XIA Yu, NIU Shuaihong, LI Yanjun, et al. Physical and mechanical properties of Phyllostachys iridescins under normal pressure and heat temperature[J]. Journal of Zhejiang A&F University, 2018, 35(4): 765-770. DOI: 10.11833/j.issn.2095-0756.2018.04.023
Citation: JIANG Haiyan, DI Jialin, CONG Lin, et al. Resistance of four endophytic fungi to Fusarium sp. of Picea mongolica[J]. Journal of Zhejiang A&F University, 2022, 39(2): 372-379. DOI: 10.11833/j.issn.2095-0756.20210287

Resistance of four endophytic fungi to Fusarium sp. of Picea mongolica

DOI: 10.11833/j.issn.2095-0756.20210287
  • Received Date: 2021-04-14
  • Rev Recd Date: 2021-07-18
  • Available Online: 2022-03-25
  • Publish Date: 2022-03-25
  •   Objective  This aim is to investigate the antagonistic effect of endophytic fungi of Picea mongolica on Fusarium sp., in order to provide the basis for the development and utilization of biocontrol fungi.   Method  Four strains of endophytic fungi of P. mongolia with strong antagonistic effect were selected as experimental materials, including Alternaria alternata (SDYS36), Fusarium tricinctum (SDYS63), Penicillium chrysogenum (SDYS95), and Aspergillus sydowii (SDYS180), with Fusarium sp. as the target. Using in vitro confrontation and pot experiment, the antagonistm of endophytic fungi against pathogens in vitro and the changes of morphology and related physiological indexes of susceptible seedlings were determined in five groups. The dominant antagonistic strains were screened by significance analysis.  Result  The four endophytic antagonists showed antagonistic activity against Fusarium sp. The antagonistic activity of SDYS180 fermentation broth was the highest, reaching 78.67%. The antagonistic activity of SDYS95 strain was the highest, up to 69.64%, and the antagonistic activity of volatile metabolites of SDYS63 was the highest, up to 16.94%. The four endophytic antagonists showed different degree of antagonistic activity against Fusarium sp. in potted P. mongolica. The plant height, ground diameter and root length of infected seedlings increased by 17.12%, 32.64% and 16.56% respectively by inoculating SDYS180. In the infected seedlings inoculated with SDYS95, MDA content decreased by 5.27%, SP content, POD activity, SOD activity, and CAT activity increased by13.41%, 224.46%, 37.05% and 9.02%, respectively.  Conclusion  Strains SDYS180 and SDYS95 are selected as the dominant antagonistic strains to control seedling blight of P. mongolica. [Ch, 8 fig. 1 tab. 23 ref.]
  • [1] JIANG Chuchu, XIN Jingjing, XIA Shuquan, LUO Ping, SHAO Guoyuan, CUI Yongyi.  Isolation and identification of endophytic fungi from Cymbidium faberi ‘Hongxiangfei’ and their bacteriostatic effect in vitro . Journal of Zhejiang A&F University, 2023, 40(4): 783-791. doi: 10.11833/j.issn.2095-0756.20220578
    [2] HE Shuilian, HUANG Bei, LI Tianyuan, TIAN Min.  Diversity of rhizosphere soil fungi and root endophytic fungi of Calanthe tsoongiana . Journal of Zhejiang A&F University, 2023, 40(6): 1158-1166. doi: 10.11833/j.issn.2095-0756.20230179
    [3] LIU Xuewei, WANG Zheng, LÜ Quan, ZHANG Xueping, WANG Xiuqin, KONG Xiangbo, ZHANG Xingyao.  Specific and rapid detection of the pathogenic fungi associated with Ips subelongatus . Journal of Zhejiang A&F University, 2018, 35(1): 128-134. doi: 10.11833/j.issn.2095-0756.2018.01.017
    [4] LIU Yilai, WANG Jianghong, ZHANG Jing, ZHU Danni, MAO Jiajun, ZHOU Xiang.  Influence of aphid-specific pathogen Conidiobolus obscurus on population dynamics of bamboo aphids and the aphid-control effect . Journal of Zhejiang A&F University, 2017, 34(5): 907-914. doi: 10.11833/j.issn.2095-0756.2017.05.018
    [5] CHENG Min, XU Qiufang.  Inhibitory mechanism of Bacillus amyloliquefaciens subsp. plantarum CGMCC 11640 against Botryosphaeria dothidea, the pathogen of canker disease of Carya cathayensis . Journal of Zhejiang A&F University, 2017, 34(2): 326-331. doi: 10.11833/j.issn.2095-0756.2017.02.017
    [6] TIAN Aixia.  Antagonistic strain of TJB-8 and its antifungal substances . Journal of Zhejiang A&F University, 2017, 34(6): 1071-1078. doi: 10.11833/j.issn.2095-0756.2017.06.015
    [7] HOU Jiaojiao, SUN Tao, YU Zhongdong, KANG Yongxiang, BU Fangfang, GAN Mingxu.  Effect of endophytic fungi on growth and physiology of saline stressed Sophora japonica seedlings . Journal of Zhejiang A&F University, 2017, 34(2): 294-300. doi: 10.11833/j.issn.2095-0756.2017.02.013
    [8] ZHU Zhixiang, SHI Haojie, LEI Feibin, ZHANG Chuanqing.  Quantifying Botryosphaeria dothidea infection causing canker disease on Carya cathayensis using real-time PCR . Journal of Zhejiang A&F University, 2016, 33(2): 364-368. doi: 10.11833/j.issn.2095-0756.2016.02.024
    [9] YE Shenyi, RUAN Xiayun, FAN Ying, ZHANG Huanshuai, JING Changyi, MAO Shengfeng, ZHANG Ailian.  Antimicrobial activity of Carya illinoensis leaves . Journal of Zhejiang A&F University, 2014, 31(4): 658-662. doi: 10.11833/j.issn.2095-0756.2014.04.025
    [10] LIU Bo, XU Hua-chao, MENG Jun-guo, SUN Jiang-hua, FAN Jian-ting.  Visual cues for the host-finding and mating locations of Monochamus alternatus (Coleoptera:Cerambycidae) . Journal of Zhejiang A&F University, 2012, 29(4): 617-620. doi: 10.11833/j.issn.2095-0756.2012.04.021
    [11] JU Yun-wei, FAN Pei-feng, XI Yue-ming, XUE Zhong-guan.  Marigold (Tagetes erecta) extracts to kill Bursaphelenchus xylophilus . Journal of Zhejiang A&F University, 2010, 27(2): 316-319. doi: 10.11833/j.issn.2095-0756.2010.02.026
    [12] WU Shang-ying, ZHANG Yang, LIU Ai-rong, XU Tong.  Diversity of endophytic fungi in Rhizophora stylosa and Kandelia candel . Journal of Zhejiang A&F University, 2010, 27(4): 489-493. doi: 10.11833/j.issn.2095-0756.2010.04.002
    [13] HI Dong-hui, LIU Hong-bo, YANG Xiao-feng, ZHANG Yu, CHEN An-liang, ZHANG Li-qin.  Antifungal activity of the essential oil from Magnolia cylindrica on nine phytopathogenic fungi . Journal of Zhejiang A&F University, 2009, 26(2): 223-227.
    [14] LI He, SONG Guang-tao, HE Mo-jun, HAO Yan, ZHOU Guo-ying.  Detection of Camellia oleifera root rot pathogen with nested-PCR . Journal of Zhejiang A&F University, 2009, 26(6): 849-853.
    [15] WANG Ji-xiang, MA Liang-jin.  Application of entomogenous fungi in biological control of agriculture and forestry pests . Journal of Zhejiang A&F University, 2009, 26(2): 286-291.
    [16] WEI Shu-hua, ZHANG Xing-yao, YE Jian-ren, LIANG Jun.  Relationship between pathogenicity differentiation and toxin-producing capability of different strains of Botryosphaeria dothidea . Journal of Zhejiang A&F University, 2009, 26(5): 613-619.
    [17] LIANG Jun, WEI Shu-hua, YE Jian-ren, ZHANG Xing-yao.  Crude toxin production of Botryosphaeria dothidea:initial conditions and characteristics . Journal of Zhejiang A&F University, 2008, 25(5): 559-564.
    [18] BAI Hong-xia, YUAN Xiu-ying.  Survey on the diversity of endophytes in Populus for Inner Mongolia . Journal of Zhejiang A&F University, 2006, 23(6): 629-635.
    [19] YANG Yan-hong, CHEN Yu-hui, ZHU Yun-feng.  Isolation and identification of Cronartium ribicola mycoparasites in southwest China . Journal of Zhejiang A&F University, 2005, 22(4): 414-419.
    [20] XIE Li-qun, JU Yun-wei, YANG Zhen-de, ZHAO Bo-guang.  Dynamics of densities of bacteria and nematode in the branches of Pinus thunbergii inoculated with Bursaphelenchus xylophilus . Journal of Zhejiang A&F University, 2005, 22(3): 310-314.
  • [1]
    PETRINI O. Fungal endophytes of tree leaves[M]//ANDREWS J H, HIRANO S S. Microbial Ecology of Leaves. New York: Springer, 1991: 179 − 196.
    [2]
    CHEN Long, LIANG Zining, ZHU Hua. Research advances in the studies of plant entophytic [J]. Biotechnol Bull, 2015, 31(8): 30 − 34.
    [3]
    YAN Dong, ZENG Weilin, CHEN Xiaoxue, et al. Phytopathogenic antagonistic activities of the endophytic fungi from the twigs of Vaccinium dunalianum [J]. J Cent South Univ For Technol, 2021, 41(3): 64 − 71.
    [4]
    LIU Caiyun, XU Ruirui, JI Hongliang, et al. Isolation, screening and identification of an endophytic fungus and the detection of its antifungal effects [J]. J Plant Prot, 2015, 42(5): 806 − 812.
    [5]
    HOU Xu, GUAN Wei, HU Xiao, et al. Isolation and identification of endophytic fungus ZJ-4 from peach roots and its inhibitory effect against Monilinia fructicola [J]. J Microbiol, 2018, 38(2): 63 − 69.
    [6]
    MA Minzhi, NAN Zhibiao. Effect of fungal endophytes against rust disease of perennial ryegrass (Lolium perenne) on growth and physiological indices [J]. Acta Pratacult Sin, 2011, 20(6): 150 − 156.
    [7]
    VERMA S K, WHITE J F. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntopmillet (Urochloaramosa L.) [J]. J Appl Microbiol, 2018, 124(3): 764 − 778.
    [8]
    XU Wenduo. Basic characteristics, existing problems and their solutions for spruce forest on sandland of Baiyinaobao Natural Reserve, Inner Mongolia [J]. Chin J Ecol, 1993, 12(5): 39 − 44.
    [9]
    LIU Youjun, LIU Shizeng, KANG Caizhou, et al. Endangered mechanism of Picea mongolica: an endemic and evergreen tree only found in desert areas of China [J]. Bull Soil Water Conserv, 2018, 38(3): 60 − 65, 73.
    [10]
    AI Hua, JIANG Haiyan. Screening and identification of antagonistic strains of endophytic fungi from Picea mongolica [J]. Mol Plant Breed, 2020, 18(7): 2273 − 2279.
    [11]
    DUBEY S C, SURESH M, SINGH B. Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt [J]. Biol Control, 2007, 40(1): 118 − 127.
    [12]
    LI Qinglian, SU Hong, CHI Weidan, et al. Isolation, identification and inhibitory activity screening of endophytic fungi from wild plants of Scutellaria baicalensis Georgi [J]. Microbiol China, 2010, 37(3): 381 − 388.
    [13]
    DENNIS C, WEBSTER J. Antagonistic properties of species-groups of Trichoderma (Ⅰ) production of non-volatile antibiotics [J]. Trans Br Mycol Soc, 1971, 57(1): 25 − 39.
    [14]
    YUAN Zongsheng, LIU Fang, HUANG Qiuliang, et al. The effect of entophytic bacteria on the photosynthetic characteristics and several enzyme activities of Cinnamomum camphora [J]. Genomics Appl Biol, 2019, 38(8): 3559 − 3565.
    [15]
    DENG Xun, SONG Xiaoshuang, YIN Dachuan, et al. Study on screening of high efficient Trichoderma strains and its biocontrol of seedling blight [J]. J Jilin Agric Univ, 2013, 35(3): 282 − 287, 294.
    [16]
    SHI Shude, SUN Yaqing, WEI Lei. Experimental Guidance of Plant Physiology [M]. Beijing: China Forestry Press, 2011.
    [17]
    REN Anzhi, GAO Yubao. Endophytic fungi: a kind of resource microorganism with broad application prospect [J]. Microbiol China, 2001, 28(6): 90 − 93.
    [18]
    SHI Jingying, CHEN Weixin, LIU Aiyuan. Advances in the study of endophytes and their effects on control of plant diseases [J]. Acta Ecol Sin, 2006, 26(7): 2395 − 2401.
    [19]
    FAN Miaomiao, CHEN Xiaoxue, ZHANG He, et al. Antimicrobial activity of the endophytic fungi from the leaves of Vaccinium dunalianum [J]. J Southwest For Univ, 2018, 38(2): 141 − 147.
    [20]
    HUANG Dongyi, HUANG Xiaolong. Research and application on fungal endophytes on forage grasses [J]. Acta Pratacult Sin, 2008, 17(3): 128 − 136.
    [21]
    ZHANG Jingjing, AN Shazhou, SHI Chong, et al. Effects of endophytic fungi on seed germination and seedling physiological characteristics of Melica transsilvanica under salt stress [J]. Chin J Grassl, 2017, 39(2): 59 − 64.
    [22]
    YU Chengzhong, WANG Zhiyong, JIANG Shuping, et al. Effect of endophyte infection under brown patch on POD and chitinase enzyme activity of tall fescue [J]. J Anhui Agric Sci, 2006, 34(12): 2720 − 2721.
    [23]
    MA Minzhi, CHRISTENSEN M J, NAN Zhibiao. Effects of the endophyte Epichlo festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth [J]. Eur J Plant Pathol, 2015, 141(3): 571 − 583.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0400.511.522.5Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.0 %FULLTEXT: 33.0 %META: 66.5 %META: 66.5 %PDF: 0.5 %PDF: 0.5 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.3 %其他: 4.3 %其他: 0.1 %其他: 0.1 %Beauharnois: 0.0 %Beauharnois: 0.0 %China: 0.9 %China: 0.9 %Malvern: 0.0 %Malvern: 0.0 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.5 %[]: 0.5 %上海: 8.6 %上海: 8.6 %东莞: 0.2 %东莞: 0.2 %临汾: 0.0 %临汾: 0.0 %丽水: 0.0 %丽水: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %佛山: 0.0 %佛山: 0.0 %六安: 0.0 %六安: 0.0 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %勒诺: 0.1 %勒诺: 0.1 %北京: 15.3 %北京: 15.3 %北伯根: 0.0 %北伯根: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.5 %南京: 0.5 %南宁: 0.1 %南宁: 0.1 %南平: 0.1 %南平: 0.1 %南昌: 0.0 %南昌: 0.0 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %台州: 4.1 %台州: 4.1 %合肥: 0.0 %合肥: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %奥尔巴尼: 0.0 %奥尔巴尼: 0.0 %宁波: 0.1 %宁波: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.1 %宣城: 0.1 %布宜诺斯艾利斯省: 0.0 %布宜诺斯艾利斯省: 0.0 %平顶山: 0.0 %平顶山: 0.0 %广元: 0.1 %广元: 0.1 %广州: 0.2 %广州: 0.2 %弗吉: 0.0 %弗吉: 0.0 %张家口: 2.1 %张家口: 2.1 %成都: 0.0 %成都: 0.0 %扬州: 0.3 %扬州: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %景德镇: 0.0 %景德镇: 0.0 %杭州: 4.7 %杭州: 4.7 %格兰特县: 0.0 %格兰特县: 0.0 %武威: 0.0 %武威: 0.0 %武汉: 0.2 %武汉: 0.2 %池州: 0.0 %池州: 0.0 %沈阳: 0.0 %沈阳: 0.0 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.0 %济南: 0.0 %淄博: 0.0 %淄博: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.2 %温州: 0.2 %湖州: 1.4 %湖州: 1.4 %湛江: 0.1 %湛江: 0.1 %滨州: 0.1 %滨州: 0.1 %漯河: 0.6 %漯河: 0.6 %漳州: 0.0 %漳州: 0.0 %潍坊: 0.0 %潍坊: 0.0 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.1 %福州: 0.1 %芒廷维尤: 4.2 %芒廷维尤: 4.2 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %茂名: 0.0 %茂名: 0.0 %萍乡: 0.0 %萍乡: 0.0 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡阳: 0.2 %衡阳: 0.2 %衢州: 1.9 %衢州: 1.9 %西宁: 38.2 %西宁: 38.2 %西安: 0.1 %西安: 0.1 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.2 %运城: 0.2 %通辽: 0.1 %通辽: 0.1 %邯郸: 0.0 %邯郸: 0.0 %郑州: 3.1 %郑州: 3.1 %金华: 0.3 %金华: 0.3 %锦州: 0.0 %锦州: 0.0 %长沙: 1.8 %长沙: 1.8 %长治: 0.0 %长治: 0.0 %阳泉: 0.2 %阳泉: 0.2 %随州: 0.0 %随州: 0.0 %青岛: 0.2 %青岛: 0.2 %驻马店: 0.0 %驻马店: 0.0 %鹰潭: 0.1 %鹰潭: 0.1 %黔西南: 0.1 %黔西南: 0.1 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %龙岩: 0.1 %龙岩: 0.1 %其他其他BeauharnoisChinaMalvernSeattle[]上海东莞临汾丽水乌鲁木齐佛山六安加利福尼亚州勒诺北京北伯根十堰南京南宁南平南昌博阿努瓦台州合肥呼和浩特哈尔滨哥伦布嘉兴圣克拉拉大连天津奥尔巴尼宁波宜春宣城布宜诺斯艾利斯省平顶山广元广州弗吉张家口成都扬州无锡昆明晋城景德镇杭州格兰特县武威武汉池州沈阳洛阳济南淄博深圳温州湖州湛江滨州漯河漳州潍坊石家庄福州芒廷维尤芝加哥苏州茂名萍乡葫芦岛衡阳衢州西宁西安诺沃克贵阳运城通辽邯郸郑州金华锦州长沙长治阳泉随州青岛驻马店鹰潭黔西南齐齐哈尔龙岩Highcharts.com
  • Cited by

    Periodical cited type(10)

    1. 文世涛,徐茹婷,孙康,陆铜华,魏任重,卢辛成. 热处理对竹材结构与力学性能的影响. 生物质化学工程. 2024(06): 53-59 .
    2. 代福宽,汪紫微,王汉坤,田根林,王传贵. 小径级圆竹顺纹抗压强度及其影响因素. 浙江农林大学学报. 2023(06): 1341-1347 . 本站查看
    3. 李延军,王兆顺,娄志超,张爱文,刘杰. 饱和蒸汽热处理工艺对毛竹材理化性能及防霉性能的影响. 林产工业. 2022(09): 13-18 .
    4. 刘海庆,吕莹. 高温热处理对罗竹力学性能的影响. 农机化研究. 2020(07): 191-196 .
    5. 娄志超,袁成龙,李延军,沈道海,杨淋添,刘杰,张爱文. 饱和蒸汽热处理对竹束化学成分和结晶度的影响. 林业工程学报. 2020(02): 29-35 .
    6. 王献轲,方长华,刘嵘,张淑琴,陈红,费本华. 竹材不同尺度单元纵向拉伸性能研究进展. 竹子学报. 2020(04): 14-24 .
    7. 马中青,吴有龙,徐佳佳,任艺玮,张文标,丁兴萃. 两步进气法和水蒸气对竹材下吸式固定床气化性能的影响. 林业工程学报. 2019(03): 93-99 .
    8. 刘海庆,姜德龙. 高温热处理对罗竹蒸笼径向压力影响的试验研究. 现代农业装备. 2019(03): 76-81 .
    9. 莫珏,马中青,聂玉静,马灵飞. 高温快速热压处理对毛竹材物理力学性能的影响. 浙江农林大学学报. 2019(05): 974-980 . 本站查看
    10. 陈宣宗,牛帅红,姜年春,王新洲,王丽,李延军. 高温水热处理对毛竹材颜色和平衡含水率的影响. 安徽农业大学学报. 2019(05): 815-819 .

    Other cited types(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(1)

Article views(2252) PDF downloads(190) Cited by(20)

Related
Proportional views

Resistance of four endophytic fungi to Fusarium sp. of Picea mongolica

doi: 10.11833/j.issn.2095-0756.20210287

Abstract:   Objective  This aim is to investigate the antagonistic effect of endophytic fungi of Picea mongolica on Fusarium sp., in order to provide the basis for the development and utilization of biocontrol fungi.   Method  Four strains of endophytic fungi of P. mongolia with strong antagonistic effect were selected as experimental materials, including Alternaria alternata (SDYS36), Fusarium tricinctum (SDYS63), Penicillium chrysogenum (SDYS95), and Aspergillus sydowii (SDYS180), with Fusarium sp. as the target. Using in vitro confrontation and pot experiment, the antagonistm of endophytic fungi against pathogens in vitro and the changes of morphology and related physiological indexes of susceptible seedlings were determined in five groups. The dominant antagonistic strains were screened by significance analysis.  Result  The four endophytic antagonists showed antagonistic activity against Fusarium sp. The antagonistic activity of SDYS180 fermentation broth was the highest, reaching 78.67%. The antagonistic activity of SDYS95 strain was the highest, up to 69.64%, and the antagonistic activity of volatile metabolites of SDYS63 was the highest, up to 16.94%. The four endophytic antagonists showed different degree of antagonistic activity against Fusarium sp. in potted P. mongolica. The plant height, ground diameter and root length of infected seedlings increased by 17.12%, 32.64% and 16.56% respectively by inoculating SDYS180. In the infected seedlings inoculated with SDYS95, MDA content decreased by 5.27%, SP content, POD activity, SOD activity, and CAT activity increased by13.41%, 224.46%, 37.05% and 9.02%, respectively.  Conclusion  Strains SDYS180 and SDYS95 are selected as the dominant antagonistic strains to control seedling blight of P. mongolica. [Ch, 8 fig. 1 tab. 23 ref.]

XIA Yu, NIU Shuaihong, LI Yanjun, et al. Physical and mechanical properties of Phyllostachys iridescins under normal pressure and heat temperature[J]. Journal of Zhejiang A&F University, 2018, 35(4): 765-770. DOI: 10.11833/j.issn.2095-0756.2018.04.023
Citation: JIANG Haiyan, DI Jialin, CONG Lin, et al. Resistance of four endophytic fungi to Fusarium sp. of Picea mongolica[J]. Journal of Zhejiang A&F University, 2022, 39(2): 372-379. DOI: 10.11833/j.issn.2095-0756.20210287
  • 植物内生真菌(endophytic fungi)是指那些全部或近整个生命周期生活在宿主植物的各类细胞及细胞间隙、组织、器官内部,却不会使寄主表现出不良症状的真菌类群[1-2]。大量研究表明:内生真菌可以通过竞争生存空间和营养元素[3]、溶菌作用[4]、影响病原真菌菌丝生长及孢子发育方式[5]等抑制病原菌的生长,同时刺激根毛形成和根茎生长,提高植物感病时的光合作用及酶活性[6-7],提高植物抗病能力。沙地云杉Picea mongolica是松科Pinaceae云杉属Picea常绿针叶乔木,是内蒙古特有树种,沙质土地上的活化石[8]。由于近年来大面积的立枯病等病虫害的频繁发生[9],沙地云杉正面临着可能灭绝的危险。目前,喷施化学农药是防治严重林木病害的主要措施,但农药利用率低下,极不适宜应用于大面积的森林,急需开发天然生物资源代替传统化学农药试剂。本研究选取前期筛选的4株具有强拮抗作用的沙地云杉内生真菌为试验材料,以沙地云杉立枯病病原真菌Fusarium sp.为靶标菌,采用体外对峙和盆栽试验,探究内生拮抗菌的拮抗活性和对沙地云杉的抗病作用,旨在为利用生物资源、开发生防菌提供依据。

  • 4株沙地云杉内生拮抗菌由内蒙古农业大学林学院森林病理实验室提供[10],分别是互隔链格孢菌Alternaria alternata (SDYS36)、三线镰刀菌Fusarium tricinctum (SDYS63)、产黄青霉菌Penicillium chrysogenum (SDYS95)、聚多曲霉菌Aspergillus sydowii (SDYS180)。

  • 沙地云杉立枯病病原菌Fusarium sp.由内蒙古农业大学林学院森林病理实验室提供。

  • 沙地云杉种子由赤峰市白音敖包自然保护区提供。除杂后挑选种实饱满、色泽正常的健康种子,低温保存备用。千粒重为0.011 4 g。

  • 马铃薯葡萄糖琼脂(PDA)固体培养基、马铃薯葡萄糖(PD)液体培养基。

  • 在超净工作台内将沙地云杉内生拮抗菌和沙地云杉立枯病病原菌供试菌株切成0.2 cm×0.2 cm的菌块,接种于已灭菌的PDA平板进行纯培养;无菌条件下,用5 mm打孔器在培养7 d的供试菌株平板边缘打成圆形菌饼,接种于加有100 mL灭菌后的PD液体培养基的250 mL三角瓶中,震荡培养5~7 d (28 ℃,180 r·min−1),得到发酵菌液备用;取上述发酵液离心(8 000 r·min−1,4 ℃) 2 min后留上清液,在超净工作台通过0.22 µm滤膜,即为无菌发酵液。

  • 采用生长速率法[11],以立枯病病原菌为靶标菌,测试沙地云杉内生拮抗菌株发酵液拮抗活性。无菌条件下,加定量无菌发酵液于PDA培养基(40~50 ℃)混匀,制成平板(Ф=7.5 cm),冷凝后在中心位置接入靶标菌,每组均设5个重复,以加入相同比例无菌水的平板上靶标菌的生长作为对照(ck),25 ℃倒置培养。待对照中靶标菌长满平板时,测量靶标菌的菌落直径,计算相对抑菌率。相对抑菌率RI=(RcRp)/Rc×100%。Rc为对照靶标病原菌的菌落直径,Rp为对峙实验中靶标病原菌的菌落直径。

  • 采用皿内对峙法[12],以立枯病病原菌为靶标菌,测试沙地云杉内生拮抗菌株拮抗活性。无菌条件下,将内生拮抗菌株和靶标菌分别接种在PDA平板(Ф=7.5 cm)上,各距中心位置2.5 cm,以单独培养靶标菌为对照(ck),均设5个重复,25 ℃倒置培养。记录对峙培养中靶标菌菌落的相对生长距离,计算相对抑菌率。

  • 采用对扣抑制法[13],以立枯病病原菌为靶标菌,测试沙地云杉内生拮抗菌株挥发性代谢产物的拮抗活性。无菌条件下,将内生拮抗菌株和靶标菌分别接种在2个PDA平板(Ф=9.0 cm)中心,撤去皿盖,靶标菌在上、拮抗菌在下对扣放置,以单独培养靶标菌为对照(ck),均设5个重复,25 ℃恒温培养。记录对峙培养中靶标菌菌落的相对生长距离,计算相对抑菌率。

  • 参照袁宗胜等[14]、邓勋等[15]的方法及《植物生理学实验指导》[16],通过灌根处理将内生拮抗菌株及发酵菌液接种在外观大小相似的1年生沙地云杉健壮幼苗上,并设置单独浇灌PD液体培养基(PD)和清水(ck)等2组对照,每种处理设置苗200株,共有苗1 200株,待土壤表面干燥后接种沙地云杉立枯病原菌。发病后,比较病苗生长30和45 d时的形态(株高生长量、地径生长量、根长生长量)和叶片组织的可溶性蛋白质质量分数、丙二醛质量摩尔浓度、保护酶活性的变化,分析内生拮抗菌株对沙地云杉染病幼苗抵抗立枯病的影响。

  • 4株内生真菌的发酵液对病原菌均有显著的抑制作用,抑菌率为51.64%~78.67%。4株内生真菌对沙地云杉立枯病病原菌的抑菌率均在51.64%以上。SDYS180发酵液的抑菌率最高,达到78.67%。与另外3株内生真菌发酵液间差异显著(P<0.05) (表1)。4株真菌发酵液的抑菌率从大到小依次为SDYS180、SDYS36、SDYS63、SDYS95。

    菌株编号
    抑菌率/%
    发酵液菌体挥发性代谢产物
    SDYS3670.67±3.52 b55.24±0.47 c16.11±2.64 ab
    SDYS6360.44±2.78 c51.96±0.08 d16.94±2.29 a
    SDYS9551.64±0.43 d69.64±0.31 a13.06±2.63 b
    SDYS18078.67±1.34 a66.27±0.69 b15.00±1.11 ab
      说明:数据为平均值±标准差,不同小写字母表示不同内生拮抗
         菌种在0.05水平上差异显著

    Table 1.  Antagonistic effects of endophytic fungi in P. mongolica on Fusarium sp.

  • 4株沙地云杉内生真菌菌体本身对沙地云杉立枯病病原真菌均有显著的抑制作用,抑菌率均大于51.96%。抑菌率从大到小依次为SDYS95、SDYS180、SDYS36、SDYS63。其中,SDYS95的抑制效果最强,抑菌率达到69.64%,与另外3株内生真菌差异显著(P<0.05) (表1)。

  • 4株沙地云杉内生真菌菌株的挥发性代谢产物对沙地云杉立枯病病原真菌的生长有一定的拮抗作用,但抑制率较低,抑菌率从大到小依次为SDYS63、SDYS36、SDYS180、SDYS95 (表1)。其中,拮抗效果最强的SDYS63,抑菌率仅达到16.94%,与SDYS95内生真菌差异显著(P<0.05);拮抗效果最弱的是SDYS95,抑菌率仅有13.06%。

  • 发病30 d时,各处理染病幼苗株高从高到低依次表现为SDYS180、SDYS95、SDYS63、SDYS36、ck、PD,试验组株高较ck高0.91%~16.01%,PD生长势衰弱,可见菌丝着生。发病45 d时,各处理染病幼苗株高从高到低依次为SDYS180、SDYS95、SDYS63、SDYS36、ck、PD,试验组苗木的株高较ck高出1.42%~18.31%,ck叶片退绿枯黄或死亡。通过PD与ck的对比,说明病原菌抑制病苗株高生长;试验组相对ck株高显著增加,说明内生真菌能有效抑制病原菌。2次取样SDYS180的病苗株高生长均最高,与ck和PD具有显著差异(P<0.05)。菌株SDYS180及其代谢产物在苗木株高生长上抗病效果最佳(图1)。

    Figure 1.  Effects of endophytic fungi of P. mongolica on the plant height of infected seedlings

    30 d时,各处理染病幼苗地径从大到小依次为SDYS36、SDYS63、SDYS180、SDYS95、ck、PD,试验组地径较ck高5.90%~19.04%,PD较ck低10.22%。45 d时,各处理地径从大到小依次呈现为SDYS180、SDYS36、SDYS95、SDYS63、ck、PD,带菌植株地径较ck高出14.59%~32.64%,PD较ck低13.96%。通过PD与ck的对比,说明病原菌抑制植株地径的增长。试验组相对ck显著增加,说明内生真菌有效抑制发病;2次取样SDYS180的增加幅度最大,与ck、PD差异性均达显著水平(P<0.05),说明菌株SDYS180及其代谢产物在苗木地径生长上抗病效果最佳(图2)。

    Figure 2.  Effects of endophytic fungi of P. mongolica on the ground diameter of infected seedlings

    30 d时,各处理染病幼苗根长从大到小依次为SDYS63、SDYS95、SDYS180、SDYS36、ck、PD(图3),试验组根长较ck高0.42%~11.91%,PD较ck低10.22%。45 d时,各处理染病幼苗根长从大到小依次为SDYS180、SDYS95、SDYS63、SDYS36、ck、PD,带菌植株较ck高10.17%~16.56%,PD较ck低13.96%。通过PD与ck的对比,说明病原菌抑制植株根长生长。试验组相对ck显著增加,说明内生真菌有效抑制发病;2次取样SDYS180的根长增加幅度最大,45 d取样与ck、PD差异性均显著(P<0.05),说明菌株SDYS180及其代谢产物在苗木根长生长上抗病效果最佳。

    Figure 3.  Effects of endophytic fungi of P. mongolica on the root length of infected seedlings

  • 30 d时,各处理染病幼苗中可溶性蛋白质质量分数从高到低依次为SDYS180、SDYS95、SDYS63、ck、SDYS36、PD,SDYS180和SDYS95与ck、PD间差异性显著(P<0.05),高出ck 2.68%和2.10%,PD较ck低2.43%(图4)。45 d时各处理染病幼苗中可溶性蛋白质质量分数从高到低依次为SDYS95、SDYS36、SDYS63、SDYS180、ck、PD,试验组较ck高5.48%~13.41%,PD较ck低8.20%。2次取样PD和ck叶片组织中可溶性蛋白质质量分数大幅下降,病原菌破坏植物细胞结构,影响渗透调节作用。SDYS180、SDYS95、SDYS63相对ck可溶性蛋白质质量分数显著增加,说明3株对应内生真菌有效抑制病原菌对渗透调节的破坏。其中SDYS95的增加幅度最大,说明菌株SDYS95及其代谢产物在苗木上抗病效果最佳,促进植物组织中可溶性蛋白质质量分数的提高。

    Figure 4.  Effects of endophytic fungi of P. mongolica on the SP content of infected seedlings

  • 丙二醛(MDA)是由于植物膜脂过氧化作用的重要产物。丙二醛质量摩尔浓度越高,说明植物细胞膜受损越严重。30 d时,各处理染病幼苗中丙二醛质量摩尔浓度从大到小依次为PD、SDYS63、ck、SDYS36、SDYS180、SDYS95,SDYS95和SDYS180较ck降低了24.46%和21.10%;SDYS36降低不明显,和ck仅差0.05%;SDYS63较ck高0.08%,效果不明显;PD较ck高3.70%。45 d时,丙二醛质量摩尔浓度从大到小依次为PD、ck、SDYS95、SDYS36、SDYS180、SDYS63;试验组和对照组比较,丙二醛质量摩尔浓度下降,说明内生真菌抑制病原菌的伤害。其中菌株SDYS63在30 d样品中高于ck,但在45 d样本中丙二醛质量摩尔浓度最低,说明SDYS63增强苗木抗病性,有效减少丙二醛质量摩尔浓度,但拮抗效果不稳定;在2次样品中SDYS180和SDYS95的丙二醛质量摩尔浓度均低于ck,但SDYS180在45 d较SDYS95低10.19%,说明菌株SDYS180拮抗效果良好,而SDYS95作用效果最佳(图5)。

    Figure 5.  Effects of endophytic fungi of P. mongolica on MDA content of infected seedlings

  • 30 d时,各处理染病幼苗POD活性从高到低依次为SDYS95、SDYS180和SDYS36、SDYS63、PD、ck,其中PD较ck高63.24%,试验组较ck高141.18%~250.00%;45 d时,各处理染病幼苗POD活性从高到低依次为SDYS95、SDYS63、SDYS180、SDYS36、PD、ck,其中PD较ck高48.37%,试验组较ck高141.13%~224.46%(图6)。通过PD和ck的比较,说明病原菌对幼苗POD影响不大,反而可能刺激POD活性。在拮抗过程中,在一定程度上被内生真菌抑制。在2次样本中,SDYS95的POD活性均最高,说明菌株SDYS95对提高幼苗抗病性最佳。

    Figure 6.  Effects of endophytic fungi of P. mongolica on POD activity of infected seedlings

    30 d时,各处理染病幼苗SOD活性从高到低依次为SDYS180、SDYS36、ck、SDYS95、SDYS95、PD,其中PD较ck低12.01%,SDYS180较其他处理表现出显著差异(P<0.05),较ck高3.57%;45 d时,各处理染病幼苗SOD活性从高到低依次为SDYS63、SDYS36、SDYS95、SDYS180、ck、PD,其中PD较ck低37.56%,试验组较ck高10.32%~57.36%(图7)。通过PD和ck的比较,说明病原菌对幼苗SOD活性具有抑制作用。在2次样本中,SDYS95的SOD活性均高于ck,说明菌株SDYS95及其代谢产物稳定提高幼苗抗病性;SDYS63在30 d时抑制效果稍弱,但在45 d时抑制效果大幅增加,表明菌种SDYS63的代谢产物的拮抗效果最佳,同时促进SOD的活性增加。

    Figure 7.  Effects of endophytic fungi of P. mongolica on SOD activity of infected seedlings

    30 d时,各处理染病幼苗CAT活性从高到低依次为SDYS95、SDYS180、SDYS63、SDYS36、ck、PD,其中PD较ck低58.71%,试验组较ck高3.87%~10.322%;45 d时,各处理染病幼苗CAT活性从高到低依次为SDYS36、SDYS180、SDYS63、SDYS95、ck、PD,其中PD较ck低60.66%,试验组较ck高9.02%~43.44%(图8)。通过PD和ck的比较,说明病原菌致病严重,对幼苗CAT活性具有抑制作用,在拮抗过程中,被内生真菌抑制。在30 d样本中,SDYS95的CAT活性最高,说明菌株SDYS95抗病效果良好,可提高幼苗抗病性;SDYS36在30 d时抑制效果稍低,但在45 d时抑制效果最佳,表明菌种SDYS36的代谢产物的拮抗效果良好,同时促进CAT活性增加。

    Figure 8.  Effects of endophytic fungi of P. mongolica on CAT activity of infected seedlings

  • 内生真菌作为一类新型待开发的微生物资源,具有广阔的应用前景。目前,开展最广泛的研究领域就是内生真菌的拮抗作用[17]。大量研究表明:内生真菌对多种病原真菌具有很强的拮抗作用和广谱性,通常表现在对生存空间和营养资源的竞争,并产生拮抗活性物质抑制病原菌的生长[18]。本研究结果表明:4种沙地云杉内生真菌经体外培养后,其菌体本身及其代谢产物对植物病原真菌均表现出较强的拮抗活性。但这种拮抗作用存在一定的选择性,可能由不同原因造成。如青霉Penicillium和曲霉属Aspergillus真菌具有更快的扩展速度,在占据生存空间上具有很大的优势;虽然镰刀菌Fusarium本身生长受到限制,但是可以通过产生具有拮抗活性的代谢产物,抑制病原真菌的生长。樊苗苗等[19]对樟叶越桔Vaccinium dunalianum叶中产黄青霉P. chrysogenum、曲霉、链格孢菌Alternaria、镰刀菌等内生真菌及其代谢产物的拮抗活性进行研究,其结果与本研究一致。这些菌株及其代谢产物对病原真菌具有很好的拮抗活性。

  • 林木病原真菌可以破坏植物细胞壁,产生有毒物质抑制寄主生长。植物内生真菌及其代谢产物可以有效抑制植物病原菌在寄主植物中的萌发和生长,提高植物感病后的保护酶活性,从而有效提高植物的抗病能力[20]。本研究中,接种沙地云杉内生真菌的感病植株生长幅度均高于对照,说明内生真菌可以有效抑制沙地云杉染病植株上的病原菌,提高植株抗病能力,促进植物组织快速生长。此结果与邓勋等[15]的木霉菌Trichoderma防治松苗立枯病的研究结果一致。

    接种沙地云杉内生真菌的感病植株丙二醛质量摩尔浓度显著低于对照组。丙二醛是一种由于质膜过氧化作用而产生的错误的代谢产物,其含量越低,表示细胞膜通透性越低,即受损程度越弱。本研究结果表明:沙地云杉内生真菌可以有效降低组织中丙二醛质量摩尔浓度,有效保护细胞膜。本研究结果与张晶晶等[21]的研究结果一致。

    接种沙地云杉内生真菌的感病植株中的过氧化氢酶、过氧化物酶、超氧化物歧化酶的活性比对照表现出不同程度提升。3种酶是植物细胞膜保护酶,起到清除活性氧的重要作用。本研究结果表明:内生真菌可以有效激发沙地云杉抗氧化酶(保护酶)的活性。余承忠等[22]研究认为:病原菌致病性与内生真菌提高寄主抗病能力显著相关。这与本研究结果一致。

    可溶性蛋白质既是重要的营养物质,更是关键的渗透调节物质。本次研究结果表明:沙地云杉内生真菌可以增加可溶性蛋白质质量分数,调节组织细胞渗透调节作用。此结果与MA等[23]的研究结果一致。

  • 以沙地云杉立枯病病原真菌为靶标菌,4株沙地云杉内生拮抗菌的发酵液均表现出良好的拮抗活性,菌株SDYS180发酵液的拮抗活性最高,SDYS95的菌株对峙拮抗活性最高,SDYS63的挥发性代谢产物的拮抗活性最高。

    4株沙地云杉内生拮抗菌对盆栽沙地云杉立枯病均表现出不同程度的拮抗活性。从病苗形态指标来看,SDYS180对盆栽沙地云杉立枯病的拮抗活性最高;从生理指标来看,拮抗活性最高的是SDYS95。

Reference (23)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return