Volume 41 Issue 5
Sep.  2024
Turn off MathJax
Article Contents

HAN Xinsheng, WANG Xiao, WANG Yanhui, LI Zhenhua. Difference of daily understory evapotranspiration under two water conditions in Larix principis-rupprechtii plantation[J]. Journal of Zhejiang A&F University, 2024, 41(5): 949-958. doi: 10.11833/j.issn.2095-0756.20240251
Citation: HAN Xinsheng, WANG Xiao, WANG Yanhui, LI Zhenhua. Difference of daily understory evapotranspiration under two water conditions in Larix principis-rupprechtii plantation[J]. Journal of Zhejiang A&F University, 2024, 41(5): 949-958. doi: 10.11833/j.issn.2095-0756.20240251

Difference of daily understory evapotranspiration under two water conditions in Larix principis-rupprechtii plantation

doi: 10.11833/j.issn.2095-0756.20240251
  • Received Date: 2024-03-20
  • Accepted Date: 2024-07-02
  • Rev Recd Date: 2024-06-25
  • Available Online: 2024-09-25
  • Publish Date: 2024-09-25
  •   Objective  The purpose of this study is to explore the impact of soil moisture on the daily understory evapotranspiration in Larix principis-rupprechtii plantation, so as to provide a theoretical basis for understanding the mechanism of forest evapotranspiration adapting to climate change and developing plans for coordinated forest water management.   Method  Taking L. principis-rupprechtii plantation in Diediegou small watershed in semi-arid area of Liupan Mountain in Ningxia as the research object, two experiments (blocking precipitation or water-proof input, and natural precipitation input) were conducted. Soil moisture gradient was artificially increased, and the effects of environmental factors (air temperature, solar radiation intensity, precipitation, and so on) on the daily understory evapotranspiration under the two soil moisture conditions were analyzed.   Result  The daily understory evapotranspiration in August, September and October under natural precipitation condition was 67.06, 36.32 and 29.49 mm·d−1, respectively, which was greater than that under water-proof treatment (54.22, 20.07, and 11.35 mm·d−1). The daily understory evapotranspiration under the two water conditions was characterized by a gradual decrease, and the fluctuations under natural condition was greater than those under water-proof treatment. From August to October, the difference in daily understory evapotranspiration under both water conditions generally showed a wavy pattern of first increasing and then decreasing, while the ratio showed a gradually increasing wavy pattern. In August, September and October, the mean difference between natural evapotranspiration and water-proof evapotranspiration was 0.41, 0.54 and 0.59 mm·d−1, respectively, with ratios of 1.29, 1.91 and 2.74, respectively. As the potential evapotranspiration increased, the ratio of daily evapotranspiration difference to soil volumetric water difference under both water conditions gradually increased. The effect of soil moisture on understory evapotranspiration was small when the daily potential evapotranspiration was less than 3 mm·d−1, but increased when the daily potential evapotranspiration was more than 3 mm·d−1, and increased significantly when the daily potential evapotranspiration was more than 5 mm·d−1.   Conclusion  The factors affecting daily understory evapotranspiration are roughly the same under both water conditions. The difference lies in that the daily understory evapotranspiration under natural condition is more affected by precipitation, while that under waterproof treatment is more affected by soil moisture. Future study should focus on the influence of multiple soil moisture gradients on understory evapotranspiration difference. [Ch, 7 fig. 1 tab. 28 ref.]
  • [1] HUANG Jinghan, BI Huaxing, ZHAO Danyang, WANG Ning, LIU Zehui, ZHANG Rong.  Vertical distribution of soil moisture in typical plantation in the loess region of western Shanxi Province . Journal of Zhejiang A&F University, 2024, 41(2): 387-395. doi: 10.11833/j.issn.2095-0756.20230228
    [2] WU Qian, FU Hong, HAO Jianfeng, QI Jinqiu.  Effects of forest management of the Populus canadensis plantations on the interspecific association of the under canopy planting in expressway areas . Journal of Zhejiang A&F University, 2023, 40(4): 836-847. doi: 10.11833/j.issn.2095-0756.20220604
    [3] WANG Zhichao, XU Yuxing, ZHU Wankuan, DU Apeng.  Difference in water use sources of Eucalyptus urophylla×E. grandis plantation in the Leizhou Peninsula during dry and rainy seasons . Journal of Zhejiang A&F University, 2023, 40(3): 550-559. doi: 10.11833/j.issn.2095-0756.20220481
    [4] ZHU Wankuan, XU Yuxing, WANG Zhichao, DU Apeng.  Response of soil respiration to understory vegetation management in Eucalyptus urophylla × E. grandis plantation . Journal of Zhejiang A&F University, 2023, 40(1): 164-175. doi: 10.11833/j.issn.2095-0756.20220138
    [5] LIU Xuan, XIAO Sa, ZHU Peng, DU Ting, LI Jihong, HONG Zongwen, YUAN Chunyang, LAN Ting, LI Han, TAN Bo, XU Zhenfeng, ZHANG Jian, YOU Chengming.  Difference of biomass and understory vegetation diversity among different subtropical plantations in common gardens . Journal of Zhejiang A&F University, 2022, 39(4): 717-726. doi: 10.11833/j.issn.2095-0756.20210562
    [6] LÜ Kangting, ZHANG Ershan, LI Siying, JIN Shanshan, ZHOU Mengli, YAN Dongfeng.  Effects of stand spatial structure on understory plant diversity in Pinus taiwanensis plantation . Journal of Zhejiang A&F University, 2022, 39(6): 1257-1266. doi: 10.11833/j.issn.2095-0756.20220139
    [7] MA Ruiting, DONG Xiaoming, JIN Shanshan, HU Linpo, YAN Dongfeng.  Effects of thinning on the functional traits of understory Vitex negundo var. heterophylla in Quercus variabilis plantation . Journal of Zhejiang A&F University, 2021, 38(3): 567-576. doi: 10.11833/j.issn.2095-0756.20200551
    [8] WU Xiujuan, AO Xiaoping, ZHAO Yupeng, CUI Xueqing.  Spatial structure of Larix principis-rupprechtii-Picea spp. secondary forests on shady slope of Luyashan National Nature Reserve . Journal of Zhejiang A&F University, 2021, 38(1): 58-64. doi: 10.11833/j.issn.2095-0756.20200261
    [9] YU Bao.  Characteristics and impact factors of space utilization of young and middle-aged natural Larix gmelinii forests . Journal of Zhejiang A&F University, 2020, 37(3): 407-415. doi: 10.11833/j.issn.2095-0756.20190382
    [10] GUO Ruixia, LI Chonggui, LIU Sihan, MA Ting, QUAN Qingqing.  Classification of Larix gmelini plantation based on multi-temporal characteristics . Journal of Zhejiang A&F University, 2020, 37(2): 235-242. doi: 10.11833/j.issn.2095-0756.2020.02.006
    [11] LIU Wei, WEI Tianxing, ZHU Qingke.  Growing season sap flow of Populus hopeiensis and Pinus tabulaeformis in the semi-arid Loess Plateau, China . Journal of Zhejiang A&F University, 2018, 35(6): 1045-1053. doi: 10.11833/j.issn.2095-0756.2018.06.007
    [12] GUO Jianyao, WANG Lu, YANG Jing, MA Fengyun, MA Xuesong, WANG Wenbo, DONG Yufeng.  Understory vegetation patterns and soil characteristics of a Pinus thunbergii plantation in mountainous land of Shandong Province . Journal of Zhejiang A&F University, 2018, 35(2): 209-218. doi: 10.11833/j.issn.2095-0756.2018.02.003
    [13] LI Minmin, WEI Tianxing, LI Xinliang, GE Haichao.  Species diversity in the understory of a Robinia pseudoacacia plantation in the Caijiachuan Watershed of the Loess Plateau . Journal of Zhejiang A&F University, 2018, 35(2): 227-234. doi: 10.11833/j.issn.2095-0756.2018.02.005
    [14] LAI Wenhao, XI Qin, WU Hailong, CUI Youyuan, ZHAO Tingning.  Site classification type and vegetation suitability evaluation for hilly land in Xinghe, Inner Mongolia . Journal of Zhejiang A&F University, 2018, 35(2): 331-339. doi: 10.11833/j.issn.2095-0756.2018.02.018
    [15] SUN Pengyue, XU Fuli, WANG Weiling, WANG Lingling, NIU Ruilong, GAO Xing, BAI Xiaofang.  Seasonal dynamics of soil nutrients and soil enzyme activities in Larix principis-rupprechtii plantations . Journal of Zhejiang A&F University, 2016, 33(6): 944-952. doi: 10.11833/j.issn.2095-0756.2016.06.004
    [16] LU Ze-guang, JIA Wan-da, WANG Meng.  Sealed state and moisture volatilization of water-based sealers for wood furniture tested in five environmental conditions . Journal of Zhejiang A&F University, 2012, 29(5): 691-695. doi: 10.11833/j.issn.2095-0756.2012.05.009
    [17] ZHANG Xiao-qing, ZHANG Jin-chi, WANG Li, MENG Li, HUANG Jing.  Water loss in growth media with continuous drought . Journal of Zhejiang A&F University, 2010, 27(6): 839-844. doi: 10.11833/j.issn.2095-0756.2010.06.006
    [18] WANG Min-hua, ZHOU Jing, CUI Jian.  Effects of red soil moisture on leaves growth and nutrient accumulation of Citrus unshiu . Journal of Zhejiang A&F University, 2009, 26(1): 17-21.
    [19] FAN Hai-lan, HONG Wei, HONG Tao, WU Chen-zhen, SONG Ping, ZHU Hui, ZHANG Qiong, LIN Yong-ming.  Effects of controlled burning on species diversity of undergrowth in Choerospondias axillaris plantations . Journal of Zhejiang A&F University, 2005, 22(5): 495-500.
    [20] MA Huan-cheng, WU Yan-xiong, CHEN De-qiang, McCONCHIE Jack A ..  Predicting the stability by water dynamics in plantation stand in dry-hot valley of Yuanmou County . Journal of Zhejiang A&F University, 2001, 18(1): 41-45.
  • [1]
    WANG Yanbing, WANG Yanhui, LI Zhenhua, et al. Interannual variation of transpiration and its modeling of a larch plantation in semiarid Northwest China[J]. Forests, 2020, 11(12): 1303 − 1327.
    [2]
    CAO Gongxiang, WANG Yunni, WANG Yanhui, et al. The characteristics of evapotranspiration and its components of three coniferous forests in Liupan Mountains of Ningxia[J]. Science Technology and Engineering, 2018, 18(25): 16 − 22.
    [3]
    WANG Lei, LIU Zebin, GUO Jianbin, et al. Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture[J]. Forest Ecology and Management, 2020, 481: 118749 − 118762.
    [4]
    HAN Xinsheng, WANG Yanhui, LI Zhenhua, et al. Daily forest floor evapotranspiration of Larixprincipis-rupprechtii plantation and its influencing factors in the semi-arid area of Liupan Mountains[J]. Scientia Silvae Sinicae, 2019, 55(9): 11 − 21.
    [5]
    ZHANG Rong, BI Huaxing, JIAO Zhenhuan, et al. Diurnal and nocturnal changes in stem sap flow of Robinia pseudoacacia during growing season and its response to meteorological factors[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1238 − 1246.
    [6]
    CHEN Mengdi, QIN Xinhao, MAO Yanxin, et al. Transpiration characteristics of Larix principis-rupprechtii plantation and its impact factors in the semi-arid area[J]. Journal of Northwest Forestry University, 2022, 37(4): 10 − 17.
    [7]
    RAN-YASEEF N, YAKIR D, SCHILLER G, et al. Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns[J]. Agricultural and Forest Meteorology, 2012, 157(2): 77 − 85.
    [8]
    WANG Yanhui, XIONG Wei, YU Pengtao, et al. Study on the evapotranspiration of forest and vegetation in dryland[J]. Science of Soil and Water Conservation, 2006, 4(4): 19 − 25, 32.
    [9]
    KELLIHER F M, HOLLINGER D Y, SCHULZE E D, et al. Evaporation from an eastern Siberian larch forest[J]. Agricultural and Forest Meteorology, 1997, 85(3/4): 135 − 147.
    [10]
    SCHAAP M G, BOUTEN W. Forest floor evaporation in a dense Douglas fir stand[J]. Journal of Hydrology, 1997, 193(1/4): 97 − 113.
    [11]
    GRELLE A, LUNDBERG A, LINDROTH A, et al. Evaporation components of a boreal forest: variations during the growing season[J]. Journal of Hydrology, 1997, 197(1/4): 70 − 87.
    [12]
    DAIKOKU K, HATTORI S, DEGUCHI A, et al. Influence of evaporation from the forest floor on evapotranspiration from the dry canopy[J]. Hydrological Processes, 2008, 22(20): 4083 − 4096.
    [13]
    LI Qinghua, MU Yan, WANG Yanping. Evapotranspiration characteristics of apple forest in hilly-gully region of the Loess Plateau[J]. Earth Science, 2019, 44(8): 2818 − 2828.
    [14]
    WANG Yihao, FU Yuhong, WANG Yanhui. Characteristics of masson pine forests evapotranspiration and its components at Tieshanping of Chongqing[J]. Journal of Northeast Forestry University, 2022, 50(7): 33 − 39.
    [15]
    MU Yan, WANG Yanping. Study on soil water balance of apple orchards in the loess tableland of China[J]. Research of Agricultural Modernization, 2017, 38(1): 161 − 167.
    [16]
    WANG Yunni, CAO Gongxiang, XU Lihong, et al. Evapotranspiration characteristics of Larix principis-rupprechtii plantation and its impact factors in the Daqing Mountains of Inner Mongolia[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(4): 148 − 156.
    [17]
    LIU Wenhao, WANG Xiao, DUAN Wenbiao, et al. Water balance characters of Pinus tabuliformis plantation in Xining City of China[J]. Scientia Silvae Sinicae, 2023, 59(4): 46 − 56.
    [18]
    LI Zhenhua, WANG Yanhui, YU Pengtao, et al. The evapotranspiration and its partition in growing season for a stand of Larix principis-rupprechtii plantation in the semi-arid region of Liupan Mountains, NW China[J]. Ecology and Environmental Sciences, 2013, 22(2): 222 − 228.
    [19]
    HAN Xinsheng, XU Hao, AN Yu, et al. Responses of trunk sap flow of Armeniaca sibirica to varied environmental factors in different weather conditions[J]. Journal of Southwest Forestry University (Natural Sciences), 2023, 43(6): 54 − 64.
    [20]
    ALLEN R G, PEREIRA L S, RAES D, et al. Crop Evapotranspiration-guidelines for Computing Crop Water Requirements [R]. Rome: FAO Irrigation and Drainage, 1998: 1 − 15.
    [21]
    ZHANG Anning, LIU Rentao, DU Lingtong. Distribution differences and influencing factors of potential evapotranspiration in climate gradients[J]. Journal of Northwest Forestry University, 2020, 35(5): 23 − 28, 96.
    [22]
    HE Huijuan, WANG Zhao, DONG Jinfang, et al. NDVI, LST and ET variation analysis based on MODIS datasets in the Qinling Mountains[J]. Journal of Northwest Forestry University, 2019, 34(4): 179 − 184, 191.
    [23]
    DAI Haiyan, LIANG Xianli, BAO Qiuli, et al. Variation characteristics and influencing factors of potential evapotranspiration in Mu Us and Khorchin sandy land in recent 46 years[J]. Journal of Northwest Forestry University, 2019, 34(2): 8 − 13, 27.
    [24]
    MORECROFT M D, TAYLOR M E, OLIVER H R. Air and soil microclimates of deciduous woodland compared to an open site[J]. Agricultural and Forest Meteorology, 1998, 90(1/2): 141 − 156.
    [25]
    LIU Zebin, WANG Yanhui, YU Pengtao, et al. Environmental and canopy conditions regulate the forest floor evapotranspiration of larch plantations[J]. Forest Ecosystems, 2022, 9(5): 606 − 616.
    [26]
    HAN Xinsheng, XU Hao, CAI Jinjun, et al. Comparison of structure and hydrological influence of three typical stands in loess hilly regions of sourthern Ningxia[J]. Journal of Soil and Water Conservation, 2018, 32(6): 192 − 199.
    [27]
    LIU Dong, YUE Lingli, WU Youjie, et al. Spatiotemporal variation of soil evaporation in Camellia oleifera forest in hilly area of Changsha[J]. Journal of Hunan Agricultural University (Natural Sciences), 2021, 47(1): 63 − 70.
    [28]
    WU Youjie, DU Taisheng. Evaporation and its influencing factors in farmland soil in the arid region of northwest China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 110 − 116.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(1)

Article views(63) PDF downloads(3) Cited by()

Related
Proportional views

Difference of daily understory evapotranspiration under two water conditions in Larix principis-rupprechtii plantation

doi: 10.11833/j.issn.2095-0756.20240251

Abstract:   Objective  The purpose of this study is to explore the impact of soil moisture on the daily understory evapotranspiration in Larix principis-rupprechtii plantation, so as to provide a theoretical basis for understanding the mechanism of forest evapotranspiration adapting to climate change and developing plans for coordinated forest water management.   Method  Taking L. principis-rupprechtii plantation in Diediegou small watershed in semi-arid area of Liupan Mountain in Ningxia as the research object, two experiments (blocking precipitation or water-proof input, and natural precipitation input) were conducted. Soil moisture gradient was artificially increased, and the effects of environmental factors (air temperature, solar radiation intensity, precipitation, and so on) on the daily understory evapotranspiration under the two soil moisture conditions were analyzed.   Result  The daily understory evapotranspiration in August, September and October under natural precipitation condition was 67.06, 36.32 and 29.49 mm·d−1, respectively, which was greater than that under water-proof treatment (54.22, 20.07, and 11.35 mm·d−1). The daily understory evapotranspiration under the two water conditions was characterized by a gradual decrease, and the fluctuations under natural condition was greater than those under water-proof treatment. From August to October, the difference in daily understory evapotranspiration under both water conditions generally showed a wavy pattern of first increasing and then decreasing, while the ratio showed a gradually increasing wavy pattern. In August, September and October, the mean difference between natural evapotranspiration and water-proof evapotranspiration was 0.41, 0.54 and 0.59 mm·d−1, respectively, with ratios of 1.29, 1.91 and 2.74, respectively. As the potential evapotranspiration increased, the ratio of daily evapotranspiration difference to soil volumetric water difference under both water conditions gradually increased. The effect of soil moisture on understory evapotranspiration was small when the daily potential evapotranspiration was less than 3 mm·d−1, but increased when the daily potential evapotranspiration was more than 3 mm·d−1, and increased significantly when the daily potential evapotranspiration was more than 5 mm·d−1.   Conclusion  The factors affecting daily understory evapotranspiration are roughly the same under both water conditions. The difference lies in that the daily understory evapotranspiration under natural condition is more affected by precipitation, while that under waterproof treatment is more affected by soil moisture. Future study should focus on the influence of multiple soil moisture gradients on understory evapotranspiration difference. [Ch, 7 fig. 1 tab. 28 ref.]

HAN Xinsheng, WANG Xiao, WANG Yanhui, LI Zhenhua. Difference of daily understory evapotranspiration under two water conditions in Larix principis-rupprechtii plantation[J]. Journal of Zhejiang A&F University, 2024, 41(5): 949-958. doi: 10.11833/j.issn.2095-0756.20240251
Citation: HAN Xinsheng, WANG Xiao, WANG Yanhui, LI Zhenhua. Difference of daily understory evapotranspiration under two water conditions in Larix principis-rupprechtii plantation[J]. Journal of Zhejiang A&F University, 2024, 41(5): 949-958. doi: 10.11833/j.issn.2095-0756.20240251
  • 森林蒸散与许多生态水文功能紧密相关,尤其在旱区森林水量平衡中往往占据主导地位,其大小同时受林分密度、郁闭度、叶面积指数等植被特征[13]及气候、地形、土壤等环境因子[46]的影响。为实现森林与水资源的协调管理,减少生态耗水成本,提高水分利用效率,保障供水安全,需深入理解不同蒸散组分变化与林分结构和环境因子(如土壤湿度)的关系。为便于观测分析,通常把森林蒸散划分为林冠截留、林木蒸腾、林下蒸散3个组分[7],其中林下蒸散包含林下草灌的截持与蒸腾、土壤蒸发等。间伐降低林分密度是减少森林蒸散的常用措施,这可直接减少林木蒸腾和林冠截持,但却增大了林下蒸散,使森林蒸散不随林分密度呈相同比例线性下降[8]。相比林冠截持和林木蒸腾,对林下蒸散的研究还不足,需要加深对林下蒸散变化规律的理解。

    林下蒸散测定方法较多,其中优先选用的是微型蒸渗仪(Micro-Lysimeter),它可直接观测林下蒸散[910]。以往有限的研究表明:林下蒸散在森林蒸散中的占比往往较高且变化范围较大[8, 1118]。这说明林下蒸散的影响因素和作用机制都具有高度复杂性。以往相关研究主要集中于林地蒸散特征及其与林分结构、环境条件的关系。在旱区,土壤水分状况对林地蒸散的影响机制的相关研究成果较少。

    在气候变化背景下,降水的年际波动和季节性波动较大,导致林下蒸散的关键影响因子(降水、土壤湿度等)多变,这就增加了定量描述和定性理解林下蒸散变化机制及对多个环境因子响应特征的难度。为此,本研究在宁夏六盘山北部半干旱区的叠叠沟小流域,选择当地主要造林树种华北落叶松Larix principis-rupprechtii人工林,利用微型蒸渗仪监测林下蒸散的日变化规律,并通过设置防水措施形成人为土壤湿度梯度,探究土壤水分对林下蒸散的影响,为科学调控林水关系提供科学依据。

    • 研究区为六盘山北部叠叠沟小流域,位于宁夏回族自治区固原市原州区,距固原市市区约15 km。35°54′12″~35°58′33″N, 106°04′55″~106°09′15″E。小流域面积为25.4 km2,属典型的半干旱大陆性季风气候,年均降水量为449.0 mm,集中于6—9月,潜在蒸散为1 100.0 mm,年均气温为6.5 ℃,无霜期为130.0 d;海拔为1 975~2 615 m,相对海拔为640 m。东坡、西坡为主要坡向,坡度为10°~42°。土壤类型主要为灰褐土,占总面积的90%以上,其石砾体积含量平均为5.96%。

      小流域内土地利用类型以自然草地为主,种类主要有铁杆蒿Artemisa gmelinii、本氏针茅Stipa capillata、白羊草Bothriochloa ischaemum等;森林以人工林为主,主要为阴坡、半阴坡的华北落叶松林,以及少量的杨树Populus spp.林,郁闭的林下灌木少且分布不匀;灌从分布较多,主要有虎榛子Ostryopsis davidiana、黄刺玫Rosa xanthina、沙棘Hippophae rhamnoides等。

    • 在小流域下游建立面积为30 m×30 m的华北落叶松人工林固定样地,地理坐标为35°58′18″N,106°08′50″E,海拔为2 050 m,坡向为北偏西30°,下坡位,坡度约为11°。该林营造于1986年,2013年观测时的林分密度为1 600株·hm−2,平均胸径为10.56 cm,平均树高为10.1 m,郁闭度为0.89,最大叶面积指数为4.0。该林分结构层次单一,林下灌木层不明显,盖度小于0.05;林下草本层盖度为0.75,主要有铁杆蒿、羽叶凤毛菊Saussurea maximowiczii、茭蒿Artemisia giraldii等。土壤为灰褐土,质地为砂壤土,厚度大于1 m。

    • 采用微型蒸渗仪测定林下日蒸散量[4]。为保持固定监测样地内的土壤完整性,在样地外附近选择可代表样地内树冠遮蔽、冠层重叠程度及草本植物覆盖情况的地点,在空间上相对均匀地安装了11个微型蒸渗仪,其内筒上方均包含未扰动的原状土柱[30 cm (高)×20 cm(直径)]、原状凋落物及草本植物。为分析不同土壤水分条件的林下日蒸散量差异,对6个微型蒸渗仪进行了防水处理,即在蒸渗仪内加水使其土壤含水量达到饱和,并在蒸渗仪上方1.5 m处设置防水布架并保持自由通风。遮雨处理通过人工实现,即白天基于天气预报每次降水来临前及时盖上防水布以遮断降水输入,不降水时打开防水布使其处于自然条件,夜间因林内空气相对湿度大,保持防水布始终盖上的状态。这种没有降水输入的林下蒸散量称为防水蒸散量。另外5个蒸渗仪均处于自然条件下,其蒸散量称为自然蒸散量。测定时间为8月1日至11月1日,每天8:00称量1次。称取蒸渗仪当天质量(m1,kg)和后1天质量(m2,kg),观测得到时段内的林内穿透水量(P,mm)和接水盆渗漏水量(L,mm),由公式ET= [(m1m2)/(3.14×0.01)+PL]计算林下日蒸散量(ET,mm),精确到0.001 kg。

    • 在林外开阔处,设置1台WeatherHawk-232自动气象站,测定的气象指标包括太阳辐射强度、气温、空气相对湿度、风速、降水量等。参考有关文献计算饱和水汽压差[19]和潜在蒸散[20]。此外,在固定样地内设置1台LI-1400小型自动气象站,连续观测20 cm深度的土壤温度。在样地内选择能代表树冠遮蔽和冠层重叠程度的地点,按照上、中、下位置利用棋盘式共布置12个雨量筒(直径20 cm),其测定雨量的算术平均值为林内穿透水量(P,mm)。

    • 在蒸渗仪安装前,对每个蒸渗仪编号并称量(Ge)。11月3日,将带土柱的各蒸渗仪称量后倒出湿土混匀,并取6个土样,放入铝盒中带回实验室,在烘箱内105 ℃烘24 h后,计算蒸渗仪内土壤在11月3日的含水量(V1),并由此计算各蒸渗仪中的干土质量(Gdw)。然后,利用研究期间测定的各日蒸渗仪质量(Gd)计算各日的土壤质量含水量(Vd):Vd =(GdGeGdw)/Gdw

      利用环刀法分别测定0~10、10~20、20~30 cm土层的土壤密度(Ds),取其均值作为0~30 cm土层的土壤密度,用于计算每日蒸渗仪内的土壤体积含水量(VSMd):VSMd=Vd×Ds。在样地上、中、下3个部位,安装管式土壤水分测定仪(TDR),采用TDR时域反射仪监测土壤湿度,测定时间与每日蒸渗仪同步,测量深度为0~80 cm,均分4层测定。将3处监测点的平均值作为样地的土壤体积含水量。

    • 使用Excel 2016整理数据,利用Origin 21.0作图,利用Origin 21.0中Correlation Plot作防水和自然条件林下日蒸散量与气象因子、土壤温度、土壤体积含水量的相关分析图。

    • 研究期间日均气温和日潜在蒸散量总体呈逐渐降低的波浪状变化(图1),其均值分别为12.02 ℃和2.61 mm·d−1,极差分别为18.69 ℃和5.53 mm·d−1,变异系数分别为41.43%和51.86%;降水量总和为297.0 mm,其中,8和9月分别为145.0、119.0 mm,占比分别为48.82%和40.07%;林地土壤体积含水量呈波浪状变化,平均为37.57%,在8、9、10月分别为35.69%、38.93%、38.13%。

      Figure 1.  Change dynamics of meteorological factors and soil moisture

    • 图2可见:在8、9、10月,自然降水的平均土壤体积含水量分别为42.85%、45.66%、40.67%,总蒸散量分别为67.06、36.32、29.49 mm;土壤体积含水量因降水不断输入干扰而呈波动范围大和减幅较小的变化特征,与林下日蒸散量的变化趋势不同且相关不显著(图2)。在8、9、10月,防水条件的平均土壤体积含水量分别为38.93%、24.60%、17.36%,总蒸散量分别为54.22、20.07、11.35 mm;土壤体积含水量连续降低,波动幅度小且降幅逐渐减小,8、9、10月的减幅分别为21.81%、8.17%、4.62%,与林下日蒸散量的变化趋势基本相同,且与林下日蒸散量极显著正相关(P<0.01)。

      Figure 2.  Change dynamics of understory evapotranspiration and volumetric soil moisture under two water conditions

    • 相关分析(图3)显示:2种水分条件的林下日蒸散量与多个环境因子的相关性呈相似的变化特征。林下日蒸散量与空气相对湿度、降水量、自然条件的土壤湿度呈显著负相关(P<0.05),与其他环境因子均呈正相关。自然条件的林下日蒸散量与降水量显著负相关(P<0.05),与空气相对湿度、风速、饱和水汽压、降水量的相关性强于防水条件的林下日蒸散量,与太阳辐射、土壤温度、气温、潜在蒸散的相关性弱于防水条件的林下日蒸散;防水条件的林下日蒸散量与土壤体积含水量显著正相关(P<0.05)。

      Figure 3.  Correlation analysis between daily understory evapotranspiration and influencing factors

    • 从8月1日至10月31日,有无雨水输入造成的不同土壤水分条件下的林下日蒸散量差值的变化见图4A。在8月,除了前2 d内因人为浇水导致自然降水的日蒸散量低于防水条件从而使两者差值为负值外,之后的两者差值均为正值。2种土壤水分条件的林下日蒸散量差值总体在中期较大,前期、后期相对较小,主要是因前期两者的土壤湿度差异较小,后期的潜在蒸散能力减弱。在8、9、10月,自然降水与防水条件下日蒸散量之差的均值依次为0.41、0.54、0.59 mm·d−1。在9、10月,两者的差值较大,甚至高于防水条件日蒸散量,说明8—10月随着土壤水分差异的增大(8、9、10月两者的土壤体积含水量差值依次为3.92%、21.06%、23.31%)对林下日蒸散量的影响也在逐渐增加。

      Figure 4.  Seasonal variation of understory evapotranspiration difference and ratio under two water conditions

      自然降水、防水条件2种条件的林下日蒸散量比值的日变化存在很大波动(图4B),变异系数为38.49%,但总体呈逐渐增大趋势,在8、9、10月依次为:1.29、1.91、2.74,主要因为2种条件的蒸渗仪内土壤湿度差异(8、9、10月两者的土壤体积含水量比值依次为1.13、1.87、2.36)逐渐增大导致的。

      在晴天、多云、阴雨天气下,2种土壤水分条件的林下日蒸散量差值依次为0.74、0.46、0.26 mm·d−1,主要是因不同天气条件的蒸散潜力存在差异,晴天较大、阴雨天较小;两者的林下日蒸散量比值依次为2.12、1.79、2.11,这与多云天多集中在8月,土壤湿度差异相对较小(两者的土壤体积含水量比值依次为1.88、1.69、1.82)有关。

    • 相关分析(图3)表明:2种水分条件的林下日蒸散量与潜在蒸散均呈显著正相关(P<0.05)。为在排除潜在蒸散影响后评价土壤水分条件对林下日蒸散量的影响,将潜在蒸散分为6组(0~1、1~2、2~3、3~4、4~5、5~6 mm·d−1)作图分析(图5),可知在各级潜在蒸散时2种水分条件的林下日蒸散量均随土壤体积含水量增加而增加。总体来看,自然降水的林下日蒸散量均高于防水条件的林下日蒸散量。这主要是因为前者土壤湿度一般都高于后者,但在两者土壤湿度相近时(图5中潜在蒸散大于3 mm·d−1的个别数据),其林下日蒸散量数值也相近,说明两者遵循相同的林下蒸散变化规律。

      Figure 5.  Variation of daily understory evapotranspiration with volumetric soil moisture under different potential evapotranspiration

      图6可知:随着2种水分条件的土壤体积含水量差值增加,两者林下日蒸散量的差值在潜在蒸散为3~6 mm·d−1时呈明显的逐渐增大趋势,但在其他潜在蒸散范围(0~3 mm·d−1)内增加的较为平缓。当潜在蒸散为3~6 mm·d−1时,土壤体积含水量的差异极大地影响林下日蒸散量。由表1可知:随着潜在蒸散量逐渐增加,自然降水和防水条件日蒸散量、防水条件土壤体积含水量均呈明显逐渐增大趋势,两者间均呈线性关系(图7),而自然降水土壤体积含水量呈微弱逐渐下降趋势。

      Figure 6.  Daily variation of understory evapotranspiration difference between two water conditions with the volumetric soil moisture under different potential evapotranspiration

      潜在蒸散量
      分组/(mm·d−1)
      潜在蒸散量
      均值/(mm·d−1)
      林下日蒸散量均值/(mm·d−1) 土壤体积含水量均值/% 林下日蒸散量
      差值/(mm·d−1)
      土壤体积含水量
      差值/%
      林下日蒸散量差值/
      土壤体积含水量差值
      自然降水 防水条件 自然降水 防水条件
      0~1 0.64 0.49 0.19 43.59 21.00 0.30 22.58 1.33
      1~2 1.46 0.82 0.43 43.88 23.92 0.39 19.96 1.95
      2~3 2.39 1.20 0.64 42.82 22.42 0.56 20.40 2.75
      3~4 3.46 2.04 1.30 42.25 28.27 0.74 13.98 5.29
      4~5 4.46 2.36 1.87 42.47 36.96 0.49 5.51 8.89
      5~6 5.38 2.85 2.31 41.07 40.41 0.53 0.66 80.30

      Table 1.  Mean and difference of daily understory evapotranspiration and volumetric soil moisture under two water conditions and different potential evapotranspiration

      Figure 7.  Variation of daily understory evapotranspiration and its difference, the ratio of understory evapotranspiration difference to volumetric soil moisture difference under two water conditions with the mean value of potential evapotranspiration

      随着潜在蒸散量逐渐增加,2种水分条件的林下日蒸散量差值呈现先增大后减小的单峰变化,两者呈二项式关系(图7),土壤体积含水量差值呈逐渐减小的趋势(表1),林下日蒸散量差值与土壤体积含水量差值的比值呈指数函数变化(图7)。当平均潜在蒸散分别为0.64、5.38 mm·d−1时,土壤体积含水量的差值分别为22.58%、0.66%,林下日蒸散量的差值分别为0.30、0.53 mm。在潜在蒸散量较大时,水分条件变化对林下日蒸散量的影响更大。这可用2种水分条件的林下日蒸散量差值与土壤体积含水量差值的比值来表示,当潜在蒸散大于3 mm·d−1时,两者的比值成倍增加;当潜在蒸散大于5 mm·d−1时,两者的比值成指数增加。由此可知:当潜在蒸散大于3 mm·d−1时,土壤湿度对林下蒸散影响增大;当潜在蒸散大于5 mm·d−1时,土壤湿度对林下日蒸散量影响极为明显。

    • 本研究表明:虽然林下蒸散同时受降水、气温、太阳辐射等气象条件的综合影响,但在8—10月的研究期间,林下日蒸散量整体呈逐渐减小趋势。这主要是因为研究期间与林下蒸散呈正效应的气象因子(太阳辐射、气温、风速、饱和水汽压差等)均呈逐渐降低趋势,气温和土温降低、太阳辐射减弱、饱和水汽压差和潜在蒸散减小等均会导致林下蒸散量减小,而相对湿度与林下蒸散存在负效应。以往研究得出相似结论,如有分析表明:潜在蒸散与气温、风速、日照时数呈正相关,与相对湿度呈负相关[21],蒸散的减小与太阳辐射减弱有关[22],潜在蒸散量主要受风速和温度的影响[23]。本研究中,林下日蒸散量波动幅度较大,这与波浪状的日潜在蒸散和脉冲式降水条件密切相关。自然条件时的林下日蒸散量数值及波动范围均大于防水处理,原因是防水处理遮断了降水输入,造成土壤含水量低于自然条件,从而限制了林下蒸散。自然条件的林下日蒸散量与土壤体积含水量相关性不显著,主要是因为受脉冲式降水输入的不断干扰,土壤湿度对林下蒸散的影响较小;防水条件的林下日蒸散量与土壤体积含水量显著正相关,表明林下蒸散受土壤湿度的影响较大。

      2种水分条件下的林下日蒸散量影响因子大致相同。总体上看,林下蒸散量与潜在蒸散、太阳辐射、土壤温度、气温、饱和水汽压差等因子的相关系数较高。王云霓等[16]研究表明:太阳辐射、饱和水汽压差、土壤水分是内蒙古大青山华北落叶松林林地蒸散的主要影响因子;穆艳等[15]认为:苹果Malus pumila林地土壤蒸发量的季节变化与气温、太阳辐射等密切相关。上述研究中,林地蒸散的主要影响因子与本研究相似。自然条件时林下日蒸散量受降水影响较大,而降水输入导致土壤湿度仅在一定范围内波动,所以对林下蒸散量的影响较小;防水处理的林下日蒸散量受土壤体积含水量影响较大。然而,林冠结构、林分叶面积特征均会影响林冠下的气温、太阳辐射等气象条件[24],因此林下蒸散还受林冠遮阴、叶面积指数的影响[25]。还有研究发现:林下草本植被高度、盖度、生物量等特征也会影响林下蒸散[14, 26],所以影响2种水分条件下林下蒸散的环境因子相似但其作用大小有异。

    • 2种水分条件的林下日蒸散量差值的逐日变化也有较大波动,总体表现为中期较大,前期和后期相对较小,主要是由降水、太阳辐射等气象条件及土壤湿度不同导致的。2种水分条件的林下日蒸散量差值晴天时(0.74 mm·d−1)较大,阴雨天时(0.26 mm·d−1)较小,主要是因为阴雨天太阳辐射和气温较低,空气相对湿度较高[19],导致大气蒸散潜力相对较弱,2种条件的林下日蒸散量均较小,两者的差值也随之变小。2种水分下的林下日蒸散量差值的变化顺序主要受土壤含水量差异影响,如8、9、10月的日均土壤体积含水量差值依次为3.92%、21.06%、23.31%,日均蒸散量差值依次为0.41、0.54、0.59 mm·d−1。原因是8月土壤含水量(可蒸散用水)差异不大,导致日均蒸散量差值较小;9月气温相对较高、土壤湿度差异较大,日均蒸散量差值居中;10月气温降低、太阳辐射减弱(潜在蒸散减小),但土壤湿度差异最大,导致日均蒸散量差值最大,表明了土壤湿度的影响大于气象条件的影响。

      本研究区降水主要集中于7—9月。有学者在相同区域发现:林下蒸散主要集中在6—9月,其中8月林下蒸散量最大[18]。以往研究主要集中于环境因子对林下蒸散(林地蒸散、土壤蒸发)的作用,如刘栋等[27]认为:影响油茶Camellia oleifera林地土壤蒸发的因子存在阶段性差异,前期主要为气温、地温等,中期为气温、空气相对湿度等,后期为地温、太阳辐射等。吴友杰等[28]认为:影响土壤蒸发的主要因素为土壤含水量和太阳辐射。本研究主要对遮断降水输入和自然降水输入2种条件的林下蒸散进行分析,采用不同蒸散潜力时2种水分条件的林下日蒸散量差与土壤体积含水量差的比值表示土壤湿度对林下蒸散的影响大小,表明当潜在蒸散小于3 mm·d−1时,土壤湿度对林下蒸散影响较小;当潜在蒸散大于3 mm·d−1时土壤湿度的影响增大;当潜在蒸散大于5 mm·d−1时,土壤湿度的影响极明显。随着潜在蒸散增加,2种水分条件的林下日蒸散量差与土壤体积含水量差的比值成指数倍地增加,土壤湿度对林下蒸散的影响增强。本研究从8月初开始,在11月初结束,潜在蒸散基本呈现逐渐减小趋势。若实验是从5月初开始,不同蒸散潜力时的林下日蒸散量与土壤体积含水量、2种水分条件的林下日蒸散量差值与土壤体积含水量差值的关系可能会与现有研究结果有所不同,所以未来应该继续加强研究。

    • 本研究在六盘山北部半干旱的叠叠沟小流域,监测分析了自然降水和防水处理2种水分条件的华北落叶松人工林林下日蒸散动态。总体上,2种条件的林下日蒸散量在8—10月均呈逐渐减小趋势,自然条件的林下日蒸散量及波动均大于防水处理。相关分析表明:自然降水的林下蒸散量与降水呈极显著负相关,防水处理的林下蒸散量与土壤湿度呈极显著正相关(P<0.01),2种条件的林下蒸散与其他环境因子的相关性相似。自然降水与防水处理的林下日蒸散量的差值总体在中期较大,前期和后期相对较小;自然降水与防水处理的林下日蒸散量的比值为逐渐增大的波浪状变化。在将潜在蒸散分为6级后,随其平均值增加,2种条件的林下蒸散量均呈明显增大的线性关系,林下日蒸散量差值呈先升后降的二项式关系,林下日蒸散量差值与土壤体积含水量差值的比值呈指数函数关系。

Reference (28)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return