-
光作为重要的环境因子控制着植物一系列生长发育过程,其调控作用是通过光受体介导的信号传导的途径来完成的[1]。目前,在拟南芥Arabidopsis thaliana中共发现了3种CRY(CRYPTOCHROME):CRY1,CRY2和CRY3,其中CRY1和CRY2通过负调控光形态建成的负调控因子COP1(COnstitutive Photomorphogenic 1)来实现其调控光形态建成的功能[2-3]。COP1作为一种重要的调控因子,广泛存在于动植物体内[4]。在植物中,COP1作为一种E3泛素连接酶,具有E3泛素连接酶活性使转录调控因子LAF1,HY5,HFR1等泛素化,并调控其降解,从而起到抑制光信号调节的作用,进而在光信号转导及植物光形态建成中起重要作用[5-7]。COP1在细胞核内充当一个特异转录因子的总的调节因子[8],通过与其互作因子相互结合而使这些光形态建成发育的正向调节子失活[9-11]。CO是光周期开花转换途径中一个最重要的基因[12],通过激活下游基因FT,SOC1等表达,使植物由营养生长向生殖发育转变[13-14]。COP1与CO存在直接的蛋白相互作用,并在体外作为泛素E3连接酶使CO蛋白发生泛素化,在植物体内促进CO蛋白的降解,而CRY介导的信号可能通过负调控COP1对CO蛋白的降解作用,使CO蛋白稳定并发生积累,从而激活下游基因FT的表达,促进开花[15-17]。山核桃Carya cathayensis是中国著名的特色干果,因其种仁中的不饱和脂肪酸成分对人体具有滋补、健脑等保健效果,得到了广大消费者的青睐[18]。成花是决定山核桃产量的关键因素,而木本植物需要较长时间的营养生长(童期)才转向生殖生长的[19]。在广泛的研究中,已通过利用分子生物学、遗传学等技术研究花的发育,极大地促进了成花机制的研究[20-21]。如何运用分子机制促进木本植物山核桃提早开花,为将来进一步阐释山核桃成花的分子机制提供了重要的基因平台,又为促进山核桃早花、早实、丰产等的实际生产应用推广提供必需的理论支持。山核桃全基因组测序工作的完成(数据未发表)得到CcCOP1 E3连接酶片段,利用cDNA末端快速扩增技术(RACE)技术克隆获得了CcCOP1 E3连接酶的全长;利用生物信息学手段分析了它的蛋白特性和不同物种的同源基因之间的亲缘关系;利用实时荧光定量聚合酶链式反应(real-time PCR)技术进一步分析了在CcCOP1 E3连接酶雌雄花发育过程中的表达变化。该研究旨在为研究该基因的生物学功能,为进一步阐明山核桃成花调控的分子机制打下良好的基础。
HTML
[1] | AHMAD M, CASHMORE A R. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana[J]. Plant J, 1997, 11(3): 421-427. doi: 10.1046/j.1365-313X.1997.11030421.x | |
[2] | ANG L H, CHATTOPADHYAY S, WEI Ning. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development[J]. Mol Cell, 1998, 1(2): 213-222. doi: 10.1016/S1097-2765(00)80022-2 | |
[3] | YANG Hongquan, TANG Ruhang, CASHMORE A R. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1[J]. Plant Cell, 2001, 13(12): 2573-2587. doi: 10.1105/tpc.13.12.2573 | |
[4] | DORNAN D, WERTZ I, SHIMIZU H. The ubiquitin ligase COP1 is a critical negative regulator of p53[J]. Nature, 2004, 429(6987): 86-92. doi: 10.1038/nature02514 | |
[5] | McNELLIS T W, TORII K U, DENG Xingwang. Expression of an N-terminal fragment of COP1 confers a dominant negative effect on light-regulated seedling development in Arabidopsis[J]. Plant Cell, 1996, 8(9): 1491-1503. doi: 10.1105/tpc.8.9.1491 | |
[6] | BALASUBRAMANIAN S, WEIGEL D. Temperature induced flowering in Arabidopsis thaliana[J]. Plant Signal & Behav, 2006, 1(5): 227-228. | |
[7] | BALLARÉC L. Keeping up with the neighbours:phytochrome sensing and other signalling mechanisms[J]. Trends Plant Sci, 1999, 4(3): 97-102. doi: 10.1016/S1360-1385(99)01383-7 | |
[8] | KANG Chunying, LIAN Hongli, WANG Fangfang. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis[J]. Plant Cell, 2009, 21(9): 2624-2641. doi: 10.1105/tpc.109.069765 | |
[9] | AN Hailong, ROUSSOT C, SUÁREZ-LÓPEZ P. CONSTANS acts in the phloem to regulate asystemic signal that induces photoperiodic flowering of Arabidopsis[J]. Development, 2004, 131(5): 3615-3626. | |
[10] | MAO Jian, ZHANGYanchun , SANG Yi. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening[J]. Proc Nat Acad Sci USA, 2005, 102(34): 12270-12275. doi: 10.1073/pnas.0501011102 | |
[11] | WANG Haiyang, MA Ligeng, LI Jinming. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development[J]. Science, 2001, 294(5540): 154-158. doi: 10.1126/science.1063630 | |
[12] | BLÁZQUEZ M A, WEIGEL D. Independent regulation of flowering by phytochrome B and gibberellins in Arabidopsis[J]. Plant Physiol, 1999, 120(4): 1025-1032. doi: 10.1104/pp.120.4.1025 | |
[13] | MOON J, LEE H, KIM M. Analysis of flowering pathway integrators in Arabidopsis[J]. Plant Cell Physiol, 2005, 46(2): 292-299. doi: 10.1093/pcp/pci024 | |
[14] | MOURADOV A, CREMER F, COUPLAND G. Control of flowering time:interacting pathways as a basis for diversity[J]. Plant Cell, 2002, 14(supp1): S111-S130. | |
[15] | MOCKLER T C, GUO Hongwei, YANG Hongyun. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction[J]. Development, 1999, 126(10): 2073-2082. | |
[16] | LIU Lijun, ZHANGYanchun , LI Qinghua. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis[J]. Plant Cell, 2008, 20(2): 292-306. doi: 10.1105/tpc.107.057281 | |
[17] | IMAIZUMI T, KAY S A. Photoperiodic control of flowering:not only by coincidence[J]. Trends Plant Sci, 2006, 11(11): 550-558. doi: 10.1016/j.tplants.2006.09.004 | |
[18] | 程有龙, 徐荣章. 传统山核桃林分的立体经营及其效益[J]. 浙江林业科技, 1996, 16(1): 10-19. | CHENG Youlong, XU Rongzhang. Traditional space management and its efficiency of Carya cathayensis forest[J]. J Zhejiang For Sci Technol, 1996, 16(1): 10-19. |
[19] | 郭传友, 黄坚钦. 山核桃研究综述及展望[J]. 经济林研究, 2004, 22(1): 61-63. | GUO Chuanyou, HUANG Jianqin. Review and perspective of research on Carya cathayensis[J]. Nonwood For Res, 2004, 22(1): 61-63. |
[20] | 黄有军, 夏国华, 王正加. 山核桃雌花发育的解剖学研究[J]. 江西农业大学学报, 2007, 29(5): 723-726. | HUANG Youjun, XIA Guohua, WANG Zhengjia. Studies on anatomy of development of female flower in Carya cathayensis Sarg[J]. Acta Agric Univ Jiangxi, 2007, 29(5): 723-726. |
[21] | 黄有军, 王正加, 郑炳松. 山核桃雄蕊发育的解剖学研究[J]. 浙江林学院学报, 2006, 23(1): 56-60. | HUANGYoujun , WANG Zhengjia, ZHENG Bingsong. Anatomy of stamen development on Carya cathayensis[J]. J Zhejiang For Coll, 2006, 23(1): 56-60. |