graph_c0)。为了更直观地比较萜类生物合成途径主要基因在不同组织中的表达情况,采用FPKM值对花榈木不同组织部位的合成途径基因表达量作图。发现参与MVA途径的基因在幼叶中表达量普遍较高,MEP途径相关基因在老叶中表达量较高,与萜类相对含量比较对应,可能与叶中的萜类化合物的积累有关(图3)。还检测出2个异戊烯基焦磷酸异构酶 (IPPI, c31804.graph_c0, c89450.graph_c0),它们在叶中的表达量并不高,可能这些基因与萜类化合物相对含量并不密切相关。
MVA和MEP这2个途径后生成萜类化合物的前体,还需要3个比较重要的酶参与:香叶基二磷酸合成酶 (GPPS)、法尼基二磷酸合成酶 (FPPS) 和香叶基香叶基焦磷酸合成酶 (GGPPS)。在花榈木的转录组数据中共检测到2个FPPS基因 (c86328.graph_c0, c75342.graph_c0),2个GPPS基因 (c36059.graph_c0, c76294.graph_c0),5个GGPPS基因 (c55157.graph_c0, c71336.graph_c0, c65845.graph_c2, c63610.graph_c0, c69470.graph_c0),表达情况如图3所示。2个GGPPS基因c55157.graph_c0和c69470.graph_c0在幼叶中表达量比较高,多数二萜在幼叶中的积累量也是最多的(图1),可能这2个基因是花榈木二萜物质合成的关键酶基因。TPSs是催化合成不同种单帖、二萜和倍半萜类化合物的酶,OSCs可以催化合成三萜类化合物,在花榈木转录组中还鉴定出6个TPSs和8个OSCs基因,其表达谱如图1B所示。这些基因的表达在花榈木中出现了组织差异性,每个组织中都有其表达量高的基因,其中与MVA和MEP途径基因表达情况相似:在幼叶和老叶中表达量高的基因占比较大。这些TPSs和OSCs的组织差异表达可能是导致花榈木中萜类多样性和具有不同积累模式的主要原因。
为了进一步了解研究中6个TPSs的假设功能,根据其蛋白序列,将其与已经在拟南芥Arabidopsis thaliana、葡萄Vitis vinifera和番茄Lycopersicon esculentum等物种中确定的TPS进行系统发育分析(图4)。发现与之前报道相似,花榈木中的TPSs主要分布在TPS-a、TPS-b、TPS-c、TPS-e和TPS-g亚家族。c70917.graph_c0和c72335.graph_c1被分类到TPS-b中,可能这2个基因在功能上比较类似;c64128.graph_c1被分到TPS-e亚家族,说明c64128.graph_c1可能在花榈木中行使着KS酶功能;c73567.graph_c1则被分到TPS-c亚家族中,表明它可能有着CPS酶的功能。为了进一步推测花榈木OSCs的功能,对每个基因再次进行了美国国家生物技术信息中心数据库的比对注释,发现除c71944.graph_c0基因是编码LUC的基因外,其他7个都是编码β-AS的基因。
-
为进一步分析萜类化合物合成相关基因,利用WGCNA对确定的全部DEGs进行了共表达分析。这些DEGs被聚类为10个分支,每个不同颜色标记的模块代表了1个分支(图5)。模块是由具有相似表达模式的基因簇组成的,MEturquoise模块包含的基因数量最多(3 761个基因),而MEmagenta模块的基因数量最少(104个基因)。其中有7个模块与一些特定的萜类化合物表现出明显的正相关(相关系数>0.80)(图5)。除了c63712.graph_c0基因外,共有5个TPSs 和8个OSCs基因表达差异明显,推测这13个差异表达的TPSs和OSCs可能是导致花榈木5个组织部位萜类化合物组成差异的重要候选基因。其中, MEturquoise模块中共有2个TPSs和4个OSCs基因;MEblue模块有2个TPSs和3个OSCs基因。MEturquoise和MEbrown与三萜类化合物的相关性较强(相关性系数>0.90),而MEblue、MEblack和MEpink模块与倍半萜化合物有相关性,其中MEblue模块也与二萜和单萜具有相关性。二氢丹参酮Ⅰ这个二萜化合物与MEyellow和MEgrey 2个模块都具有正相关性。这些正相关的模块表明:这些基因在调节花榈木萜类化合物的生物合成中具有潜在的作用。
图 5 花榈木中基因与萜类化合物的共表达网络分析
Figure 5. Co-expression network analysis of genes and terpenoids in O. henryi
上述模块的分析结果表明:MEturquoise模块富集了最多的TPSs和OSCs,并且该模块与乌苏酸和甘草次酸呈正相关,相关性分别为0.95和0.93(图5);MEblue也富集到了较多的TPSs和OSCs基因,并且与一些倍半萜和二萜成正相关,所以对这2个模块开展进一步的分析。在MEturquoise模块中发现:基因主要富集在次生代谢和信号转导通路,共检测到105个转录因子可能参与TPSs的调控(图6 A和图6 B):bHLH、WRKY和MYB家族数量最多,分别有10、9和8个,此外C2H2、mTERF、FAR1和bZIP家族数量也达到了6~7个。通过对MEblue模块基因进行KEGG分析,发现基因主要富集在DNA复制、同源重组和修复通路,并检测到152个转录因子,数量最多的是bHLH和MYB家族转录因子 (图7 A和图7 B)。为了进一步研究MEturquoise模块中转录因子与相应TPSs和OSCs基因的关系,构建了一个共表达的网络图,选择了与MEturquoise模块中TPSs和OSCs基因相关性较强的34个转录因子 (边缘权重≥0.4),包括MYB、WRKY、bHLH、C3H、DBB、HB-HD-ZIP和一些其他家族的转录因子(图8)。最终利用Cytoscape插件CytoHubba的Degree算法分析识别到了6个转录因子,即HB-HD-ZIP (c64527.graph_c1)、GRF (c76195.graph_c0)、DBB (c66970.graph_c2)、DBB (c75593.graph_c0)、HB-HD-ZIP (c63393.graph_c0)和C3H (c70385.graph_c1)。这些转录因子在花榈木中可能与萜类化合物的合成基因有着密切的关系。
-
目前,天然植物次生代谢物已被广泛应用于抗癌药和治疗感染性疾病的药物[23]。根据合成起始分子不同,植物次生代谢物可以分为生物碱、萜类、苯丙烷类三大类化合物[24]。萜类一直是天然产物中重要的药用化合物,具有多种药理活性,如紫杉醇可以抗肿瘤,青蒿素属于抗疟疾特效药物,雷公藤内酯能够抗炎等[25−26],但药用木本植物花榈木中的萜类还没有过报道。本研究利用代谢组学技术分析了花榈木中萜类物质在不同部位的积累情况,共检测出比较确定的15种萜类化合物,并发现了甘草次酸、齐墩果、芳樟醇和二氢丹参酮Ⅰ等具有抗氧化、抗炎免疫调节和镇定等药用活性的萜类化合物[27]。通过对花榈木不同组织部位的萜类代谢物热图分析发现,萜类化合物积累具有明显组织特异性,主要积累在幼叶和老叶中,其他部位中积累较少,可能为了保护叶片免遭危害[28]。今后在提取和分析花榈木药用物质时应该更多利用它的叶片。
近些年来,RNA-Seq 高通量测序技术被越来越多地应用于药用植物基因信息解读、新基因发掘与基因功能研究中。人们已对药用植物连翘 Forsythia suspense、银杏 Ginkgo biloba、款冬 Tussilago farfara等进行了转录组的研究,获得了大量有用的基因信息[29−30]。这使得阐明药用植物中活性物质的合成及积累规律成为可能,为增加次生代谢物积累、改善药用植物品质提供更多途径。本研究采用RNA-Seq对花榈木5个不同组织部位进行无参转录组分析,共获得96 302个,在经过与数据库比对后共注释了47 809条转录本。利用FPKM值对基因表达量进行分析比较,共获得显著差异基因13 840个。韦恩图分析发现大量基因表达具有组织特异性,并通过注释信息在差异显著的基因中共鉴定出49个与萜类化合物生物合成相关的基因,包括29个萜类骨架生物合成途径的酶基因,6个单帖、倍半萜和二萜生物合成酶基因,8个三萜生物合成酶基因以及6个可能参与萜类生物合成调控的转录因子,对花榈木的萜类合成有了初步的认识,为后续研究提供了信息资源。
先前的研究表明:MVA途径在许多植物的三萜生物合成中起主导作用,如人参Panax ginseng、三七P. notoginseng和茶树Camellia sinensis等植物[31−32],MEP途径通常有助于单萜类化合物和二萜类化合物的生物合成[33]。但是本研究利用热图对萜类生物合成基因的表达分析发现:MVA途径相关酶基因大多数在幼叶中表达量较高,MEP途径多数相关基因则集中在老叶中表达。根据相应FPPS、GPPS和GGPPS酶基因的表达情况,以及花榈木中三萜主要在老叶中积累,而二萜、倍半萜和单萜在幼叶中积累较多的情况,推测在花榈木中三萜类化合物前体可能主要由MEP途径生成,而二萜、单帖和倍半萜的前体物质则主要由MVA途径提供。由图4看出:花榈木的TPS基因在进化上相对于各种模式植物来说是相对分离的,也进一步印证了其萜类的合成具有特殊性。也有可能由于转录组学的限制,部分基因没有检测到,且研究中还没有检测到所有的萜类物质,从而导致判断出现误差,所以后续还需要大量的试验来验证其功能,判断花榈木中萜类的具体合成情况。
基因的转录调控一直是植物代谢研究领域的热点。对不同植物的研究表明:参与萜类生物合成的转录因子主要分布在bHLH、AP2/ERF、bZIP和WRKY家族中,如在西洋参P. quinquefolius中转录因子PqWRKY1是三萜人参皂苷生物合成相关的正调节因子[34],在艾叶Artemisia argyi中AarbHLHs的基因表达与1, 8-桉树烯或β-石竹烯的含量变化呈显著相关[35]。本研究利用WGCNA对差异基因和萜类化合物进行了相关性分析,筛选出一些可能对萜类生物合成的关键酶基因表现重要调控作用的转录因子家族,如MYB、WRKY、bHLH和HB-HD-ZIP转录因子。有研究预测传统中药走马胎Ardisia kteniophylla中AP2/ERF、MYB、WRKY和bHLH转录因子可能调控萜类合成,预测赤桉Eucalyptus camaldulensis中WRKY、MYB、NAC和bHLH转录因子对萜类生物合成中的关键酶基因表现出重要的调控作用[36]。这和本研究预测的结果基本相同。经过分析进一步筛选出6个转录因子处于共表达网络的中心位置,推测这些候选转录因子可能调控了萜类化合物的生物合成,后续还需要进一步的试验证明。
-
本研究通过代谢组与转录组学的分析,发现花榈木叶中萜类相对含量最高,并鉴定出49个与萜类化合物生物合成相关的基因。预测了可能调控萜类化合物生物合成的上游转录因子。本研究为花榈木资源活性成分萜类化合物的积累状况、生物合成及调控提供了大量的信息,弥补了花榈木萜类合成研究中的空白,为进一步开展花榈木的主要药用活性物质研究提供基础。
Analysis of candidate genes for terpene synthesis in Ormosia henryi based on metabolome and transcriptome
-
摘要:
目的 花榈木Ormosia henryi是重要的木本药用植物。研究花榈木萜类次生代谢物积累规律,分析萜类生物合成通路和相关的关键酶基因,对花榈木药用价值的开发具有重要意义。 方法 采用液相色谱-质谱联用技术与高通量转录组学测序,利用生物信息学分析方法从差异代谢产物和表达基因中寻找萜类生物合成的关联酶基因。 结果 代谢组数据中共检测到了15种萜类化合物,其中含有甘草次酸、齐墩果酸和芳樟醇等具有药用活性的物质,多数在叶片中相对含量高于其他组织部位。转录组数据筛选出49个与萜类合成有关的候选基因,分析后发现:甲羟戊酸(MVA)途径中的差异基因在幼叶中表达较高,甲基赤藓糖磷酸酯(MEP)途径的差异基因在老叶中表达较高。根据加权基因共表达网络(WGCNA)分析,发现MYB、WRKY、bHLH和HB-HD-ZIP等转录因子家族在花榈木的萜类合成中起重要作用,并推测了6个可能与萜类物质生物合成有关的转录因子,即HB-HD-ZIP (c64527.graph_c1)、GRF (c76195.graph_c0)、DBB (c66970.graph_c2)、DBB (c75593.graph_c0)、HB-HD-ZIP (c63393.graph_c0) 和C3H (c70385.graph_c1)。 结论 从花榈木代谢组和转录组数据库中初步获得了重要的萜类物质及可能参与萜类化合物生物合成途径的候选关键酶基因,为进一步阐明花榈木萜类化合物生物合成的分子机制奠定基础。图8表1参36 Abstract:Objective Ormosia henryi is an important woody medicinal plant. This study aims to explore the accumulation pattern of terpene secondary metabolites and analyze the terpene biosynthesis pathway and related key enzyme genes, which is of great significance to the development of medicinal value in O. henryi. Method Liquid chromatography-mass spectrometry and high-throughput transcriptomic sequencing were used to find the associated enzyme genes of terpene biosynthesis from differentially expressed genes based on bioinformatics analysis. Result A total of 15 terpene compounds were detected in the metabolomic data and they contained enoxolone, oleanolic acid, linalool and other substances with medicinal activity, most of which were relatively higher in leaves than in other tissue parts. Transcriptome data screened 49 candidate genes related to terpene synthesis, and after analysis it was found that differential genes in the MVA pathway were highly expressed in young leaves while differential genes in the MEP pathway were highly expressed in old leaves. Based on WGCNA analysis, it was found that transcription factor families such as MYB, WRKY, bHLH and HB-HD-ZIP played an important role in terpene synthesis of O. henryi, and 6 transcription factors that might be related to terpene biosynthesis content were predicted, namely HB-HD-ZIP (c64527.graph_c1), GRF (c76195.graph_c0), DBB (c66970.graph_c2), DBB (c75593.graph_c0), HB-HD-ZIP (c63393.graph_c0) and C3H (c70385.graph_c1). Conclusion Important terpenes and candidate key enzyme genes that may participate in the biosynthesis pathway of these terpenes have been preliminarily obtained from the database of metabolomics and transcriptome of O. henryi . [Ch, 8 fig. 1 tab. 36 ref.] -
Key words:
- Ormosia henryi /
- metabolome /
- transcriptome /
- terpenoids /
- biosynthesis
-
植物化感作用对其生态功能以及植物之间、植物与环境之间的关系产生重要影响[1]。探讨生态系统中种群间相互干扰和物种进化之间的关系是目前化感研究领域的热点[2]。除了制约其他物种的生长,植物产生化感作用的化学物质还具有如调节植物养分吸收和土壤生物群落、影响凋落物分解过程和土壤肥力等作用[2−4]。因此,探讨化感作用有助于深入地理解和解释竹林生态系统中植物组成分布、群落演替、协同进化及入侵等效应[5]。
毛竹Phyllostachys edulis是常绿乔木状竹类植物。毛竹的不同器官和毛竹林土壤浸提液含有不同化感物质,不同质量浓度的浸提液对其他物种生长及种子萌发产生抑制或促进效应[5−8]。从植物化感作用入手,充分利用毛竹林生态系统中化感物质的正效应,避免负效应,探寻合理的毛竹林立体经营模式具有较好的实践意义。
林药复合经营模式可利用林下生态群落学的生态位和空间结构原理,把竹类、灌木、草本等合理配置,形成多层次和多种群的健康生态系统。高效的毛竹-药用植物复合经营模式需要探索与其相适应的林下伴生物种。本研究选择大宗药材浙贝母Fritillaria thunbergii为目标植物,探讨毛竹不同器官及林内土壤的化感作用,为在毛竹林下和林窗发展林药复合经营的森林生态系统提供参考和技术支撑。
1. 研究区与方法
1.1 研究区概况
研究区设在浙江省磐安县大盘山博物馆(28°49′N,120°17′E)。该区域属于亚热带季风气候,多年平均气温为 13.9~17.4 ℃,1 月最低平均气温为4.3 ℃,7 月最高平均气温为 28.8 ℃,无霜期短,雨量充沛,多年平均降水量为 1 409.8~1 527.8 mm。
1.2 浸提母液制备
于2019年9月在集约经营毛竹林内采集径级为0~5 mm的根系、3年生植株的新鲜枝叶、林下凋落物和0~20 cm土壤作为制备浸提液的材料。其中:根系的取材半径为以竹篼为中心的0.5 m范围内;新鲜枝叶取第6盘枝的3级枝和叶片;采集凋落物的范围与根系相同,尽量采集完整并去除杂质。
0~5 mm径级根系放置阴凉处风干;将新鲜枝叶洗净,均剪成1 cm左右的小段;凋落物混合均匀后从叶端开始向另一端剪碎,宽约1 mm;林下0~20 cm鲜土样风干,研碎,过2 mm筛。取1 g上述4种材料,加10 mL蒸馏水在室温[(26±1.2) ℃]下浸泡48 h后进行3重过滤:先用4层棉纱布过滤,再用普通滤纸过滤,然后用0.45 µm的微孔滤膜过滤。4 ℃消毒后置于冰箱。
1.3 试验设计
以蒸馏水作空白对照(ck),将不同浸提液用蒸馏水稀释成0.005 kg·L−1 (T1)、0.010 kg·L−1 (T2)、0.020 kg·L−1(T3)、0.050 kg·L−1 (T4)和0.100 kg·L−1(T5) 等5个质量浓度并相应设置5个处理[9]。9月,选取无病虫害、颗粒饱满、大小均一的浙贝母块茎(10.9±1.12) g,选用直径30 cm、高30 cm的圆柱形控根容器种植,每盆种植3颗浙贝母块茎,穴距10 cm,呈等边三角形;每个处理设置5个重复,即5盆共15株,处理间所选用的块茎质量无显著差异。土壤为沙壤土,并混入竹炭肥100 g,搅拌均匀。竹碳肥理化性质:pH 5.6,全氮为(1.48±0.11) g·kg−1,全磷为(1.32±0.20) g·kg−1,全钾为(26.15±4.06) g·kg−1。将埋置块茎后的控根容器放置于大田,进行90 d的适应生长。随后隔15 d浇浸提液1次,每次每盆浇200 mL,处理期为90 d,期间进行常规管理。
1.4 参数测定
于2020年4月选取植株上部成熟、无病虫害叶片,采用Li-6400便携式光合仪测量光合特征参数。设置光照强度梯度为0、20、60、100、200、400、800、1 200、1 600 μmol·m−2·s−1,选择晴朗无风的天气于9:00—11:00采用内置红蓝光源测定植株光响应曲线。人工二氧化碳摩尔分数控制为400 µmol·mol−1,相对湿度约为70%。
用直尺测量浙贝母的高度,每个处理10株,并将这10株取回实验室分根、茎、叶放入烘箱中105 ℃杀青30 min后80 ℃烘至恒量,用天平称其质量。采用剪纸称量法计算叶面积[7]。
在每个处理中,选取剩余5株浙贝母植株同一方向的上、中、下层叶片各3片,混合后采用徐琳煜等[9]的方法提取光合色素,用紫外分光光度计测定波长为665、649、470 nm处的吸光度。同时,每个处理选取成熟度相近中下层的叶片10片,放入干冰中迅速带回实验室,放−80 ℃冰箱备用。叶片过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、超氧化物歧化酶(SOD)活性以及丙二醛(MDA)质量摩尔浓度均采用试剂盒(南京建成生物工程研究所)测定。
采用王文文等[10]和车朋等[11]的方法测定浙贝母的贝母素甲和贝母素乙。色谱条件:采用ELSD检测器检测,色谱柱为 Supersil ODS2 (4.6 mm×25 cm) E1828368。流动相:偶氮二环己基甲腈(AcCN)∶0.05%三乙胺溶液为75∶25,压力为10.0 MPa,流速为1 mL·min−1,柱温为30 ℃,进样量为20 µL。依次检测对照品和供试品溶液,并计算贝母素甲和贝母素乙的质量分数。
1.5 数据处理
采用SPSS 19.0的非直角双曲线模型拟合光合—光响应曲线,依据光响应曲线计算得出表观量子效率、最大净光合速率、光饱和点和光补偿点。
化感效应指数IR=1−C/T(T≥C)或IR=T/C−1(T<C)。其中:T为试验值,C为对照值。IR>0表示促进作用, IR<0表示抑制作用[12]。综合化感效应指数用浙贝母的生长指标、光合色素和光响应特征参数的化感效应指数的算术平均值表示。
采用SPSS 19.0进行单因素方差分析及最小显著差异法(LSD法)检验(α=0.05)。
2. 结果与分析
2.1 毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母生长的影响
化感效应指数表明:毛竹根系、新鲜枝叶、凋落叶和土壤浸提液对浙贝母株高的影响表现为低质量浓度促进高质量浓度抑制(“低促高抑”)的效应(表1),在T5处理时均表现出抑制浙贝母高生长的现象;凋落物和土壤浸提液处理时,分别从T3、T4处理开始发生抑制作用。差异显著性分析表明:新鲜枝叶和凋落物浸提液处理对浙贝母株高的影响不显著。
表 1 毛竹不同浸提液对浙贝母株高、生物量和叶面积的影响Table 1 Effects of different extracts of Ph. edulis forest on height of F. thunbergia浸提液 浙贝母株高 ck/cm T1 T2 T3 T4 T5 数值/cm IR 数值/cm IR 数值/cm IR 数值/cm IR 数值/cm IR 根系 42.75±2.31c 57.93±0.86 a 0.26 53.20±3.43 b 0.20 52.27±2.75 b 0.18 43.30±0.85 c 0.01 37.78±3.12 d −0.12 新鲜枝叶 42.75±2.31 a 46.80±3.89 a 0.09 46.00±2.73 a 0.07 45.50±3.51 a 0.06 44.55±5.39 a 0.04 42.50±1.84 a −0.01 凋落物 42.75±2.31 a 44.03±3.89 a 0.03 44.47±3.42 a 0.04 42.75±6.04 a 0.00 41.58±10.41 a −0.03 38.43±6.84 a −0.10 土壤 42.75±2.31 ab 46.47±3.78 a 0.08 43.97±1.08 a 0.03 42.02±3.99 ab −0.02 38.13±4.11 b −0.11 37.90±3.65 b −0.11 浸提液 浙贝母地上生物量 ck/g T1 T2 T3 T4 T5 数值/g IR 数值/g IR 数值/g IR 数值/g IR 数值/g IR 根系 0.85±0.03 b 1.02±0.09 a 0.17 1.09±0.11 a 0.22 1.08±0.15 a 0.21 0.81±0.03 b −0.05 0.75±0.10 b −0.12 新鲜枝叶 0.85±0.03 c 1.10±0.02 bc 0.15 1.16±0.04 ab 0.27 1.27±0.04 a 0.33 1.09±0.17 b 0.22 0.86±0.01 c 0.02 凋落物 0.85±0.03 b 0.90±0.07 b 0.05 1.04±0.10 a 0.18 0.93±0.04 b 0.09 0.90±0.02 b 0.06 0.85±0.06 b 0.00 土壤 0.85±0.03 b 0.87±0.04 b 0.02 1.15±0.06 a 0.26 0.10±0.17 ab 0.15 0.97±0.07 ab 0.12 0.87±0.04 b 0.02 浸提液 浙贝母地下生物量 ck/g T1 T2 T3 T4 T5 数值/g IR 数值/g IR 数值/g IR 数值/g IR 数值/g IR 根系 1.16±0.20 c 1.41±0.10 bc 0.18 2.21±0.01 a 0.48 1.59±0.29 b 0.27 1.16±0.11 c 0.00 1.05±0.01 c −0.10 新鲜枝叶 1.16±0.20 a 1.29±0.06 a 0.10 1.43±0.03 a 0.19 1.46±0.36 a 0.20 1.40±0.10 a 0.17 1.34±0.07 a 0.13 凋落物 1.16±0.20 b 1.51±0.05 a 0.23 1.55±0.10 a 0.25 1.46±0.06 a 0.20 1.23±0.16 b 0.06 1.18±0.05 b 0.02 土壤 1.16±0.20 a 1.58±0.40 a 0.27 1.87±0.64 a 0.38 1.66±0.21 a 0.30 1.42±0.01 a 0.18 1.30±0.28 a 0.14 浸提液 浙贝母叶面积 ck/cm2 T1 T2 T3 T4 T5 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 根系 5.29±1.35 a 7.03±2.39 a 0.25 7.37±0.41 a 0.28 6.50±4.31 a 0.19 5.92±0.26 a 0.11 3.18±1.17 a −0.40 新鲜枝叶 5.29±1.35 a 6.21±1.16 a 0.15 7.28±2.35 a 0.27 6.08±4.20 a 0.13 5.77±1.03 a 0.08 5.60±1.72 a 0.06 凋落物 5.29±1.35 a 7.19±0.32 a 0.27 6.91±0.82 a 0.24 6.65±0.97 a 0.21 5.58±0.21 a 0.05 5.57±0.45 a 0.05 土壤 5.29±1.35 a 6.52±0.88 a 0.19 8.89±2.40 a 0.41 7.55±2.90 a 0.30 6.30±1.28 a 0.16 5.43±1.54 a 0.03 说明:同行不同小写字母表示处理间差异显著(P<0.05);表中数值为平均值±标准差。 除根系浸提液外,其他浸提液处理对浙贝母地上生物量的影响均表现为促进效应,促进程度随浸提液质量浓度的增加先升高后降低,且凋落物和土壤浸提液均在T2处理时地上生物量最大,在T5处理时最小(表1)。根系浸提液处理对浙贝母的地上和地下生物量的影响均表现为“低促高抑”的双重效应,均在T2处理时促进作用较为明显,T5处理时表现出抑制效应;新鲜枝叶浸提液对浙贝母地下生物量的影响不显著,对其地上生物量的影响在T2~T4处理时显著(P<0.05)高于ck;凋落物浸提液处理时,T2处理地上部分生物量显著(P<0.05)高于ck,而地下生物量在T1~T3处理时显著(P<0.05)高于ck;土壤浸提液对地上生物量的影响在T2处理时显著(P<0.05)高于ck。
毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母叶面积的影响均无显著性差异(表1)。但化感效应指数表明:除了根系浸提液的T5处理外,其他浸提液对叶面积有促进作用,趋势为随着浸提液质量浓度的增加先升高后降低,除凋落物浸提液外,均在T2处理时叶面积最大,但各处理组间差异性均不显著,表明毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母叶面积的影响不大。根系浸提液处理时对浙贝母叶面积的影响表现为“低促高抑”的效应。
2.2 毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母光合色素和光响应特征的影响
化感效应指数表明:除了根系浸提液的T5处理,不同浸提液对浙贝母的叶绿素a、叶绿素b和叶绿素a+b质量分数均有促进作用,随浸提液质量浓度增加呈现先升高后降低的趋势,且均在T5处理时质量分数最低。叶绿素a/b数值则随浸提液质量浓度的增加而增加(根系浸提液除外),根系各处理间的差异不显著(表2)。毛竹根系浸提液处理时,叶绿素a和叶绿素a+b均表现为低质量浓度促进高质量浓度抑制的效应,而叶绿素b和类胡萝卜素质量分数均有不同程度提高。新鲜枝叶浸提液处理时,叶绿素b和类胡萝卜素质量分数表现为“低促高抑”的双重效应,这与凋落物浸提液处理时趋同。土壤浸提液处理时,对光合色素参数均有不同程度的提升作用(除了类胡萝卜素表现为“低促高抑”),浙贝母光合色素质量分数随浸提液质量浓度的增加而降低。
表 2 毛竹不同浸提液对浙贝母光合色素参数的影响Table 2 Effects of different extracts of Ph. edulis forest on the photosynthetic pigment of F. thunbergia浸提液 叶绿素a ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 1.49±0.13 b 1.81±0.10 a 0.18 1.70±0.65 ab 0.13 1.68±0.23 ab 0.12 1.51±0.11 b 0.02 1.34±0.12 c −0.10 新鲜枝叶 1.49±0.13 d 1.76±0.02 b 0.15 1.93±0.02 a 0.23 1.63±0.02 c 0.09 1.57±0.01 cd 0.06 1.57±0.04 cd 0.05 凋落物 1.49±0.13 c 1.93±0.04 a 0.23 1.74±0.04 b 0.15 1.61±0.04 bc 0.08 1.58±0.01 bc 0.06 1.54±0.04 c 0.03 土壤 1.49±0.13 b 1.69±0.02 a 0.120 1.63±0.02 ab 0.09 1.58±0.03 ab 0.06 1.53±0.03 ab 0.05 1.55±0.06 ab 0.04 浸提液 叶绿素b ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 0.44±0.01 c 0.66±0.63 ab 0.34 0.75±0.54 a 0.42 0.62±0.64 ab 0.20 0.59±0.11 ab 0.26 0.50±0.06 bc 0.13 新鲜枝叶 0.44±0.01 b 0.68±0.01 a 0.36 0.73±0.01 a 0.40 0.50±0.01 b 0.13 0.47±0.01 ab 0.06 0.38±0.01 e −0.13 凋落物 0.44±0.01 c 0.75±0.02 b 0.42 0.81±0.01 a 0.46 0.47±0.01 c 0.07 0.45±0.01 c 0.03 0.43±0.01 c −0.01 土壤 0.44±0.01 c 0.67±0.01 a 0.35 0.63±0.01 a 0.31 0.53±0.01 b 0.18 0.51±0.01 bc 0.14 0.49±0.19 bc 0.12 浸提液 叶绿素a/b ck T1 T2 T3 T4 T5 数值 IR 数值 IR 数值 IR 数值 IR 数值 IR 根系 3.46±0.72 a 2.77±0.13 a −0.20 2.27±0.23 a −0.34 2.72±0.26 a −0.21 2.62±0.36 a −0.24 2.74±0.59 a −0.21 新鲜枝叶 3.46±0.72 ab 2.57±0.01 b −0.26 2.64±0.01 b −0.24 3.24±0.01 b −0.06 3.37±0.01 ab −0.03 4.16±0.04 a 0.12 凋落物 3.46±0.72 a 2.57±0.01 b −0.26 2.16±0.02 b −0.38 3.45±0.01 a −0.01 3.51±0.01 a 0.02 3.58±0.01 a 0.03 土壤 3.46±0.72 a 2.51±0.01 a −0.28 2.57±0.03 a −0.26 3.02±0.01 a −0.13 3.16±0.01 a −0.11 3.46±0.79 a −0.09 浸提液 叶绿素a+b ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 1.92±0.09 c 2.47±0.16 a 0.22 2.45±0.03 a 0.22 2.30±0.08 ab 0.16 2.10±0.21 bc 0.08 1.84±0.06 c −0.04 新鲜枝叶 1.92±0.09 e 2.44±0.02 b 0.21 2.66±0.03 a 0.28 2.13±0.02 c 0.01 2.04±0.01 d 0.06 1.95±0.04 e 0.01 凋落物 1.92±0.09 d 2.68±0.05 a 0.28 2.54±0.05 b 0.24 2.08±0.05 c 0.08 2.04±0.01 cd 0.06 1.97±0.06 cd 0.02 土壤 1.92±0.09 d 2.35±0.02 a 0.19 2.26±0.03 b 0.15 2.11±0.04 c 0.09 2.07±0.03 c 0.07 2.05±0.03 c 0.06 浸提液 类胡萝卜素 ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 0.52±0.01 a 0.63±0.04 a 0.17 0.62±0.03 a 0.16 0.60±0.04 a 0.13 0.56±0.03 a 0.06 0.55±0.01 a 0.05 新鲜枝叶 0.52±0.01 b 0.60±0.01 a 0.13 0.59±0.01 a 0.12 0.53±0.01 b 0.02 0.45±0.01 c −0.15 0.43±0.01 c −0.17 凋落物 0.52±0.01 b 0.61±0.01 a 0.14 0.59±0.01 a 0.12 0.52±0.01 b −0.01 0.50±0.01 b −0.05 0.47±0.02 c −0.10 土壤 0.52±0.01 d 0.61±0.01 a 0.14 0.59±0.01 b 0.12 0.54±0.01 c 0.03 0.48±0.01 e −0.08 0.44±0.01 f −0.15 说明:同行不同小写字母表示处理间差异显著(P<0.05);表中数值为平均值±标准差。 除根系浸提液外,其他3种浸提液处理对浙贝母的最大净光合速率基本表现为促进作用,均提高浙贝母的表观量子效率和降低光补偿点,表明毛竹根系、枝叶、凋落物和土壤浸提液处理影响了浙贝母的光合代谢速率,提升了其对环境的生长适应能力(表3)。根系浸提液处理时,T5处理的光饱和点与光补偿点分别比ck降低了53%和50%,化感指数分别为−0.530和−0.500。新鲜枝叶浸提液处理时,浙贝母的光饱和点随浸提液质量浓度的增加呈现出先升高后降低的趋势,光补偿点与ck差异不显著。凋落物浸提液处理时,T1处理的光饱和点显著(P<0.05)高于ck,T2~T4处理均显著(P<0.05)低于ck。土壤浸提液处理时,表观量子效率随着浸提液质量浓度升高而降低,而光饱和点和光补偿点的值均在T1处理时最低。
表 3 毛竹不同浸提液对浙贝母光响应特征参数的影响Table 3 Effects of different extracts of Ph. edulis forest on photoresponse characteristic parameters of F. thunbergii浸提液 表观量子效率 ck T1 T2 T3 T4 T5 数值 IR 数值 IR 数值 IR 数值 IR 数值 IR 根系 0.048±0.013 de 0.071±0.005 b 0.324 0.065±0.008 cd 0.262 0.063±0.004 cd 0.238 0.049±0.004 e 0.020 0.096±0.010 a 0.500 新鲜枝叶 0.048±0.013 a 0.067±0.011 a 0.284 0.067±0.009 a 0.284 0.059±0.004 a 0.186 0.050±0.003 a 0.040 0.053±0.004 a 0.094 凋落物 0.048±0.013 b 0.054±0.008 b 0.111 0.084±0.012 a 0.429 0.072±0.011 ab 0.333 0.053±0.006 b 0.094 0.059±0.011 b 0.186 土壤 0.048±0.013 a 0.074±0.026 a 0.351 0.062±0.006 a 0.226 0.053±0.007 a 0.094 0.054±0.007 a 0.111 0.050±0.008 a 0.040 浸提液 最大净光合速率 ck/
(μmol·m−2·s−1)T1 T2 T3 T4 T5 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 根系 4.31±0.83 c 7.31±1.06 b 0.41 8.83±1.99 b 0.51 9.02±2.41 a 0.55 10.57±2.01 ab 0.59 3.99±0.68 c −0.08 新鲜枝叶 4.31±0.83 a 6.65±1.04 a 0.35 7.15±2.31 a 0.40 6.19±1.65 a 0.30 4.49±0.67 a 0.04 4.68±1.01 a 0.08 凋落物 4.31±0.83 b 6.52±0.42 a 0.34 6.52±0.82 a 0.34 5.32±1.21 ab 0.19 4.51±0.70 b 0.04 5.48±1.12 ab 0.21 土壤 4.31±0.83 a 4.92±0.61 a 0.12 4.78±0.59 a 0.10 4.763±0.52 a 0.10 4.58±0.66 a 0.06 4.52±0.70 a 0.05 浸提液 光饱和点 ck/
(μmol·m−2·s−1)T1 T2 T3 T4 T5 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 根系 110.67±10.00 c 116.92±16.63 bc 0.05 151.25±19.04 b 0.27 240.38±26.52 a 0.54 236.20±23.33 a 0.53 51.97±7.26 d −0.53 新鲜枝叶 110.67±10.00 a 114.18±12.30 a 0.03 121.60±16.16 a 0.09 121.81±20.48 a 0.09 109.84±12.00 a −0.01 107.09±12.52 a −0.03 凋落物 110.67±10.00 b 139.20±13.21 a 0.21 89.50±8.01 c −0.19 87.79±10.36 c −0.21 97.23±9.27 c −0.12 109.78±12.84 bc −0.01 土壤 110.67±10.00 a 80.00±7.32 b −0.23 93.23±10.25 ab −0.16 108.74±11.00 a −0.02 103.30±9.40 a −0.07 110.44±6.55 a −0.00 浸提液 光补偿点 ck/
(μmol·m−2·s−1)T1 T2 T3 T4 T5 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 根系 20.88±4.22 a 14.09±3.26 ab −0.32 15.38±3.02 ab −0.26 17.86±4.63 ab −0.14 20.41±4.10 a −0.02 10.42±2.15 b −0.50 新鲜枝叶 20.88±4.22 a 14.91±2.11 a −0.28 14.92±2.69 a −0.28 16.95±1.65 a −0.19 20.00±3.21 a −0.04 18.87±2.91 a −0.09 凋落物 20.88±4.22 a 18.52±2.08 a −0.11 11.91±0.67 b −0.43 13.89±1.33 b −0.33 18.86±0.90 a −0.09 16.95±2.15 ab −0.19 土壤 20.88±4.22a 13.51±1.90 b −0.35 16.13±1.44 ab −0.23 18.70±2.61 a −0.09 18.52±1.55 a −0.11 20.00±2.71 a −0.04 说明:同行不同小写字母表示处理间差异显著(P<0.05);表中数值为平均值±标准差。 2.3 毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母的综合化感效应
综合化感效应表明:除根系浸提液外,其他3种浸提液对浙贝母的化感效应均表现为不同程度的促进作用,浸提液质量浓度越高促进作用越弱(表4)。根系浸提液对浙贝母的化感效应则表现为“低促高抑”,T5有一定的抑制效应,这与其生长指标和光合生理指标的研究结果一致。根系浸提液对浙贝母的综合平均化感效应指数为0.103,土壤浸提液对其化感效应最弱,平均化感效应指数为0.056。4种浸提液的综合化感效应指数从大到小依表现为根系浸提液、新鲜枝叶浸提液、凋落物浸提液、土壤浸提液。
表 4 毛竹不同浸提液对浙贝母的综合化感效应Table 4 Synthesis effects of different extracts of Ph. edulis forest on F. thunbergia处理 不同浸提液的综合化感效应指数 处理 不同浸提液的综合化感效应指数 根系 新鲜枝叶 凋落物 土壤 根系 新鲜枝叶 凋落物 土壤 T1 0.136 0.106 0.148 0.035 T4 0.104 0.039 0.020 0.041 T2 0.200 0.154 0.106 0.107 T5 −0.108 0.011 0.016 0.016 T3 0.180 0.102 0.053 0.081 平均值 0.103 0.082 0.069 0.056 2.4 毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母抗氧化酶及丙二醛的影响
毛竹根系、新鲜枝叶、凋落物和土壤浸提液对过氧化氢酶的影响表现为随着浸提液质量浓度的增加,呈现先升高后降低的趋势,表明中低质量浓度的4种浸提液提高了浙贝母叶片的过氧化氢酶活性(图1)。根系浸提液处理时,T2和T3的过氧化氢酶活性显著(P<0.05)高于ck。新鲜枝叶和凋落物浸提液的过氧化氢酶活性在T3时显著(P<0.05)高于ck。土壤浸提液处理时,T2、T3、T4的过氧化氢酶活性显著(P<0.05)高于ck。
根系浸提液处理时,T5显著(P<0.05)增加了过氧化物酶活性。新鲜枝叶浸提液处理时,过氧化物酶活性随浸提液质量浓度的增加表现为先升高后降低,其中T4显著(P<0.05)高于ck。凋落物浸提液处理时,T2的过氧化物酶活性显著(P<0.05)高于ck。土壤浸提液处理时,过氧化物酶活性随浸提液质量浓度的增加而增加,T3、T4、T5显著(P<0.05)高于ck。
毛竹不同浸提液对超氧化物歧化酶活性的影响表现为随着浸提液质量浓度的增加呈现先升高后降低的趋势,这与过氧化氢酶类似。根系和凋落物浸提液处理时,T2、T3、T4的超氧化物歧化酶活性显著(P<0.05)高于ck。新鲜枝叶和土壤浸提液处理时,各处理组与ck的差异不显著。
毛竹不同浸提液处理对丙二醛质量摩尔浓度的影响有差异。根系浸提液处理时,丙二醛质量摩尔浓度随浸提液质量浓度的增加而增加,T4、T5显著(P<0.05)高于ck。新鲜枝叶和凋落物浸提液处理时,各处理组的丙二醛质量摩尔浓度与ck差异不显著。土壤浸提液处理时,丙二醛质量摩尔浓度随浸提液质量浓度的增加表现为先增加后降低,T1显著(P<0.05)高于ck。
2.5 毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母药效成分质量分数的影响
浙贝母的贝母素甲和贝母素乙是其主要生物碱药效成分。随着毛竹根系、新鲜枝叶、凋落物及土壤浸提液质量浓度的增加,贝母素甲和贝母素乙质量分数表现为先升高后下降(表5)。除根系浸提液处理外,其他浸提液对贝母素甲和贝母素乙质量分数的影响均表现为促进效应。贝母素甲和贝母素乙质量分数分别在根系浸提液的T3和T4时显著(P<0.05)小于ck。
表 5 毛竹不同浸提液对贝母素甲和贝母素乙质量分数的影响Table 5 Effects of different extracts of Ph. edulis forest on the contents of fritillarin A and fritillarin B浸提液 贝母素甲/(mg·kg−1) ck T1 T2 T3 T4 T5 根系 65.15±1.84 b 87.15±1.53 a 88.77±0.27 a 58.30±0.30 c 40.12±0.12 d 39.79±3.29 d 新鲜枝叶 65.15±1.84 d 95.56±1.06 b 108.58±3.58 a 86.99±1.99 b 82.75±0.25 c 71.76±1.26 d 凋落物 65.15±1.84 e 113.94±3.00 a 91.22±1.22 b 87.75±0.25 c 83.26±0.26 d 81.89±1.35 d 土壤 65.15±1.84 d 95.21±3.01 bc 100.56±0.51 a 96.65±1.50 b 92.78±0.50 c 91.57±1.40 c 浸提液 贝母素乙/(mg·kg−1) ck T1 T2 T3 T4 T5 根系 29.10±1.10 b 41.93±0.40 a 42.15±0.15 a 27.92±0.60 b 22.45±2.20 c 16.70±1.20 d 新鲜枝叶 29.10±1.10 d 47.33±0.30 b 62.34±2.04 a 46.23±1.02 b 40.15±0.15 b 35.13±0.10 c 凋落物 29.10±1.10 c 45.45±1.30 a 43.47±3.40 a 39.07±1.07 b 38.42±1.96 b 38.04±1.04 b 土壤 29.10±1.10 d 41.75±1.50 b 52.23±2.20 a 51.88±1.50 a 40.26±0.20 b 38.41±1.20 c 说明:同行不同小写字母表示处理间差异显著(P<0.05);数值为平均值±标准差。 3. 讨论
植物的株高、生物量和叶面积等生长参数是反映化感作用最直观的指标[6, 13]。研究表明:化感作用强度与化感物质的种类、来源、含量以及目标植物对其的敏感程度有关[5, 14−15]。本研究发现:毛竹新鲜枝叶、凋落物及土壤浸提液对浙贝母的生长有积极作用,这与毛竹根系、新鲜枝叶、凋落物及土壤浸提液对块茎类草本药用植物延胡索Corydalis yanhusuo株高、地上部分、地下部分和叶面积影响表现为“低促高抑”的结果不同[7],也有别于毛竹浸提液对苦槠Castanopsis sclerophylla幼苗的株高和地径的试验结果[5],本研究中高质量浓度毛竹新鲜枝叶、凋落物和土壤浸提液抑制浙贝母高生长的同时能促进地上、地下生物量的积累。
光合色素是光合作用过程中的重要物质,叶绿素质量分数的变化是植物对化感作用响应的最直接的表现形式之一[16]。本研究发现:毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母光合色素的影响均随浸提液质量浓度的增加先升后降,除根系浸提液T5外,其他处理的所有光合色素均值都大于ck。这与黄永杰等[16]用水花生Alternanthera philoxeroides浸提液处理马尼拉草Zoysia matrella的结果不同,与张瑞等[7]用毛竹根系、新鲜枝叶、凋落物和土壤浸提液处理延胡索的结果亦有差异。本研究中,浙贝母叶绿素a、叶绿素b增加且叶绿素b的增量超过了叶绿素a,表明浸提液处理提高了浙贝母直射光吸收的同时亦大大提高了漫射光(蓝紫光)的吸收,增加其能量的积累,有利于浙贝母生长;而叶绿素a/b表明浙贝母具备中性植物的特点,在将来的复合经营体系中能较好地适应和利用毛竹林下(林窗)环境。
光合作用是化感物质影响植物生长的重要途径[17]。本研究发现:毛竹新鲜枝叶、凋落物和土壤浸提液处理使浙贝母对光能的利用能力和吸收能力增强;同时,毛竹根系、新鲜枝叶、凋落物和土壤浸提液不同程度提高了浙贝母的表观量子效率,降低了光补偿点,且在高质量浓度浸提液处理下降低光饱和点,表明毛竹根系、新鲜枝叶、凋落物和土壤浸提液促进了浙贝母对弱光的吸收,使之适应了光环境的变化。浙贝母在适应弱光环境的同时增加最大光合速率,可以在光合生理生化过程中最大程度地利用自身可塑性适应环境,最优化摄取环境资源。这与浸提液处理后浙贝母的生长指标、光合色素变化以及化感综合效应值的结果一致。本研究的结果与陈娟等[5]利用不同毛竹浸提液降低了苦槠对光能的利用效率的结果不同,原因可能是化感作用依赖于浸提液质量浓度、测试物种和化感物质的来源[3]。浙贝母在毛竹根系、新鲜枝叶、凋落物和土壤浸提液处理下的这一光合特性十分重要。毛竹属于典型的大型克隆植物,处于抛荒和自然发育的毛竹林更是具有强大的入侵扩张能力,能建立高郁闭度的单优群落。浙贝母属于浅根系的早春植物,通过吸收由毛竹叶片淋溶、凋落物分解和土壤微生物发育等方式释放到环境中的化感物质,来提高毛竹林隙和林下弱光的利用率,以利于生存、生长和发育。这是浙贝母与毛竹建立复合经营体系的优势。
植物抗氧化能力的提高是植物在胁迫环境下生存的重要保障。在本研究中,毛竹根系、新鲜枝叶、凋落物和土壤浸提液对抗氧化酶的影响基本表现为先升高后下降,表明毛竹浸提液在一定质量浓度范围内可以提升浙贝母的抗氧化能力。这可能与毛竹根系、新鲜枝叶、凋落物和土壤浸提液具有抗氧化性、清除自由基的能力有关[18],亦有可能是其含有激活过氧化氢酶相关基因表达的物质[19],同时,中低质量浓度毛竹根系浸提液可以促进过氧化氢酶活性,提高浙贝母的抗逆性。亦有研究表明,不同物种在不同胁迫类型的影响下,其过氧化氢酶活性表现出提升、无影响和下降的现象[19],因此植物在应对胁迫时有多种途径和策略可以选择[20]。高质量浓度毛竹根系浸提液处理时,增加了浙贝母丙二醛质量摩尔浓度,说明高质量浓度毛竹根系浸提液对浙贝母产生了一定的伤害,限制了浙贝母生长,这与其生长指标的研究结果一致。土壤浸提液处理对浙贝母丙二醛质量摩尔浓度影响不一致。T1处理时浙贝母丙二醛质量摩尔浓度显著高于ck,表明T1胁迫程度在其承受范围之内,所以浙贝母的抗氧化系统能迅速清除其体内过多的活性氧自由基,保护浙贝母的生理功能免受伤害。新鲜枝叶和凋落物浸提液处理时,浙贝母丙二醛质量摩尔浓度与ck之间没有显著差异,这与陈昱等[20]在芥菜Brassica juncea浸提液对豇豆Vigna unguiculata幼苗的抗氧化酶活性的影响结果相似。可见,毛竹林化感物质对浙贝母丙二醛的影响不大,但提高了浙贝母叶片的抗氧化酶活性,从而促进了浙贝母的生长。
在毛竹根系、新鲜枝叶、凋落物和土壤处理下,浙贝母的主要药效成分贝母素甲和贝母素乙的变化与其生长指标、光合生理、抗性生理的表现趋同,所有浸提液(中、高质量浓度的根系浸提液除外)均有增加药效成分的效应,这种效应为竹药复合经营提供了基础。高质量浓度毛竹根系浸提液对浙贝母生长有一定的抑制作用亦体现在其药效成分上,而其他3种浸提液特别是新鲜枝叶浸提液对药效成分的提升较为明显,原因可能是竹叶具有丰富的黄酮类化合物、酚酸类化合物、蒽醌类化合物等活性成分[18]。
4. 结论
浙贝母具备中性植物的特性,可适应0.005~0.100 kg·L−1的毛竹新鲜枝叶、凋落物和土壤浸提液浇灌处理。上述3种浸提液提高了浙贝母的生物量、叶面积、光合色素、弱光环境适应能力和药效成分等,但高质量浓度毛竹根系浸提液对浙贝母有一定的限制作用。在实际生产经营中,可以在毛竹林中适当开辟林窗和林隙,整地挖除根鞭后栽培浙贝母。
-
表 1 花榈木中萜类化合物质谱信息
Table 1. Mass spectral information of terpenoids in O. henryi
名称 分子式 质荷比 保留时间/min 峰面积 根 茎 老叶 皮 幼叶 齐墩果酸 C30H48O3 456.360 87 13.411 264 762 138 689 614 4 392 055 4 501 446 1 185 143 二氢丹参酮Ⅰ C18H14O3 278.093 90 7.125 293 469 237 564 453 110 77 252 839 415 872 759 45 119 942 Walleminone C15H24O3 252.172 21 12.877 27 142 310 25 925 485 38 139 793 90 127 128 102 273 216 甘草次酸1 C30H46O4 470.338 67 9.011 10 782 521 10 749 752 19 745 477 26 015 732 10 142 324 熊果酸 C30H48 O3 456.359 91 13.631 40 193 042 1 258 439 318 763 532 2 194 119 2 055 746 京尼平苷酸 C16H22O10 374.121 60 1.932 16 460 987 112 195 727 49 129 697 97 661 105 52 007 928 甘草次酸2 C30H46 O4 470.338 61 13.353 6 685 919 1 285 086 34 589 990 2 917 822 2 213 863 劳丹醇酸 C20H36O3 324.266 84 12.857 1 810 075 2 772 437 427 160 3 608 483 8 629 568 芳樟醇 C10H18O 154.135 49 12.167 2 423 647 2 992 083 1 182 137 4 399 836 13 100 226 脱落酸 C15H20O4 264.136 42 8.304 1 324 567 8 782 319 6 127 101 13 051 696 24 808 273 积雪草苷 C48H78O19 958.511 41 8.844 4 835 086 22 449 131 116 659 465 169 326 989 9 393 498 Lagochilin C20H36O5 356.255 49 12.385 1 032 268 511 236 837 844 660 680 27 515 252 木香烃内酯 C15H20O2 232.146 14 9.727 600 726 697 407 6 046 546 4 143 536 4 973 618 鸡蛋花素 C15H14O6 290.078 91 9.824 1 179 709 9 187 944 17 465 820 14 830 113 618 679 Prespatane C15H24 204.187 43 12.689 15 917 262 1 479 579 2 907 710 4 359 663 8 310 627 -
[1] 桂平, 龙鹏. 珍稀树种花榈木研究进展[J]. 贵州农业科学, 2021, 49(7): 98 − 106. GUI Ping, LONG Peng. Research progress on rare tree species of Ormosia henryi [J]. Guizhou Agricultural Science, 2021, 49(7): 98 − 106. [2] 张琳婧, 周文娟, 倪林, 等. 红豆属植物化学成分及其药理活性研究进展[J]. 中草药, 2021, 52(14): 4433 − 4442. ZHANG Linjing, ZHOU Wenjuan, NI Lin, et al. A review on chemical constituents and pharmacological activities of Ormosia [J]. Chinese Traditional and Herbal Drugs, 2021, 52(14): 4433 − 4442. [3] 翟大才, 姚建林, 王文娟, 等. 红豆树叶挥发油化学成分及其抗氧化和抑菌活性研究[J]. 天然产物研究与开发, 2019, 31(5): 814 − 819. ZHAI Dacai, YAO Jianlin, WANG Wenjuan, et al. Chemical constituents of the volatile oil from Ormosia hosiei leaves and its antioxidant and antimicrobial activity [J]. Natural Product Research and Development, 2019, 31(5): 814 − 819. [4] 倪斌, 张伟, 符杰雄, 等. 花梨木叶挥发油化学成分的GC-MS分析[J]. 广东林业科技, 2012, 28(2): 59 − 62. NI Bin, ZHANG Wei, FU Jiexiong, et al. GC-MS analysis of chemical constituents of the volatile oil from leaves of Ormosia henryi Prain [J]. Guangdong Forestry Science and Technology, 2012, 28(2): 59 − 62. [5] ZHOU Fei, PICHERSKY Eran. More is better: the diversity of terpene metabolism in plants [J]. Current Opinion in Plant Biology, 2020, 55: 1 − 10. [6] HOLOPAINEN J K, GERSHENZON J. Multiple stress factors and the emission of plant VOCs [J]. Trends in Plant Science, 2010, 15(3): 176 − 184. [7] ABBAS F, KE Yanguo, YU Rangcai, et al. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering [J]. Planta, 2017, 246(5): 803 − 816. [8] 陈妤, 朱沛煌, 李荣, 等. 植物异戊烯基转移酶研究进展[J]. 生物技术通报, 2021, 37(2): 149 − 161. CHEN Yu, ZHU Peihuang, LI Rong, et al. Research progress of plant prenyltransferases [J]. Biotechnology Bulletin, 2021, 37(2): 149 − 161. [9] VRANOVA E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis [J]. Annual Review of Plant Biology, 2013, 64: 665 − 700. [10] WEI Guo, TIAN Peng, ZHANG Fengxia, et al. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus) [J]. Plant Physiology, 2016, 172(1): 603 − 618. [11] LIU Songyu, SHAN Bingqi, ZHOU Xiaomiao, et al. Transcriptome and metabolomics integrated analysis reveals terpene synthesis genes controlling linalool synthesis in grape berries [J]. Journal of Agricultural and Food Chemistry, 2022, 70(29): 9084 − 9094. [12] DEGENHARDT J, KOLLNER T G, GERSHENZON J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants [J]. Phytochemistry, 2009, 70(15/16): 1621 − 1637. [13] CHEN Feng, THOLL D, BOHLMANN J, et al. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom [J]. Plant Journal, 2011, 66(1): 212 − 229. [14] 朱沛煌, 陈妤, 季孔庶. 松科植物萜类合成酶及其基因家族研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 233 − 244. ZHU Peihuang, CHEN Yu, JI Kongshu. A review of terpene synthases and genes in Pinaceae [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(3): 233 − 244. [15] PARVEEN I, WANG Mei, ZHAO Jianping, et al. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E, E)-farnesol and α-bisabolene synthases [J]. Plant Molecular Biology, 2015, 89(4/5): 451 − 462. [16] MARTIN D M, AUBOURG S, SCHOUWEY M B, et al. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays [J/OL]. BMC Plant Biology, 2010, 10: 226[2022-10-28]. doi: 10.1186/1471-2229-10-226. [17] HU Zhongfeng, GU Andi, LIANG Lanli, et al. Construction and optimization of microbial cell factories for sustainable production of bioactive dammarenediol-Ⅱ glucosides [J]. Green Chemistry, 2019, 21(12): 3286 − 3299. [18] YIN Yanchao, ZHANG Xiaodong, GAO Zhiqiang, et al. Over-expressing root-specific β-amyrin synthase gene increases glycyrrhizic acid content in hairy roots of Glycyrrhiza uralensis [J]. Chinese Herbal Medicines, 2019, 11(2): 192 − 199. [19] LUCHNIKOVA N A, GRISHKO V V, IVSHINA I B. Biotransformation of oleanane and ursane triterpenic acids [J/OL]. Molecules, 2020, 25(23): 5526[2022-10-28]. doi: 10.3390/molecules25235526. [20] BACHORIK J, URBAN M. Biocatalysis in the chemistry of lupane triterpenoids [J/OL]. Molecules, 2021, 26(8): 2271[2022-10-28]. doi: 10.3390/molecules26082271. [21] LIU Yi, YIN Qi, DAI Baojia, et al. The key physiology and molecular responses to potassium deficiency in Neolamarckia cadamba [J/OL]. Industrial Crops and Products, 2021, 162: 113260[2022-10-28]. doi. 10.1016/j. indcrop. 2021.113260. [22] DARSHANI P, SARMA S S, SRIVASTAVA A K, et al. Anti-viral triterpenes: a review [J]. Phytochemistry Reviews, 2022, 21(6): 1761 − 1842. [23] CRAGG G M, NEWMAN D J. Nature: a vital source of leads for anticancer drug development [J]. Phytochemistry Reviews, 2009, 8(2): 313 − 331. [24] REJEB I B, PASTOR V, MAUCH-MANI B. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms [J]. Plants, 2014, 3(4): 458 − 475. [25] WAN Yan, LIU Dong, XIA Jia, et al. Ginsenoside CK, rather than Rb1, possesses potential chemopreventive activities in human gastric cancer via regulating PI3K/AKT/NF-κB signal pathway [J/OL]. Frontiers in Pharmacology, 2022, 13: 977539[2022-10-28]. doi. 10.3389/fphar. 2022.977539. [26] STASHENKO E, GONZALE A F, MARTINEZ J R, et al. Hallazgo de diclofenaco en un producto fitoterapéutico a base de caléndula comercializado en Colombia [J]. Salud UIS, 2020, 52(3): 261 − 284. [27] DIOMEDE L, BEEG M, GAMBA A, et al. Can antiviral activity of licorice help fight COVID-19 infection? [J/OL]. Biomolecules, 2021, 11(6): 855[2022-10-18]. doi:10.3390/biom11060855. [28] HUANG Ancheng, OSBOURN A. Plant terpenes that mediate below-ground interactions: prospects for bioengineering terpenoids for plant protection [J]. Pest Management Science, 2019, 75(3): 2368 − 2377. [29] SUN Luchao, RAI A, RAI M, et al. Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms [J]. Journal of Natural Medicines, 2018, 72(4): 867 − 881. [30] GUO Ying, WANG Tongli, FU Fang, et al. Temporospatial flavonoids metabolism variation in Ginkgo biloba leaves [J/OL]. Frontiers in Genetics, 2020, 11: 589326[2022-10-28]. doi: 10.3389/fgene.2020.589326. [31] THIMMAPPA R, GEISLER K, LOUVEAU T, et al. Triterpene biosynthesis in plants [J]. Annual Review of Plant Biology, 2014, 65: 225 − 257. [32] CHEN Cong, ZHU Huanqing, KANG Jiaxin, et al. Comparative transcriptome and phytochemical analysis provides insight into triterpene saponin biosynthesis in seeds and flowers of the tea plant (Camellia sinensis) [J/OL]. Metabolites, 2022, 12(3): 204[2022-10-28]. doi. 10.3390/metabo12030204. [33] ZHOU Hanchen, SHAMALA L F, YI Xingkai, et al. Analysis of terpene synthase family genes in Camellia sinensis with an emphasis on abiotic stress conditions [J/OL]. Scientific Reports, 2020, 10(1): 933[2022-10-28]. doi: 10.1038/s41598-020-57805-1. [34] SUN Yongzhen, NIU Yunyun, XU Jiang, et al. Discovery of WRKY transcription factors through transcriptome analysis and characterization of a novel methyl jasmonate-inducible PqWRKY1 gene from Panax quinquefolius [J]. Plant Cell,Tissue and Organ Culture, 2013, 114(2): 269 − 277. [35] YI Xiaozhe, WANG Xingwen, WU Lan, et al. Integrated analysis of basic helix loop helix transcription factor family and targeted terpenoids reveals candidate AarbHLH genes involved in terpenoid biosynthesis in Artemisia argyi [J/OL]. Frontiers in Plant Science, 2022, 12: 811166[2022-10-28]. doi: 10.3389/fpls.2021.811166. [36] ZHAN Ni, HUANG Lanhong, WANG Zhen, et al. Expression of genes encoding terpenoid biosynthesis enzymes during leaf development of Eucalyptus camaldulensis [J]. Biologia Plantarum, 2022, 66: 146 − 154. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220737