[1] |
SILVA E A, DAMATTA F M, DUCATTI C, et al. Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees [J]. Field Crops Res, 2004, 89(2/3): 349 − 357. |
[2] |
XIA Jiangbao, ZHANG Shuyong, ZHANG Guangcan, et al. Critical responses of photosynthetic efficiency in Campsis radicans (L. ) seem to soil water and light intensities [J]. Afr J Biotechnol, 2011, 10(77): 17748 − 17754. |
[3] |
VONGCHAROEN K, SANTANOO S, BANTERNG P, et al. Seasonal variation in photosynthesis performance of cassava at two different growth stages under irrigated and rain-fed conditions in a tropical savanna climate [J]. Photosynthetica, 2018, 56(4): 1398 − 1413. |
[4] |
MEDLYNE B E, LOUSTAU D, DELZON S. Temperature response of parameters of a biochemically based model of photosynthesis (Ⅰ) Seasonal changes in mature maritime pine (Pinus pinaster Ait.) [J/OL]. Plant Cell Environ, 2002, 25(9) [2021-03-04]. doi: 10.1046/j.1365-3040.2002.00890.x. |
[5] |
FARQUHAR G D, CAEMMERER S V, BERR J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species [J]. Planta, 1980, 149(1): 78 − 90. |
[6] |
MURAOKA H, KOIZUMI H. Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: implication to the ecosystem carbon gain [J]. Agric Fort Meteorol, 2005, 134(1/4): 39 − 59. |
[7] |
ONODA Y, HIKOSAKA K, HIROSE T. Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum [J]. J Exp Bot, 2005, 56(412): 755 − 763. |
[8] |
MAKINO A. Rubisco and nitrogen relationships in rice: leaf photosynthesis and plant growth [J]. Soil Sci Plant Nutr, 2003, 49(3): 319 − 327. |
[9] |
MIGLIETTA C K. Long term effects of naturally elevated CO2 on Mediterranean grassland and forest trees [J]. Oecologia, 1994, 99: 343 − 351. |
[10] |
ONODA Y, HIROSE T, HIKOSAKA K. Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan [J]. Ecol Res, 2007, 22: 475 − 484. |
[11] |
KATAHATA S, NARAMOTO M, KAKUBARI Y, et al. Seasonal changes in photosynthesis and nitrogen allocation in leaves of different tree ages in evergreen understory shrub Daphniphyllum humile [J]. Trees-Struct Funct, 2007, 21(6): 619 − 629. |
[12] |
OSADA N, ONODA Y, HIKOSAKA K. Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan [J]. Oecologia, 2010, 164(1): 41 − 52. |
[13] |
何祯, 王宗星, 张骏, 等. 浙江省香榧产业发展现状与对策[J]. 浙江农业科学, 2020, 61(7): 1345 − 1347. |
HE Zhen, WANG Zongxing, ZHANG Jun, et al. Present situation and countermeasures of Torreya grandis ‘ Merrillii’ industry development in Zhejiang [J]. J Zhejiang Agric Sci, 2020, 61(7): 1345 − 1347. |
[14] |
HYINK D M, ZEDAKER S M. Stand dynamics and evolution of forest decline [J]. Tree Physiol, 1987, 3(1): 17 − 27. |
[15] |
GERISH G. Relating carbon allocation patterns to tree senescence in Metrosideros forests [J]. Ecology, 1990, 71(3): 1176 − 1184. |
[16] |
WOLKERSTORFER S V, WONISCH A, STANKOVA T, et al. Seasonal variations of gas exchange, photosynthetic pigments, and antioxidants in Turkey oak (Quercus cerris L.) and Hungarian oak (Quercus frainetto Ten.) of different ages [J]. Trees, 2011, 25: 1043 − 1052. |
[17] |
徐超, 王鸿飞, 邵兴锋, 等. 香榧子油抗氧化活性及降血脂功能研究[J]. 中国粮油学报, 2012, 27(8): 43 − 47. |
XU Chao, WANG Hongfei, SHAO Xingfeng, et al. Study on antioxidant activity and reducing blood fat function of kaga oil [J]. J Chin Cereals Oil Assoc, 2012, 27(8): 43 − 47. |
[18] |
SHEN Chaohua, HU Yuanyuan, DU Xuhua, et al. Salicylic acid induces physiological and biochemical changes in Torreya grandis cv. ‘Merrillii’ seedlings under drought stress [J]. Trees-Struct Funct, 2014, 28(4): 961 − 970. |
[19] |
LI Tingting, HU Yuanyuan, DU Xuhua, et al. Salicylic acid alleviates the adverse effects of salt Stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems[J/OL]. PLoS One, 2014, 9(10): e0109492[2021-03-04]. doi: 10.1371/journal.pone.0109492. |
[20] |
黄增冠, 喻卫武, 罗宏海, 等. 香榧不同叶龄叶片光合能力与氮含量及其分配关系的比较[J]. 林业科学, 2015, 51(2): 44 − 51. |
HUANG Zengguan, YU Weiwu, LUO Honghai, et al. Photosynthetic characteristics and their relationships with leaf nitrogen content and nitrogen allocation in leaves at different leaf age [J]. Sci Silv Sin, 2015, 51(2): 44 − 51. |
[21] |
陈佳妮, 廖亮, 黄增冠, 等. 香榧与榧树叶片光合特性及其光保护机制的比较[J]. 林业科学, 2015, 51(10): 134 − 141. |
CHEN Jiani, LIAO Liang, HUANG Zengguan, et al. A comparative study on photosynthetic characteristics and photoprotective mechanisms between Torreya grandis cv. ‘Merrillii’ and Torreya grandis [J]. Sci Silv Sin, 2015, 51(10): 134 − 141. |
[22] |
Von CAEMMERER S, EVANS J R, HUDSON G S, et al. The kinetics of ribulose-1, 5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco [J]. Planta, 1994, 195(1): 88 − 97. |
[23] |
张立波, 娄伟平. 1961—2010年杭州太阳总辐射及日照时数气候变化[J]. 浙江气象, 2013, 34(1): 37 − 41. |
ZHANG Libo, LOU Weiping. Total solar radiation and sunshine duration’s climate change from 1960−2010 [J]. J Zhejiang Meterol, 2013, 34(1): 37 − 41. |
[24] |
YASUMURA Y, HIKOSKA K, HISROSE T. Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellate leaves grown in high or low irradiance [J]. Tree Physiol, 2006, 26(10): 1315 − 1323. |
[25] |
MAE T. Leaf senescence and nitrogen metabolism[M]// NOODÉN L D. Plant Cell Death Processes. Amesterdam: Elsevier, 2004: 157 − 168. |
[26] |
赵雨馨. 氮沉降与生物炭对香榧生长和种子品质的影响[D]. 杭州: 浙江农林大学, 2018. |
ZHAO Yuxin. Effects of Nitrogen Deposition and Biochar on the Growth and Seed Quality of Torreya grandis[D]. Hanghou: Zhejiang A&F University, 2018. |
[27] |
BENOMAR L, MOUTAOUFIK M T, ELFERJANI R , et al. Thermal acclimation of photosynthetic activity and RuBisCO content in two hybrid poplar clones[J/OL]. PLoS One, 2019, 14(2): e438069[2021-03-04]. doi: 10.1101/438069. |
[28] |
SHAO Yuhang , LI Shiyu , GAO Lijun , et al. Magnesium application promotes Rubisco activation and contributes to high-temperature stress alleviation in wheat during the grain filling[J/OL]. Front Plant Sci, 2021, 12: 675582[2021-03-04]. doi: 10.3389/fpls.2021.675582. |
[29] |
WARREN C R, ADAMS M A. Evergreen trees do not maximize instantaneous photosynthesis [J]. Trends Plant Sci, 2004, 9: 270 − 274. |
[30] |
COCKFIELD S D. Relative availability of nitrogen in host plants of invertebrate herbivores: three possible nutritional and physiological definitions [J]. Oecologia, 1988, 77: 91 − 94. |
[31] |
YAMAGUCHI D P, NAKAJI T, HIURA T, et al. Effects of seasonal change and experimental warming on the temperature dependence of photosynthesis in the canopy leaves of Quercus serrata [J]. Tree Physiol, 2016, 36(10): 1283 − 1295. |
[32] |
VITALI V, BUNTEGEN U, BAUHUS J. Seasonality matters: the effects of past and projected seasonal climate change on the growth of native and exotic conifer species in central Europe [J]. Dendrochronologia, 2018, 48: 1 − 9. |
[33] |
HIKOSAKA K, HIROSE T. Leaf and canopy photosynthesis of C3 plants at elevated CO2 in relation to optimal partitioning of nitrogen among photosynthetic components: theoretical prediction [J]. Ecol Modelling, 1998, 106: 247 − 259. |
[34] |
HIKOSAKA K. Nitrogen partitioning in the photosynthetic apparatus of Plantago asiatica leaves grown under different temperature and light conditions: similarities and differences between temperature and light acclimation [J]. Plant Cell Physiol, 2005, 46(8): 1283 − 1290. |
[35] |
YAMORI W, NOGUCHI K, TERASHIMA I. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions [J]. Plant Cell Environ, 2005, 28(4): 536 − 547. |
[36] |
KIRSCHBAUM M U F, FARQUHAR G D. Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng [J]. Aust J Plant Physiol, 1984, 11: 519 − 538. |
[37] |
HIKOSAKA K, MURAKAMI A, HIROSE T. Balancing carboxylation and regeneration of ribulose-1, 5-bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree, Quercus myrsinaefolia [J]. Plant Cell Envrion, 1999, 22(7): 841 − 849. |
[38] |
HIKOSAKA K. Modelling optimal temperature acclimation of the photosynthetic apparatus in C3 plants with respect to nitrogen use [J]. Ann Bot, 1997, 80: 721 − 730. |
[39] |
MEDLYN B E. The optimal allocation of nitrogen within the C3 photosynthetic system at elevated CO2 [J]. Aust J Plant Physiol, 1996, 23(5): 593 − 603. |