Volume 34 Issue 3
May  2017
Turn off MathJax
Article Contents

CHAI Xiaojuan, GUO Weilong, CHEN Hui, WANG Junrong, XIE Dezhi, JIN Shuihu. Genetic diversity of Juncus effusus germplasm by ISSR markers[J]. Journal of Zhejiang A&F University, 2017, 34(3): 552-558. doi: 10.11833/j.issn.2095-0756.2017.03.022
Citation: CHAI Xiaojuan, GUO Weilong, CHEN Hui, WANG Junrong, XIE Dezhi, JIN Shuihu. Genetic diversity of Juncus effusus germplasm by ISSR markers[J]. Journal of Zhejiang A&F University, 2017, 34(3): 552-558. doi: 10.11833/j.issn.2095-0756.2017.03.022

Genetic diversity of Juncus effusus germplasm by ISSR markers

doi: 10.11833/j.issn.2095-0756.2017.03.022
  • Received Date: 2016-06-27
  • Rev Recd Date: 2016-10-24
  • Publish Date: 2017-06-20
  • To study the genetic diversity of Juncus effusus resources, the genetic diversity of 36 J. effusus germplasm resources from both home and abroad were analyzed by Inter Simple Sequence Repeats (ISSR) markers. Analysis included an Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis. Results showed 23 primers with clear polymorphic bands selected from 72 primers. A total of 148 bands, of which 130 were polymorphic, were amplified from the 36 materials with the proportion of polymorphic loci being 87.84%. The genetic similarity coefficient for varieties was between 0.405 6 and 0.944 1, which showed rich genetic diversity. The UPGMA cluster analysis produced a genetic similarity coefficient of 0.650 3 for the boundaries with the 36 materials divided into five groups and the first group being divided into three subgroups. Results were connected to region and cultivar origin with materials from the same region mostly classified into the same group or subgroup. This research revealed the genetic diversity of J. effusus germplasm resources at the molecular level for the first time which could provide a theoretical basis for breeding.
  • [1] DENG Lili, LIU Qinghua, ZHOU Zhichun, GAO Kai, LUO Dinghui.  Genetic diversity analysis and core collection of pinewood nematodiasis-resistant Pinus massoniana germplasm resources . Journal of Zhejiang A&F University, 2024, 41(1): 67-78. doi: 10.11833/j.issn.2095-0756.20230333
    [2] LI Yaping, DAI Huiming, JIANG Wu, CHEN Jiadong, DUAN Xiaojing, TAO Zhengming.  Genetic diversity of Polygonatum spp. from different production areas based on SRAP markers . Journal of Zhejiang A&F University, 2023, 40(3): 658-664. doi: 10.11833/j.issn.2095-0756.20220436
    [3] WANG Jie, ZHU Xipeng, WANG Tengfei, ZHU Jianjun, LI Wenjun, XING Bingcong, ZHENG Ying.  Genetic diversity analysis of Bletilla striata germplasm by ISSR and SRAP markers . Journal of Zhejiang A&F University, 2023, 40(2): 321-329. doi: 10.11833/j.issn.2095-0756.20210690
    [4] HUANG Jinchun, WAN Siqi, CHEN Yang, LI Lihong, ZHANG Zili, ZHU Jianjun, WU Mei, XING Bingcong, SHAO Qingsong, LU Chenfei.  Genetic diversity of Anoectochilus roxburghii based on ISSR and SRAP molecular markers . Journal of Zhejiang A&F University, 2023, 40(1): 22-29. doi: 10.11833/j.issn.2095-0756.20220473
    [5] ZHENG Liuhui, ZHAN Liyun, HOU Yu, YU Weiwu, ZENG Yanru, DAI Wensheng.  SSR analysis of genetic diversity of male Torreya grandis . Journal of Zhejiang A&F University, 2022, 39(2): 329-337. doi: 10.11833/j.issn.2095-0756.20210279
    [6] WANG Li, XU Hao, YU Yundong, ZHANG Haizhen, GAO Yanhui, SHEN Xiao, JIN Chenying, CHEN Yimin.  Genetic diversity analysis of Hippeastrum rutilum cultivars based on SCoT markers . Journal of Zhejiang A&F University, 2020, 37(5): 930-938. doi: 10.11833/j.issn.2095-0756.20190614
    [7] WANG Weili, HE Liping, YU Minfen, YUAN Huwei, YAN Daoliang, ZHAO Liang, YU Youxiang, LIU Jun, ZHAO Li, ZHENG Bingsong.  Phylogenetic relationships among 12 cultivars of Ilex verticillata based on ISSR molecular markers . Journal of Zhejiang A&F University, 2018, 35(4): 612-617. doi: 10.11833/j.issn.2095-0756.2018.04.005
    [8] LIU Yuejun, ZHANG Yuan, JIANG Yanfeng, LIU Jingjing.  Genetic diversity of Polygonatum germplasm . Journal of Zhejiang A&F University, 2016, 33(6): 1085-1091. doi: 10.11833/j.issn.2095-0756.2016.06.023
    [9] XU Yichun, HU Shaoqing, ZHAO Hongbo.  Genetic structure of different natural Osmanthus fragrans populations based on AFLP method . Journal of Zhejiang A&F University, 2014, 31(2): 217-223. doi: 10.11833/j.issn.2095-0756.2014.02.009
    [10] WU Yueyan, TAO Qiaojing, LI Bo, XU Danye.  An optimal SRAP-PCR system of Rhododendron hybridum and its genetic diversity analysis with SRAP marker . Journal of Zhejiang A&F University, 2013, 30(6): 844-851. doi: 10.11833/j.issn.2095-0756.2013.06.007
    [11] WANG Hui, MA Dan-dan, ZHONG Tai-lin, LI Gen-you.  Germ plasm and distribution of Gesneriaceae in Zhejiang Province . Journal of Zhejiang A&F University, 2011, 28(4): 538-544. doi: 10.11833/j.issn.2095-0756.2011.04.003
    [12] FAN Fan-rong.  Genetic diversity of endangered Artocarpus hypargyreus . Journal of Zhejiang A&F University, 2010, 27(2): 266-271. doi: 10.11833/j.issn.2095-0756.2010.02.017
    [13] SHAO Guo-yuan, LU Fang-fang.  In vitro distant grafting with an ISSR analysis . Journal of Zhejiang A&F University, 2010, 27(4): 630-634. doi: 10.11833/j.issn.2095-0756.2010.04.026
    [14] YUAN Ju-hong, HU Mian-hao, ZHANG Ming-xia, JIANG Yu-mei, XIA Bing.  A quantitative taxonomic study of Lycoris radiata germplasm sources . Journal of Zhejiang A&F University, 2009, 26(5): 633-638.
    [15] CAO Fu-liang, HUA Zhe-bin, WANG Gui-bin, ZHANG Wang-xiang.  Genetic diversity in wild populations of Ginkgo biloba using random amplified polymorphic DNA (RAPD) analysis . Journal of Zhejiang A&F University, 2008, 25(1): 22-27.
    [16] WANG Zu-liang, DING Li-xia, ZHAO Ming-shui, CHENG Xiao-yuan, SHEN Qian.  Genetic diversity of Ostrya rehderiana revealed by RAPD markers . Journal of Zhejiang A&F University, 2008, 25(3): 304-308.
    [17] YUCi-ying, CHEN Ye-ping, YUAN Yan-fei, LI Wan-xing, YUANZheng-zheng.  Resources of Cinnamomum japonicum var. chenii, Neolitsea sericea and Tilia miqueliana in Zhoushan Archipelago . Journal of Zhejiang A&F University, 2007, 24(4): 413-418.
    [18] WUZhu-hua, SHI Ji-sen, XI Meng-li, LIUGuang-xin.  Pollen characteristics and relationships of 12 species and 6 cultivars of Lilium . Journal of Zhejiang A&F University, 2007, 24(4): 406-412.
    [19] LIANG Yue-rong, TANAKA Juni-chi, TAKEDA Yoshi-yuki.  Study on diversity of tea germplasm by RAPD method . Journal of Zhejiang A&F University, 2000, 17(2): 215-218.
    [20] Li Genyou, Lou Luhuan, Lü Zhengshui, Gu Zhenqiang, Wu Lijun.  Edible Wild Herbs Resources and Utilization of Taishun County . Journal of Zhejiang A&F University, 1994, 11(4): 429-448.
  • [1]
    YU Shunmin. Investigation on the morohological and biological characteristics of rushes[J]. Acta Agric Univ Zhejiang, 1982, 8(2):131-142.
    [2]
    XU Ling. Establishment of Regeneration and Transformation System and Germplasm Innovation of Mat Rush (Juncus effuses L.) Through in vitro Mutagenesis[J]. Hangzhou:Zhejiang University, 2009.
    [3]
    SHEN Weiqi, ZHANG Guoping, GUI Wenguang. Effect of light on the growth and stem flowering rate of mat rush[J]. Chin J Appl Ecol, 2002, 13(5):577-580.
    [4]
    WANG Zhonghua, DAI Yihui, LÜHong, et al. Effect of irradiation on physiological and biochemical property of met rush seedlings[J]. J Uncl Agric Sci, 2009, 23(2):270-273.
    [5]
    ZHENG Kewu, ZHU Zhiling, LIU Jianguo. Effects of shearing top on yield and quality of mat rush (Juncus effuses L.)[J]. Jiangsu J Agric Sci, 2009, 25(2):265-269.
    [6]
    CHAI Xiaojuan, SU Yan, CHEN Hui, et al. Anatomical structure and mechanical properties form stem bottoms of Juncas effusus[J]. J Zhejiang A & F Univ, 2016, 33(6):1058-1066.
    [7]
    SHARMA D, SETH P, SAHARAN V, et al. ISSR-based molecular characterization of Triticum eastivum L. cultivars[J]. J Cell Tissue Res, 2014, 14(3):4539-4545.
    [8]
    JIAN Shuguang, SHI Suhua, ZHONG Yang, et al. Genetic diversity among South China Heritiera littoralis detected by inter-simple sequence repeats (ISSR) analysis[J]. J Genet Mol Biol, 2002, 13(4):272-276.
    [9]
    PANDOTRA P, GUPTA A P, KHAN S, et al. A comparative assessment of ISSR, RAPD, IRAP, & REMAP molecular markers in Zingiber officinale germplasm characterization[J]. Sci Hortic, 2015, 194:201-207.
    [10]
    SUTKOWSKA A, PASIERBIŃSKI A, WARZECHA T, et al. Multiple cryptic refugia of forest grass Bromus benekenii in Europe as revealed by ISSR fingerprinting and species distribution modeling[J]. Plant Syst Evol, 2014, 300(6):1437-1452.
    [11]
    MAO Lihui, FANG Yanming. ISSR primer screening and preliminary evaluation of genetic diversity in Haplocladium microphyllum[J]. Biocheml Syst Ecol, 2014, 55:107-111.
    [12]
    DESAI P, GAJERA B, MANKAD M, et al. Comparative assessment of genetic diversity among Indian bamboo genotypes using RAPD and ISSR markers[J]. Mol Biol Rep, 2015, 42(8):1265-1273.
    [13]
    AL-TURKI T A, BASAHI M A. Assessment of ISSR based molecular genetic diversity of Hassawi rice in Saudi arabia[J]. Saudi J Biologic Sci, 2015, 22(5):591-599.
    [14]
    ZENG Liang, YUAN Qinghua, WANG Fang, et al. Genetic diversity analysis of Agropyron germplasm resources by ISSR[J]. Acta Pratac Sin, 2013, 22(1):260-267.
    [15]
    GUO Yupin, REN Yongxia, ZHANG Yingchao, et al. Genetic diversity analysis of bluegrass germplasm resources by ISSR markers[J]. Chin J Grassland, 2014, 36(3):28-34.
    [16]
    ZHANG Huaishan, XIA Zengrun, LI Mengfei, et al. Genetic diversity of Pennisetum longissimum var. intermedium germplasm resources using ISSR markers[J]. Acta Bot Boreal-Occident Sin, 2014, 34(2):256-264.
    [17]
    ZHAO Xueying, WANG Hongmin, LI He, et al. Genetic diversity of Vigna radiate germplasm resources by ISSR[J]. J Plant Gen Resour, 2015, 16(6):1277-1282.
    [18]
    LI Lijun, SHU Xiaoli, WANG Zhonghua, et al. Brief report on DNA fingerprinting technique of Juncus effusus L.[J]. J Zhejiang Agric Sci, 2007(3):309-310.
    [19]
    LIU Huan, MU Ping, ZHAO Guiqin. A study on genetic diversity of Avena germplasm resources detected by ISSR[J]. Acta Pratac Sin, 2012, 21(4):116-124.
    [20]
    SHANG Haiying, ZHENG Youliang, WEI Yuming, et al. Genetic diversity of Secale L. based on ISSR markers[J]. Southwest China J Agric Sci, 2004, 17(3):273-277.
    [21]
    LI Yuying, FAN Xifeng, HOU Xincun, et al. Genetic diversity of Miscantnus & Triarrhena based on ISSR and SSR analysis[J]. J China Agric Univ, 2014, 19(2):21-27.
    [22]
    YANG Xiaojie, TONG Shouzheng, CHENG Jiachun, et al. Genetic diversity of Phragmites australis populations from Zhalong based on ISSR analysis[J]. Guihaia, 2011, 31(6):725-729.
    [23]
    LI Shaochen, LI Fengming, ZHANG Limin, et al. Analysis of genetic diversity in wild population of Phellodendron amurense Rupr. in Jilin Province using inter-simple sequence repeat[J]. Acta Ecol Sin, 2016, 36(13):1-7.
    [24]
    SUN Jinke. Identification of Genetic Relationship of Almond by RAPD and ISSR[D]. Urumqi:Xinjiang Agricultural University. 2008.
    [25]
    LI Jun, TAO Yun, ZHENG Shizhang, et al. Isozymatic differentiation in local population of Glycine soja Sieb. & Zucc.[J]. Acta Bot Sin, 1995, 37(9):669-676.
    [26]
    ZHANG Yumei, XU Gangbiao, SHEN Xiangbao, et al. Genetic diversity of Davidia involucrata populations detected by using ISSR markers[J]. Sci Silv Sin, 2012, 48(8):62-67.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(2)

Article views(4542) PDF downloads(367) Cited by()

Related
Proportional views

Genetic diversity of Juncus effusus germplasm by ISSR markers

doi: 10.11833/j.issn.2095-0756.2017.03.022

Abstract: To study the genetic diversity of Juncus effusus resources, the genetic diversity of 36 J. effusus germplasm resources from both home and abroad were analyzed by Inter Simple Sequence Repeats (ISSR) markers. Analysis included an Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis. Results showed 23 primers with clear polymorphic bands selected from 72 primers. A total of 148 bands, of which 130 were polymorphic, were amplified from the 36 materials with the proportion of polymorphic loci being 87.84%. The genetic similarity coefficient for varieties was between 0.405 6 and 0.944 1, which showed rich genetic diversity. The UPGMA cluster analysis produced a genetic similarity coefficient of 0.650 3 for the boundaries with the 36 materials divided into five groups and the first group being divided into three subgroups. Results were connected to region and cultivar origin with materials from the same region mostly classified into the same group or subgroup. This research revealed the genetic diversity of J. effusus germplasm resources at the molecular level for the first time which could provide a theoretical basis for breeding.

CHAI Xiaojuan, GUO Weilong, CHEN Hui, WANG Junrong, XIE Dezhi, JIN Shuihu. Genetic diversity of Juncus effusus germplasm by ISSR markers[J]. Journal of Zhejiang A&F University, 2017, 34(3): 552-558. doi: 10.11833/j.issn.2095-0756.2017.03.022
Citation: CHAI Xiaojuan, GUO Weilong, CHEN Hui, WANG Junrong, XIE Dezhi, JIN Shuihu. Genetic diversity of Juncus effusus germplasm by ISSR markers[J]. Journal of Zhejiang A&F University, 2017, 34(3): 552-558. doi: 10.11833/j.issn.2095-0756.2017.03.022
  • 蔺草Juncus effusus俗称席草,属灯心草科Juncaceae多年生宿根草本,是一种重要的经济作物[1]。除了干旱和高海拔地区外,北美洲、欧洲及亚洲等亚热带地区均有分布,中国、日本、韩国及东南亚一些国家均有栽培。蔺草制品具有调节干湿的功能,夏季能保持适度的干燥,使人的皮肤触感异常舒适,因此,蔺草多用于编制榻榻米、草席、草帽、草垫等生活日用品。此外,蔺草还有一定的生态价值和药用价值[2]。中国是世界上利用和栽培蔺草最早的国家之一,但近年来由于蔺草品种混杂非常严重,极大地影响和限制了蔺草的生产。目前,有关蔺草的研究主要集中在生物学特性、生理生化、繁殖栽培技术等方面[3-6],有关蔺草种质资源遗传多样性的研究还未见报道。本研究利用简单序列重复区间扩增多态性(ISSR)分子标记技术[7-12]对36份蔺草种质进行遗传多样性分析,以揭示蔺草种质资源的主要遗传多态性特点,确定蔺草种质资源的亲缘关系,为蔺草新品种的选育和产业可持续发展奠定基础。

  • 36份蔺草种质来自美国和中国(浙江、西藏、四川)等不同地区,其中包括22份主要栽培资源和14份野生资源。2013年收集后,栽培于浙江农林大学试验基地。材料来源及采集地见表 1

    编号名称采集地点来源
    1YD-01中国浙江宁波鄞州云达蔺草制品厂
    2YD-02中国浙江宁波鄞州云达蔺草制品厂
    3YF-01中国浙江宁波鄞州友丰工艺编织厂
    4MY-02中国浙江宁波鄞州新艺蔺草制品公司
    5MY-01中国浙江宁波鄞州新艺蔺草制品公司
    6MY-03中国浙江宁波鄞州新艺蔺草制品公司
    7MY-04中国浙江宁波鄞州新艺蔺草制品公司
    8MY-07中国浙江宁波鄞州新艺蔺草制品公司
    9YN-02中国浙江宁波鄞州新银蔺草制品公司
    10YN-01中国浙江宁波鄞州新银蔺草制品公司
    11HB-01中国浙江宁波鄞州华备编织品有限公司
    12HB-02中国浙江宁波鄞州华备编织品有限公司
    13MM-01中国浙江宁波鄞州兴明工艺编织品公司
    14HB-03中国浙江宁波鄞州华备编织品有限公司
    15H'-001中国浙江宁波鄞州华荣工艺编织品厂
    16H'-002中国浙江宁波鄞州华荣工艺编织品厂
    17BC中国浙江宁波黄古林新艺蔺草制品公司
    18HGL中国浙江宁波黄古林新艺蔺草制品公司
    19DY-01中国浙江东阳南马南马梦之娇竹制品厂
    20DY-02中国浙江东阳南马南马梦之娇竹制品厂
    21DY-03中国浙江东阳南马南马梦之娇竹制品厂
    22NH中国浙江宁波宁海深甽野生
    23LS中国浙江丽水岭头野生
    24MS中国浙江象山石浦野生
    25SN中国浙江嵊州金庭华堂野生
    26WN中国浙江温州文成野生
    27MG美国野生
    28LN中国西藏林芝野生
    29SM-01中国浙江台州三门海游野生
    30SM-02中国浙江台州三门悬渚野生
    31ZJ中国浙江诸暨枫桥野生
    32HN中国浙江湖州野生
    33DY-04中国浙江东阳千祥野生
    34JH中国浙江金华武义野生
    35LH中国浙江台州临海邵家渡野生
    36SC中国四川眉山华升蔺业发展公司

    Table 1.  Sources of experiment materials

  • 采用改良的十六烷基三甲基溴化铵(CTAB)法,从新鲜的蔺草嫩茎中提取基因组DNA。取新萌生的蔺草嫩茎约0.5 g在液氮冷冻下研磨成粉末,迅速转入2.5 mL离心管,加入800.0 μL预热的2×CTAB提取缓冲液[质量分数为2% CTAB,三羟甲基氨基甲烷与盐酸缓冲液(Tris-HCl)100.0 mmol·L-1,乙二胺四乙酸二钠(EDTA-Na2)25.0 mmol·L-1,氯化钠1.5 mol·L-1,体积分数为1%巯基乙醇],充分混匀后置于65 ℃水浴45 min,隔10 min轻摇1次,使样品充分悬浮在提取缓冲液中;取出离心管,4 ℃,12 000 r·min-1,离心10~15 min;取上清,加入等体积的V(氯仿):V(异戊醇)=24:1混合液,轻柔颠倒混匀,4 ℃,使乳化10 min,取出离心管,4 ℃,12 000 r·min-1,离心10~15 min;重复上一步;取上清,加入等体积-20 ℃预冷的异丙醇,轻轻颠倒混匀,置于4 ℃沉淀30 min;4 ℃,6 000 r·min-1离心8 min,弃上清,用体积分数为70%的乙醇洗涤沉淀2~3次,风干,加入100.0 μL TE(10.0 mmol·L-1 Tris-HCl,1.0 mmol·L-1 EDTA)溶解,加入1.0 μL 10.0 mg·L-1的RNA降解酶(RnaseA),4 ℃保存。用质量分数为1.0%琼脂糖凝胶电泳检测DNA质量,用蛋白核酸分析仪根据D(260)/D(280)的比值判断其纯度。用无菌水稀释到均一质量浓度50.0 mg·L-1,-20 ℃保存备用。

  • 随机选取2份蔺草种质的DNA,利用加拿大哥伦比亚大学公布的在禾本科Gramineae植物中常用的ISSR引物(UBC801-UBC900)72对(引物由上海生工生物工程股份有限公司合成)进行筛选,筛选出23对扩增条带较稳定、清晰的引物(表 2),用于全部蔺草种质资源扩增。

    引物名
    引物序列
    (5'→3')
    退火温
    度/℃
    扩增条带
    数/条
    多态性条
    带数/条
    多态比百
    分率/%
    UBC811(GA)8C54.655100.00
    UBC815( CT) 8G54.610880.00
    UBC817(CA)8A52.255100.00
    UBC818(CA)8G54.66583.33
    UBC825(AC)8T52.25480.00
    UBC 835(AG)8YC54.655100.00
    UBC840( GA ) 8YT53.96583.33
    UBC842(GA)8YG56.27685.71
    UBC 844(CT)8RC56.266100.00
    UBC855(AC)8YT53.96583.33
    UBC856(AC)8YA53.97685.71
    UBC859(TG)8RC56.244100.00
    UBC 830(GAA)648.28787.50
    UBC 843(AC)8TA52.77685.71
    UBC 846(AC)8CC57.366100.00
    UBC 862(AC)8CG57.38787.50
    UBC 863(AC)8CT55.088100.00
    UBC 867(AC)8GT57.36466.67
    UBC 874(TG)8CT55.05480.00
    UBC 875(TG)8GG54.844100.00
    UBC 879(AG)8GC57.37685.71
    UBC 895(AGTG)451.610880.00
    UBC 897( ACTC ) 451.67685.71
    总数14813087.84
    平均6.435.65
    说明:Y=(C,T); R=(A,G)。

    Table 2.  Sequence and amplified loci polymorphism of 23 primers

  • 根据小麦Triticum eastivum[7],水稻Oryza sativa[13],冰草属Agropyron[14],早熟禾Poa[15]和中型狼尾草Pennisetum longissimum var. intermedium[16]等的方法设置ISSR-PCR反应体系和扩增程序。通过预试验,建立蔺草ISSR分析的优化反应体系及反应程序。反应体系总体积20.0 μL,包含1.0 μL DNA模板(50 mg·L-1),14.5 μL双蒸水,1.3 μL镁离子(25 mmol·L-1),2.0 μL缓冲液(10×),1.5 μL脱氧核糖核苷三磷酸(2.5 mmol·L-1),0.2 μL Taq酶(5×16.67 nkat),0.5 μL引物(10.0 μmol·L-1)。扩增程序为:94 ℃预变性5 min;94 ℃预变性3 min,94 ℃变性1 min,退火45 s(根据引物的退火温度Tm所得),72 ℃延伸1.5 min,共35个循环;72 ℃再延伸7 min,4 ℃保存。PCR扩增产物用含0.5 mg·L-1溴化乙锭(ethidium bromide,EB)质量分数2.0%琼脂糖凝胶电泳分离,1×三羟甲基氨基甲烷-硼酸(TBE)缓冲液,120 V电压下电泳40 min。以100 bp DNA梯度为标准分子量标记,电泳结果在紫外凝胶成像系统进行拍照并分析。

  • 根据在凝胶同一迁移位置上DNA条带有无进行统计,有条带(显性)记为“1”,无条带(隐性)或模糊不清记为“0”,形成0/1矩阵。多态性比例(%)=(总谱带数-共有带数)/总谱带数×100%。用NTSYSpc 2.1软件进行遗传相似系数计算,利用非加权组平均法(UPGMA)构建聚类树状图。

  • 利用筛选出的23对ISSR引物对供试材料进行PCR扩增,共扩增出148条稳定清晰的DNA条带(表 2),每对引物扩增带数为4~10条,平均每对引物扩增条带数为6.43条;所有引物中,引物UBC815和引物UBC895扩增带数最多,均为10条,引物UBC859和引物UBC875的引物扩增带数最少,均为4条;在所有供试材料中具有多态性的引物共15对,扩增出多态性条带130条,多态性条带比率为87.84%,平均每对引物扩增出多态性条带5.65条。

  • 36份蔺草种质间的遗传相似系数(GS)为0.405 6~0.944 1(图 2),具有丰富的遗传多样性。其中,DY-02和DY-03之间的遗传相似系数最大,达0.944 1,表明其亲缘关系较近;遗传相似系数最小的是YF-01与LZ之间,为0.405 6,表明其亲缘关系较远。36份蔺草种质材料中,大多数来自于相同或相近地理位置的材料间相似系数值较大,说明其亲缘关系较近。

    Figure 1.  ISSR amplification of effusus with primer UBC863 and UBC846

    Figure 2.  UPGMA cluster analysis based on ISSR genetic identities among 36 accessions

  • 为使供试蔺草种质间的亲缘关系更加清晰明确,采用UPGMA法对得到的遗传相似系数进行聚类分析,结果如图 2所示。在遗传相似系数为0.650 3处,将36份蔺草种质资源分为5大类群:第Ⅰ大类中有29份材料,又可分为3个亚类:第一亚类包括YD-01,YD-02,XY-04,XY-07,YZ-01,HB-01,HB-02,HR-02,HB-03,HR-01,XM-01,LH,SC,XY-02,XY-01,XY-03,YZ-02;第二亚类包括BC,ZJ,DY-04,HGL,SM-01,SM-02,DY-02,DY-03,NH,XS,WZ;第三亚类仅有DY-01;第Ⅱ大类包括HZ,JH;第Ⅲ大类仅有YF-01;第Ⅳ大类包括LS,SZ和MG;第Ⅴ大类包括LZ。从供试材料的地理来源来看,第一亚类中除LH和SC这2份种质外,其余15份均来自鄞州。第二亚类除BC,HGL,DY-02和DY-03外,其余7份均为野生蔺草种质资源。第Ⅱ大类为2份野生种质,第Ⅳ大类中LS和SZ等2个国内野生种质首先聚在一起,然后再与国外MG野生种质聚为一起。结果表明:材料地理来源对系统聚类结果影响较大,大部分来自于同一地区的材料聚为一类,少部分材料在聚类图中无一定规律;野生种质与栽培种质有分别聚在一起的趋势。

  • ISSR标记技术具有多态性丰富、稳定性强、成本低廉及操作简单等优点,广泛应用于植物群体遗传多样性分析和种质资源鉴定等研究[17]。李君礼等[18]利用简单序列重复(SSR)引物对4个蔺草代表性品种进行PCR扩增,结果表明:67对SSR引物在4个品种中均有扩增条带,但与水稻相比,具有差异的SSR标记却很少,原因可能与蔺草特有的基因组有关。ISSR标记在种内不同种质资源或不同品种间具有较好的鉴别能力[17]。本研究利用ISSR引物对蔺草不同种质资源进行遗传多样性分析,从72对ISSR引物中筛选出23对有效引物(占31.94%)对36份蔺草种质DNA进行PCR扩增,共扩增出148条带,其中具有多态性的引物15对,共扩增出多态性条带130条,多态性条带比率为87.84%,不同引物间扩增出4~8条多态性条带,不同种质资源间的相似系数变化范围为0.405 6~0.944 1,说明蔺草种质资源具有丰富的遗传多样性,同时也证明ISSR引物可在同一种群内不同种质资源间进行鉴别。曾亮等[14]对冰草属植物研究发现,11条有效引物(占11.80%)共检测到84个扩增位点,多态性位点比率为70.2%,品种间遗传相似系数为0.083 0~0.706 0,表现出较高的遗传多态性。刘欢等[19]研究发现,8个ISSR有效引物(占16.67%)共扩增出多态性带144条,86.10%扩增片段能够揭示材料间的遗传差异,48个燕麦Avena品种间相似系数为0.583 3~0.941 7,具有丰富的遗传基础。此外,在中型狼尾草种质[16]、黑麦属Secale植物[20]、芒荻类Miscanthus & Triarrhena植物[21]和芦苇Phragmites australis[22]研究中均发现ISSR引物具有较高的鉴别能力。AL-TURKI等[13]对水稻研究发现,11条ISSR引物平均多态性比例超过75%。JOSHI等也发现30个ISSR引物中有60%的引物能产生清晰扩增产物。在小麦中,NAGAOKA等发现100条引物中33条能产生清晰的扩增产物。以上研究材料均属于单子叶植物,将试验结果与本研究结果相比较,蔺草ISSR引物的有效数目低于水稻和小麦,但高于冰草属、燕麦品种、中型狼尾草和黑麦属植物。从多态性条带比率来看,蔺草的多态性条带比率明显高于冰草、黑麦属植物和水稻,与燕麦和中型狼尾草相差不大,低于芒荻类植物和芦苇。从遗传相似系数来看,蔺草的遗传相似系数与燕麦和黑麦属植物大致相同,略低于中型狼尾草,说明蔺草种质具有广泛的遗传基础,遗传多样性丰富。这为了解蔺草的遗传背景、种质资源的开发利用、新品种培育和生产提供了理论依据。

  • 遗传多样性是生物多样性的基本组成部分,一般是指种内不同种群间或是一个种群内的不同个体的遗传变异总和[23]。一个物种遗传多样性越高,适应能力越强,越有利于扩展新环境和扩大分布范围[24]。遗传距离是物种居群间遗传相似性的反映,用来揭示群体的遗传结构。李军等[25]研究认为:遗传距离与空间距离之间并无明显的内在关系,自然选择、基因突变及基因流是导致遗传变异的主要因素。另一些研究认为,植物群体间的地理隔离与遗传关系存在着正相关性,即地理距离越大,则遗传距离越大[26]。李绍臣等[23]对黄檗Phellodendron amurense种群研究发现,地理种群近的能很好的聚在一起。本研究结果表明:蔺草种质资源间具有相对较宽的遗传基础,存在较大的遗传变异性,其原因可能是在遗传进化和育种过程中其基因组DNA发生丰富的变异,从而构成丰富的蔺草资源基因库。从聚类的结果来看,大多数来自于相同或相近地理区域的材料可以聚于同一类或亚类,材料间呈现出一定的地域性分布规律,这与冰草属[14]和燕麦种质[20]研究聚类结果一致,其原因可能是长期自然选择使群体基因型趋于相似的结果;野生种质与栽培种质有分别聚在一起的趋势;聚类中来自鄞州栽培种质YF-01单独聚为一大类,可能是由于在长期的进化过程中有个别基因发生了突变;此外,少部分材料在聚类图中不遵循一定的规律,其原因可能是不同地区之间的相互引种导致种质的聚类结果与种质地理来源没有直接联系。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return