-
光照是影响植物生长发育的重要环境因素之一,不仅提供了植物生长和生理活动所需要的能量,还作为一种信号调控植物的生长发育和形态建成[1]。因此,光是植物为了生长发育需要竞争的重要资源,特别是在生长密集的植物群落中。阳光中的红光(red light,R)和蓝光(blue light,B)被位于上层的叶片吸收用于光合作用,大部分的远红光(far red light,FR)被上层植物组织反射和传递给下层植被,导致红光与远红光比例(R/FR)下降、光合有效辐射(photosynthetically active radiation, PAR)减少。研究表明:下层植被感知到的R/FR可从全光照下的1.20降至0.05~0.70[2]。如拟南芥Arabidopsis thaliana单片叶遮盖可以将PAR从1 500 mmol·m−2·s−1减少到120 mmol·m−2·s−1,R/FR从1.20减少到0.20,且增加一片叶遮盖后PAR下降至40 mmol·m−2·s−1,R/FR下降至0.1[3]。
不同植物对光照的敏感程度不同。阳生植物在高光强条件下生长状况良好,但在遮阴或者弱光条件下生长不良,例如向日葵Helianthus annuus和月季Rosa chinensis等;而阴生植物则在长期遮阴条件下可以正常完成生活史,如三七Panax notoginseng和南方红豆杉Taxus chinensis var. mairei[4−5]。在遮阴条件下,阳生植物感知遮阴信号时会产生一系列避荫反应(shade avoidance response, SAR)以躲避低光,而阴生植物则通过产生一系列耐荫反应使植物获取更多光照来维系植株正常发育。前人对于阳生植物避荫反应的研究甚广,包括从下胚轴伸长、分枝减少[6]、比叶面积(specific leaf area,SLA)[7]增大和叶绿素a/b下降[8]等生理形态变化的研究,到生长素、赤霉素和油菜素甾醇与光信号通路互作共同调节植株避荫反应的分子机制,而对阴生植物耐荫机制的研究却十分匮乏,仅能借鉴个别阳生植物耐荫反应的研究。
本研究综述了荫蔽环境中阳生植物和阴生植物的生理形态、避荫反应和耐荫反应机制的研究进展,旨在为弱光环境下植物光响应机制尤其是阴生植物耐荫机制的研究提供参考依据,同时为提高植物光合效率,培育高产作物新品种,以及森林生态系统中林分调整、林下经济空间多层结构的搭建开辟有效路径。
HTML
[1] | KAMI C, LORRAIN S, HORNITSCHEK P, et al. Light-regulated plant growth and development [J]. Current Topics in Development Biology, 2010, 91: 29 − 66. | |
[2] | YANG Chuanwei, XIE Famin, JIANG Yupei, et al. Phytochrome a negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability [J]. Development Cell, 2018, 44(1): 29 − 41. | |
[3] | FRANKLIN K A. Shade avoidance [J]. New Phytologist, 2008, 179(4): 930 − 944. | |
[4] | 罗宁. 不同遮光度下南方红豆杉生长研究 [J]. 安徽农学通报, 2021, 27(19): 54 − 57. | LUO Ning. Research on the growth of Taxus chinensis var. mairei under different shades [J]. Anhui Agricultural Science Bulletin, 2021, 27(19): 54 − 57. |
[5] | 双升普, 张金燕, 寸竹, 等. 光照辐射强度驱动典型阴生植物三七的生理生态响应特征 [J]. 生态学报, 2022, 42(9): 3596 − 3612. | SHUANG Shengpu, ZHANG Jinyan, CUN Zhu, et al. Ecophysiological characteristics of a typically shade-tolerant species Panax notoginseng in response to different light intensities [J]. Acta Ecologica Sinica, 2022, 42(9): 3596 − 3612. |
[6] | FIORUCCI A S, FANKHAUSER C. Plant strategies for enhancing access to sunlight [J/OL]. Current Biology, 2017, 27 (17): R931−R940[2024-01-26]. doi: 10.1016/j.cub.2017.05.085. | |
[7] | EVANS J R, POORTER H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain [J]. Cell Environment, 2001, 24(8): 755 − 767. | |
[8] | VANDENBUSSCHE F, PIERIK R, MILLENAAR F F, et al. Reaching out of the shade [J]. Current Opinion in Plant Biology, 2005, 8(5): 462 − 468. | |
[9] | NOZUE K, TAT A V, DEVISETTY U K, et al. Shade avoidance components and pathways in adult plants revealed by phenotypic profiling [J/OL]. PLoS Genetics, 2015, 11 : e1004953[2024-01-24]. doi: 10.1371/journal.pgen.1004953. | |
[10] | BALLARE C L, PIERIK R. The shade-avoidance syndrome: multiple signals and ecological consequences [J]. Plant Cell and Environment, 2017, 40(11): 2530 − 2543. | |
[11] | KASULIN L, AGROFOGLIO Y, BOTTO J F. The receptor-like kinase ERECTA contributes to the shade-avoidance syndrome in a background-dependent manner [J]. Annals of Botany, 2013, 111: 811 − 819. | |
[12] | INCE Y Ç, KRAHMER J, FIORUCCI A S, et al. A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation [J/OL]. Nature Communications, 2022, 13 : 5659[2024-01-24]. doi: 10.1038/s41467-022-33384-9. | |
[13] | CASAL J J. Shade avoidance [J/OL]. Arabidopsis Book, 2012, 10 : e0157[2024-01-23]. doi: 10.1199/tab.0157. | |
[14] | LYU Xiangguang, CHENG Qican, QIN Chao, et al. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light [J]. Molecular Plant, 2021, 14(2): 298 − 314. | |
[15] | WANG Honggui, ZHANG Zenglin, LI Hongyu, et al. CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis [J]. Journal of Experimental Botany, 2013, 64(4): 1017 − 1024. | |
[16] | YANOVSKY M J, CASAL J J, SALERNO G L, et al. Are phytochrome-mediated effects on leaf growth, carbon partitioning and extractable sucrose-phosphate synthase activity the mere conse- quence of stem-growth responses in light-grown mustard? [J] Journal of Experimental Botany, 1995, 46 (7): 753 − 757. | |
[17] | GIVNISH T J. Adaptation to sun and shade: a whole-plant perspective [J]. Australian Journal of Plant Physiology, 1988, 15: 63 − 92. | |
[18] | NIU Yuqian, ZHANG Yuxin, WANG Xinfeng, et al. Phenotypic and transcriptional features of Araliaceae species under distinct light environments [J/OL]. Journal of Systematics and Evolution, 2023[2024-01-24]. doi: 10.1111/jse.13043. | |
[19] | HUANG D, WU L, CHEN J R, et al. Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels [J]. Photosynthetica, 2011, 49(4): 611 − 618. | |
[20] | MULLINEAUX C W, EMLYN-JONES D. State transitions: an example of acclimation to low-light stress [J]. Journal of Experimnetal Botany, 2005, 56(411): 389 − 393. | |
[21] | SHAO Qingsong, WANG Hongzhen, GUO Haipeng, et al. Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii [J/OL]. PLoS One, 2014, 9 (2): e85996[2024-01-24]. doi: 10.1371/journal.pone.0085996. | |
[22] | POORTER H, NIINEMETS Ü, NTAGKAS N, et al. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance [J]. New Phytologist, 2019, 223(3): 1073 − 1105. | |
[23] | CANHAM C D, KOBE R K, LATTY E F, et al. Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves [J]. Oecologia, 1999, 121: 1 − 11. | |
[24] | GAUCHER C, GOUGEON S, MAUFFETTE Y, et al. Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings [J]. Tree Physiology, 2005, 25(1): 93 − 100. | |
[25] | AUGSPURGER C K. Light requirements of neotropical tree seedlings: a comparative study of growth and survival [J]. The Journal of Ecology, 1984, 72(3): 777 − 795. | |
[26] | BAKER S A, RUTTER J. Metabolites as signalling molecules [J]. Nature Reviews of Molecular Cell Biology, 2023, 24: 355 − 374. | |
[27] | MA Lijuan, LIU Xiao, GUO Liwei, et al. Discovery of plant chemical defence mediated by a two-component system involving β-glucosidase in Panax species [J/OL]. Nature Communications, 2024, 15 : 602[2024-01-24]. doi: 10.1038/s41467-024-44854-7. | |
[28] | ZHANG Xiaofan, TONG Jianhua, BAI Aining, et al. Phytohormone dynamics in developing endosperm influence rice grain shape and quality [J]. Journal of Integrative Plant Biology, 2020, 62(10): 1625 − 1637. | |
[29] | TAO Yi, FERRER J L, LJUNG K, et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants [J]. Cell, 2008, 133(1): 164 − 176. | |
[30] | WON C, SHEN Xianglin, MASHIGUCHI K, et al. Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and Yuccas in Arabidopsis [J]. Proceedings of the National Academy of Science of the United States of America, 2011, 108(45): 18518 − 18523. | |
[31] | XU Feng, HE Shengbo, ZHANG Jingyi, et al. Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis [J]. Molecular Plant, 2018, 11(4): 523 − 541. | |
[32] | IGLESIAS M J, SELLARO R, ZURBRIGGEN M D, et al. Multiple links between shade avoidance and auxin networks [J]. Journal of Experiment Botany, 2018, 69(2): 213 − 228. | |
[33] | LIU Yang, JAFARI F, WANG Haiyang. Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome [J]. aBIOTECH, 2021, 2: 131 − 145. | |
[34] | DILL A, THOMAS S G, HU Jianhong, et al. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation [J]. The Plant Cell, 2004, 16: 1392 − 1405. | |
[35] | FU Xiangdong, RICHARDS D E, FLECK B, et al. The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates [J]. The Plant Cell, 2004, 16: 1406 − 1418. | |
[36] | ZHOU Peng, SONG Meifang, YANG Qinghua, et al. Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 promote seedling photomorphogenesis in multiple light signaling pathways [J]. Plant Physiology, 2014, 164: 841 − 852. | |
[37] | XU Peng, CHEN Huiru, LI Ting, et al. Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis [J]. The Plant Cell, 2021, 33: 2375 − 2394. | |
[38] | XU Huiying, CHEN Peirui, TAO Yi. Understanding the shade tolerance responses through hints from phytochrome a-mediated negative feedback regulation in shade avoiding plants [J/OL]. Frontiers in Plant Science, 2021, 12 : 813092[2024-01-24]. doi: 10.3389/fpls.2021.813092. | |
[39] | BOURÉ N, KUMAR S V, ARNAUD N. The BAP module: a multisignal integrator orchestrating growth [J]. Trends in Plant Science, 2019, 24(7): 602 − 610. | |
[40] | OH E, ZHU Jiaying, WANG Zhiyong. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses [J]. Nature Cell Biology, 2012, 14: 802 − 809. | |
[41] | PHAM V N, KATHARE P K, HUQ E. Dynamic regulation of PIF5 by COP1-SPA complex to optimize photomorphogenesis in Arabidopsis [J]. The Plant Journal, 2018, 96(2): 260 − 273. | |
[42] | PHAM V N, KATHARE P K, HUQ E. Phytochromes and phytochrome interacting factors [J]. Plant Physiology, 2018, 176: 1025 − 1038. | |
[43] | LING Junjie, LI Jian, ZHU Danmeng, et al. Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness [J]. Proceedings of the National Academy of Science of the United States of America, 2017, 114(13): 3539 − 3544. | |
[44] | BALLARE C L. Light regulation of plant defense [J]. Annual Reviews of Plant Biology, 2014, 65: 335 − 363. | |
[45] | OH E, ZHU Jiaying, BAI Mingyi, et al. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl [J/OL]. eLife, 2014, 3 : e03031[2024-01-24]. doi: 10.7554/eLife.03031. | |
[46] | IBAÑEZ C, DELKER C, MARTINEZ C, et al. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1 [J]. Current Biology, 2018, 28(2): 303 − 310. | |
[47] | de LUCAS M, DAVIERE J M, RODRIGUEZ-FALCON M, et al. A molecular framework for light and gibberellin control of cell elongation [J]. Nature, 2008, 451(7177): 480 − 484. | |
[48] | HAO Yaqi, OH E, CHOI G, et al. Interactions between HLH and bHLH factors modulate light-regulated plant development [J]. Molecular Plant, 2012, 5(3): 688 − 697. | |
[49] | HUANG Sha, YANG Chuanwei, LI Lin. Unraveling the dynamic integration of auxin, brassinosteroid and gibberellin in early shade-induced hypocotyl elongation [J]. Phenomics, 2022, 2(2): 119 − 129. | |
[50] | MARTÍNEZ-GARCIA J F, GALLEMÍ M, MOLINA-CONTRERAS M J, et al. The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade [J/OL]. PLoS One, 2014, 9 : e109275[2014-01-24]. doi: 10.1371/journal.pone.0109275. | |
[51] | MCCORMAC A, WHITELAM G, SMITH H. Light-grown plants of transgenic tobacco expressing an introduced oat phytochrome A gene under the control of a constitutive viral promoter exhibit persistent growth inhibition by far-red light [J]. Planta, 1992, 188: 173 − 181. | |
[52] | SONG Bin, ZHAO Hongli, DONG Kangmei, et al. Phytochrome A inhibits shade avoidance responses under strong shade through repressing the brassinosteroid pathway in Arabidopsis [J]. The Plant Journal, 2020, 104(6): 1520 − 1534. | |
[53] | ALABADI D, BLÁZQUEZ M A. Molecular interactions between light and hormone signaling to control plant growth [J]. Plant Molecular Biology, 2009, 69: 409 − 417. | |
[54] | LI Qianfeng, HE Junxian. BZR1 interacts with HY5 to mediate brassinosteroid- and light-regulated cotyledon opening in Arabidopsis in darkness [J]. Molecular Plant, 2016, 9(1): 113 − 125. | |
[55] | HAN Run, MA Liang, TERZAGHI W, et al. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses [J]. The Plant Journal, 2024, 117(6): 1893 − 1913. | |
[56] | GALSTYAN A, CIFUENTES-ESQUIVEL N, BOU-TORRENT J, et al. The shade avoidance syndrome in Arabidopsis: a fundamental role for atypical basic helix-loop-helix proteins as transcriptional cofactors [J]. The Plant Journal, 2011, 66(2): 258 − 267. | |
[57] | CACKETT L, LUGINBUEHL L H, SCHREIER T B, et al. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation [J]. New Phytologist, 2022, 233(5): 2000 − 2016. | |
[58] | BRODRIBB T J, MCADAM S A M, JORDAN G J, et al. Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants [J]. New Phytologist, 2009, 183(3): 839 − 847. | |
[59] | CAI Shengguan, HUANG Yuqing, CHEN Fei, et al. Evolution of rapid blue-light response linked to explosive diversification of ferns in angiosperm forests [J]. New Phytologist, 2021, 230(3): 1201 − 1213. | |
[60] | 胡肖肖, 段玉侠, 金荷仙, 等. 4个杜鹃花品种的耐荫性 [J]. 浙江农林大学学报, 2018, 35(1): 88 − 95. | HU Xiaoxiao, DUAN Yuxia, JIN Hexian, et al. Shade tolerance of four Rhododendron cultivars [J]. Journal of Zhejiang A&F University, 2018, 35(1): 88 − 95. |
[61] | AUGSPURGER C K. Light requirements of neotropical tree seedlings: a comparative study of growth and survival [J/OL]. The Journal of Ecology, 1984, 72 (3): 777[2024-01-24]. doi: 10.2307/2259531. |