Volume 42 Issue 5
Oct.  2025
Turn off MathJax
Article Contents

ZHANG Qiaoyu, WU Shasha, DUAN Yanru, et al. Advance in flowering regulation technologies and molecular mechanisms of ornamental plants[J]. Journal of Zhejiang A&F University, 2025, 42(5): 898−910 doi:  10.11833/j.issn.2095-0756.20250476
Citation: ZHANG Qiaoyu, WU Shasha, DUAN Yanru, et al. Advance in flowering regulation technologies and molecular mechanisms of ornamental plants[J]. Journal of Zhejiang A&F University, 2025, 42(5): 898−910 doi:  10.11833/j.issn.2095-0756.20250476

Advance in flowering regulation technologies and molecular mechanisms of ornamental plants

DOI: 10.11833/j.issn.2095-0756.20250476
  • Received Date: 2025-08-31
  • Rev Recd Date: 2025-09-29
  • Publish Date: 2025-10-20
  • As a crucial ornamental and economic trait of ornamental plants, flowering time directly affects their commercial value and market supply capacity. Achieving precise regulation of flowering time and year-round production has become an urgent demand for industrial development. Therefore, exploring how to achieve precise flowering period regulation based on the floral induction process of ornamental plants and its relationship with environmental factors holds significant importance for meeting market demands. With the continuous in-depth research on the flowering mechanism and the advancement of cultivation techniques, remarkable progress has been made in the regulation of the flowering period of ornamental plants. This paper summarized the morphological formation and developmental patterns of flower bud differentiation in ornamental plants, and systematically reviewed the latest research progress on 6 floral induction molecular pathways (photoperiod, gibberellin, ambient temperature, vernalization, autonomous, and age), and major flowering time regulation technologies (light, temperature, plant growth regulator, and cultivation method) in ornamental plants. Based on the main problems existing in the research, the key research directions for the future were proposed, to provide theoretical support and practical reference for the precise flowering period regulation and commercial production of ornamental plants. [Ch, 2 fig. 1 tab. 105 ref.]
  • [1] LIU Chang, LU Yufan, JIANG Yan, GUO Ziyu, XIANG Ruizi, WANG Yuxin, XIANG Lijuan, ZHANG Yue, ZHANG Ning, FU Xuehao, SUN Ming.  Physiological characteristics and molecular mechanisms of salt tolerance regulated by abscisic acid in Crossostephium chinense and its hybrid progeny . Journal of Zhejiang A&F University, 2025, 42(5): 1025-1036. doi: 10.11833/j.issn.2095-0756.20250469
    [2] YE Qingqing, ZHOU Mingbing.  Molecular regulatory mechanisms of cambium activity in woody plants . Journal of Zhejiang A&F University, 2024, 41(4): 879-886. doi: 10.11833/j.issn.2095-0756.20230473
    [3] SHANG Linxue, WANG Qun, ZHANG Guozhe, ZHAO Yu, GU Cuihua.  Cloning and expression characteristics of LiCMB1 gene in Lagerstroemia indica . Journal of Zhejiang A&F University, 2023, 40(2): 330-337. doi: 10.11833/j.issn.2095-0756.20220333
    [4] HE Ciying, LOU Heqiang, WU Jiasheng.  Research progress on synthesis and regulation mechanism of Torreya grandis‘Merrillii’ kernel oil . Journal of Zhejiang A&F University, 2023, 40(4): 714-722. doi: 10.11833/j.issn.2095-0756.20230224
    [5] WANG Shiyi, HUANG Yizi, LI Zhouyang, HUANG Huahong, LIN Erpei.  Research progress in plant somatic embryogenesis and its molecular regulation mechanism . Journal of Zhejiang A&F University, 2022, 39(1): 223-232. doi: 10.11833/j.issn.2095-0756.20210141
    [6] MIAO Dapeng, JIA Ruirui, LI Shenghao, XI Shuo, ZHU Ge, WEN Shusheng.  Research advances in the mechanism of adventitious root occurrence in woody species . Journal of Zhejiang A&F University, 2022, 39(4): 902-912. doi: 10.11833/j.issn.2095-0756.20210652
    [7] WU Yannong, ZHENG Weiwei, LU Weijie, ZANG Yunxiang.  Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae . Journal of Zhejiang A&F University, 2021, 38(2): 412-419. doi: 10.11833/j.issn.2095-0756.20200132
    [8] LU Weijie, ZHENG Weiwei, WU Yannong, ZANG Yunxiang.  Research review on features and molecular mechanism of wax formation in Brassicaceae . Journal of Zhejiang A&F University, 2021, 38(1): 205-213. doi: 10.11833/j.issn.2095-0756.20200138
    [9] WU Qi, WU Hongfei, ZHOU Minshu, XU Qianxia, YANG Liyuan, ZHAO Hongbo, DONG Bin.  Cloning and expression analysis of OfFCA gene at flower bud differentiation stages in Osmanthus fragrans . Journal of Zhejiang A&F University, 2020, 37(2): 195-200. doi: 10.11833/j.issn.2095-0756.2020.02.001
    [10] JIANG Qini, FU Jianxin, ZHANG Chao, DONG Bin, ZHAO Hongbo.  cDNA cloning and expression analysis of OfAP1 in Osmanthus fragrans . Journal of Zhejiang A&F University, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [11] LI Shen, LIN Aizhen, YANG Yuan, SHEN Yafang, RAO Ying, YANG Jian, LIU Yunhui, WANG Yang, ZHOU Wei.  Research progress on molecular regulation mechanism involved in the biosynthetic pathway of tanshinone in Salvia miltiorrhiza . Journal of Zhejiang A&F University, 2018, 35(2): 367-375. doi: 10.11833/j.issn.2095-0756.2018.02.023
    [12] WEI Wei, GUO Jialian, WAN Lintao, XU Linfeng, DING Mingquan, ZHOU Wei.  Research progress on molecular regulation mechanism of grain weight formation in wheat . Journal of Zhejiang A&F University, 2016, 33(2): 348-356. doi: 10.11833/j.issn.2095-0756.2016.02.022
    [13] WANG Ying, ZHANG Chao, FU Jianxin, ZHAO Hongbo.  Progresses on flower bud differentiation and flower opening in Osmanthus fragrans . Journal of Zhejiang A&F University, 2016, 33(2): 340-347. doi: 10.11833/j.issn.2095-0756.2016.02.021
    [14] ZENG Yan-ru, LI Zhang-ju, DAI Wen-sheng.  Flowering habits in Camellia oleifera . Journal of Zhejiang A&F University, 2009, 26(6): 802-809.
    [15] HUANG You-jun, WANG Zheng-jia, ZHENG Bing-song, HUANG Xiao-min, HUANG Jian-qin.  Anatomy of stamen development on Carya cathayensis . Journal of Zhejiang A&F University, 2006, 23(1): 56-60.
    [16] LUO Ping-yuan, SHI Ji-kong, ZHANG Wan-ping.  Changes of endogenous hormones , carbohydrate and mineral nutrition during the differentiation of female flower buds of Ginkgo biloba . Journal of Zhejiang A&F University, 2006, 23(5): 532-537.
    [17] WANG Guo-ming, XU Bin-feng, WANG Mei-qin, LI Ding-sheng.  Application of the wild ornamental plants in Zhoushan Archipelago . Journal of Zhejiang A&F University, 2005, 22(1): 46-49.
    [18] ZHANG Wan-ping, HE Jun, SHI Ji-kong.  Changes of endogenous polyamines during differentiation on flower buds of Ginkgo biloba . Journal of Zhejiang A&F University, 2002, 19(4): 391-394.
    [19] SUN Xiao-ping.  Iutroduction and reproduction of some molding plants in Hangzhou . Journal of Zhejiang A&F University, 2000, 17(2): 222-224.
    [20] Guan Kanglin, Yan Yilun, Zheng Bingsong.  Function of Azotico Compounds and Phytohormones In Flower Bud Differentiation of Chinese Fir. . Journal of Zhejiang A&F University, 1996, 13(3): 248-254.
  • [1]
    ZHANG Yingjie. Molecular Regulation Mechanism of Flowering Time of Phalaenopsis[D]. Beijing: Beijing Forestry University, 2023.
    [2]
    SUN Jingqing. Effects of different treatment measures on Chrysanthemum growth [J]. Northern Horticulture, 2008(12): 130−132.
    [3]
    WAN Ya’nan. Preliminary study on flowering regulation method of Chrysanthemum [J]. Contemporary Horticulture, 2013(10): 50−51.
    [4]
    CANNON J A, SHEN Li, JHUND P S, et al. Clinical outcomes according to QRS duration and morphology in the irbesartan in patients with heart failure and preserved systolic function (I-PRESERVE) trial [J]. European Journal of Heart Failure, 2016, 18(8): 1021−1031.
    [5]
    CHAHTANE H, LAI Xuelei, TICHTINSKY G, et al. Flower development in Arabidopsis [J]. Methods in Molecular Biology, 2023, 2686: 3−38.
    [6]
    GAO Feng, SEGBO S, HUANG Xiao, et al. PmRGL2/PmFRL3-PmSVP module regulates flowering time in Japanese apricot (Prunus mume Sieb. et Zucc. )[J]. Plant, Cell & Environment, 2025, 48(5): 3415−3430.
    [7]
    YU Rui, XIONG Zhiying, ZHU Xinhui, et al. RcSPL1–RcTAF15b regulates the flowering time of rose (Rosa chinensis)[J/OL]. Horticulture Research, 2023, 10(6): uhad083[2025-08-25]. DOI: 10.1093/hr/uhad083.
    [8]
    BASTOW R, MYLNE J S, LISTER C, et al. Vernalization requires epigenetic silencing of FLC by histone methylation [J]. Nature, 2004, 427(6970): 164−167.
    [9]
    FENG Jingqiu, XIA Qian, ZHANG Fengping, et al. Is seasonal flowering time of Paphiopedilum species caused by differences in initial time of floral bud differentiation [J/OL]. AoB Plants, 2021, 13(5): plab053[2025-08-25]. DOI: 10.1093/aobpla/plab053.
    [10]
    XU Shenping, ZHANG Yan, YUAN Xiuyun, et al. Explore the key period of floral determination based on the microstructure and photosynthetic characteristics in Phalaenopsis [J]. Acta Horticulturae Sinica, 2020, 47(7): 1359−1368.
    [11]
    LI Yan, LIU Zhaohui, XU Huimin. Experimentaf Course of Plant Microtechnique[M]. Beijing: China Agricultural University Press, 2022: 104.
    [12]
    WEI Yu, DONG Zhiyang, ZHANG Lei, et al. Inflorescence differentiation of Cardiocrinum giganteum and its morphological and physiological-biochemical characteristics [J]. Journal of China Agricultural University, 2023, 28(8): 108−118.
    [13]
    SUN Yang, ZHU Liqiong, GUAN Chao, et al. Morphological observation of flower bud differentiation process of Michelia alba[J/OL]. Molecular Plant Breeding, 2023-04-23[2025-08-25]. https://kns.cnki.net/KCMS/detail/detail.aspx filename=FZZW20230420005&dbname=CJFD&dbcode=CJFQ.
    [14]
    CAI Yanfei, SHI Ziming, FU Xuewei, et al. Flower bud differentiation and endogenous hormone changes of Camellia ‘High Fragrance’[J/OL]. Molecular Plant Breeding, 2024-07-22[2025-08-25]. https://kns.cnki.net/KCMS/detail/detail.aspx filename=FZZW20240718002&dbname=CJFD&dbcode=CJFQ.
    [15]
    ZHOU Huajin, ZHANG Zhimin, WANG Xianrong, et al. Exploration of the morphological differentiation of Cerasus xueluoensis buds[J/OL]. Molecular Plant Breeding, 2024-03-07[2025-08-25]. https://kns.cnki.net/KCMS/detail/detail.aspx filename=FZZW20240301004&dbname=CJFD&dbcode=CJFQ.
    [16]
    REN Liping. Excellent Gene Mining Related to Flower Bud Differentiation in Summmer Flowering Chrysanthemum and Response to Low Temperature in Chrysanthemum nankingense[D]. Nanjing: Nanjing Agricultural University, 2015.
    [17]
    HU Xiaolong, TIAN Shaoze, HU Huirong. Study on floral bud differentiation and photoperiod characteristics of Coreopsis grandiflora ‘Early Sunrise’ [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(4): 43−47.
    [18]
    SHI Wanli, YAO Yuqiu. Preliminary researches on flower bud differentiation of Chrysanthemums [J]. Acta Horticulturae Sinica, 1990, 17(4): 309−312, 324.
    [19]
    YIN Yuying, LI Ji, GUO Beiyi, et al. Exogenous GA3 promotes flowering in Paphiopedilum callosum (Orchidaceae) through bolting and lateral flower development regulation[J/OL]. Horticulture Research, 2022, 9: uhac091p[2025-08-29]. DOI: 10.1093/hr/uhac091.
    [20]
    LI Yuanpeng, ZHANG Yingjie, ZHANG Jingwei, et al. Observation on morphology of flower bud differentiation and the effect of shading on the process of Rosa [J]. Molecular Plant Breeding, 2024, 22(8): 2715−2721.
    [21]
    HU Xin, WANG Yanjie, JIN Qijiang, et al. Study on methods of sampling in vivo and flower bud differentiation period identification of Nelumbo nucifera [J]. Jiangsu Agricultural Sciences, 2018, 46(24): 113−115.
    [22]
    ZHANG Yamei, CAO Yunbing, ZHANG Yidan. Introduction experiment of four tulip varieties in greenhouse in Bozhou [J]. South China Agriculture, 2025, 19(14): 14−16.
    [23]
    WANG Ying, ZHANG Chao, FU Jianxin, et al. Progresses on flower bud differentiation and flower opening in Osmanthus fragrans [J]. Journal of Zhejiang A&F University, 2016, 33(2): 340−347.
    [24]
    CHEN Tingqiao, DONG Xiaoxiao, YUAN Tao, et al. Flower bud differentiation characteristics and endogenous hormone changes of in single and lateral-flowered tree peony (Paeonia Sect. Moutan) cultivars [J]. Guihaia, 2023, 43(2): 368−378.
    [25]
    WANG Tonglin, LÜ Mengwen, XU Jinguang, et al. Study on the developmental process and physiological mechanism of the bulbils of Paeonia lactiflora [J]. Plant Physiology Journal, 2019, 55(8): 1178−1190.
    [26]
    ZHANG Jina. Observation and research on flower bud differentiation of tulip in Lanzhou [J]. Journal of Gansu Agricultural University, 2006, 41(4): 41−44.
    [27]
    GONG Tian. Mechanism of Floral Formation of Cymbidium kanran and Flowering Regulation[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015.
    [28]
    LI Shuxian. Mechanism of Flower Development and Early Flowering Technique of Cymbidium sinense[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.
    [29]
    LIU Xiaofen, LING Xiaoqi, XIANG Lili, et al. Effect of temperature and gibberellin on flowering regulation of Cymbidium goeringii [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 355−363.
    [30]
    ZHANG Guobing, LUO Yulan. Architectural development of inflorescence and flowering mechanism of Hydrangea macrophyflla [J]. Chinese Agricultural Science Bulletin, 2019, 35(34): 72−76.
    [31]
    FAN Lijie, CHEN Mengqian, WANG Ninghang, et al. Flower bud differentiation of three species of Magnolia [J]. Journal of Northeast Forestry University, 2018, 46(1): 27−30, 39.
    [32]
    CHEN Xiangbo, ZHANG Dongmei, FU Renjie, et al. Induction and physiological regulatory mechanism of secondary flowering in Yulannia denudata [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48(5): 97−104.
    [33]
    LUO Peirun. Effects of Growth Regulators on Bud Formation and Early Flowering of Rhododendron [D]. Fuzhou: Fujian Agriculture and Forestry University, 2023.
    [34]
    SHEPPARD T L. Flowers from a sweetheart[J/OL]. Nature Chemical Biology, 2013, 9(4): 215[2025-08-25]. DOI: 10.1038/nchembio.1222.
    [35]
    AMASINO R. Seasonal and developmental timing of flowering [J]. The Plant Journal, 2010, 61(6): 1001−1013.
    [36]
    CORBESIER L, VINCENT C, JANG S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis [J]. Science, 2007, 316(5827): 1030−1033.
    [37]
    WANG Lijun,CHENG Hua, WANG Qi, et al. CmRCD1 represses flowering by directly interacting with CmBBX8 in summer chrysanthemum [J]. Horticulture Research, 2021, 8(1): 79−79.
    [38]
    CHENG Hua, ZHANG Jiaxin, ZHANG Yu, et al. The Cm14-3-3μ protein and CCT transcription factor CmNRRa delay flowering in Chrysanthemum [J]. Journal of Experimental Botany, 2023, 74(14): 4063−4076.
    [39]
    MAO Yachao, SUN Jing, CAO Peipei, et al. Functional analysis of alternative splicing of the FLOWERING LOCUS T orthologous gene in Chrysanthemum morifolium[J/OL]. Horticulture Research, 2016, 3: 16058[2025-08-25]. DOI: 10.1038/hortres.2016.58.
    [40]
    HIGUCHI Y, NARUMI T, ODA A, et al. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 17137−17142.
    [41]
    ODA A, HIGUCHI Y, HISAMATSU T. Constitutive expression of CsGI alters critical night length for flowering by changing the photo-sensitive phase of anti-florigen induction in chrysanthemum[J/OL]. Plant Science, 2020, 293: 110417[2025-08-25]. DOI: 10.1016/j.plantsci.2020.110417.
    [42]
    ODA A, NARUMI T, LI Tuoping, et al. CsFTL3, a Chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums [J]. Journal of Experimental Botany, 2012, 63(3): 1461−1477.
    [43]
    NAKANO Y, TAKASE T, TAKAHASHI S, et al. Chrysanthemum requires short-day repeats for anthesis: gradual CsFTL3 induction through a feedback loop under short-day conditions[J]. Plant Science, 2019, 283: 247−255.
    [44]
    YANG Yingjie, MA Chao, XU Yanjie, et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis [J]. The Plant Cell, 2014, 26(5): 2038−2054.
    [45]
    ZHANG Zixin. The Molecular Mechanism of Chrysanthemum CmTPL1-2 Involved in the Flowering Regulation [D]. Nanjing: Nanjing Agricultural University, 2019.
    [46]
    HOU Chengjing, YANG C H. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium ‘Gower Ramsey’) that regulate the vegetative to reproductive transition [J]. Plant and Cell Physiology, 2009, 50(8): 1544−1557.
    [47]
    HUANG Weiting, FANG Zhongming, ZENG Songjun, et al. Molecular cloning and functional analysis of three FLOWERING LOCUS T (FT) homologous genes from Chinese Cymbidium [J]. International Journal of Molecular Sciences, 2012, 13(9): 11385−11398.
    [48]
    XIANG Lin, LI Xiaobai, QIN Dehui, et al. Functional analysis of FLOWERING LOCUS T orthologs from spring orchid (Cymbidium goeringii Rchb. f. ) that regulates the vegetative to reproductive transition [J]. Plant Physiology and Biochemistry, 2012, 58: 98−105.
    [49]
    SUN Jingjing, LU Jun, BAI Mengjuan, et al. Phytochrome-interacting factors interact with transcription factor CONSTANS to suppress flowering in rose [J]. Plant Physiology, 2021, 186(2): 1186−1201.
    [50]
    SUN Jingjing, LIU Hongchi, WANG Weinan, et al. RcOST1L phosphorylates RcPIF4 for proteasomal degradation to promote flowering in rose [J]. New Phytologist, 2024, 243(4): 1387−1405.
    [51]
    ZHENG Huijun, GONG Zhongxing, CAI Fangfang, et al. The role of RAV transcription factors in molecular regulation of plant flowering[J/OL]. Molecular Plant Breeding, 2023-05-16[2025-08-25]. https://kns.cnki.net/KCMS/detail/detail.aspx filename=FZZW20230515004&dbname=CJFD&dbcode=CJFQ.
    [52]
    RANDOUX M, JEAUFFRE J, THOUROUDE T, et al. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue [J]. Journal of Experimental Botany, 2012, 63(18): 6543−6554.
    [53]
    RANDOUX M, DAVIÈRE J M, JEAUFFRE J, et al. RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose [J]. New Phytologist, 2014, 202(1): 161−173.
    [54]
    SUN Jingjing. The Molecular Mechanism of Flowering Time Regulation by RcPIFs Under Shade in Rosa chinensis [D]. Nanjing: Nanjing Agricultural University, 2021.
    [55]
    ZHU Lu, GUAN Yunxiao, LIU Yanan, et al. Regulation of flowering time in chrysanthemum by the R2R3 MYB transcription factor CmMYB2 is associated with changes in gibberellin metabolism[J/OL]. Horticulture Research, 2020, 7(1): 96[2025-08-25]. DOI: 10.1038/s41438-020-0317-1.
    [56]
    LEE J H, YOO S J, PARK S H, et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis [J]. Genes & Development, 2007, 21(4): 397−402.
    [57]
    JANG S, TORTI S, COUPLAND G. Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis [J]. The Plant Journal, 2009, 60(4): 614−625.
    [58]
    JANG S, CHOI S C, LI H Y, et al. Functional characterization of Phalaenopsis aphrodite flowering genes PaFT1 and PaFD[J/OL]. PLoS One, 2015, 10(8): e0134987[2025-08-25]. DOI: 10.1371/journal.pone.0134987.
    [59]
    JIANG Li, JIANG Xiaoxiao, LI Yanna, et al. FT-like paralogs are repressed by an SVP protein during the floral transition in Phalaenopsis orchid [J]. Plant Cell Reports, 2022, 41(1): 233−248.
    [60]
    YANG Fengxi, GAO Jie, WEI Yonglu, et al. The genome of Cymbidium sinense revealed the evolution of orchid traits [J]. Plant Biotechnology Journal, 2021, 19(12): 2501−2516.
    [61]
    JI Fengjiao, MA Yan, QI Shuai, et al. Cloning and functional analysis of peony PlSVP gene in regulating flowering [J]. Acta Horticulturae Sinica, 2022, 49(11): 2367−2376.
    [62]
    GAO Yaohui, WEI Guangpu, MA Bin, et al. Analysis of CmSVP gene structure and expression pattern in chrysanthemum [J]. Journal of Henan Agricultural Sciences, 2021, 50(2): 124−129.
    [63]
    ZHANG Zixin, HU Qian, GAO Zheng, et al. Flowering repressor CmSVP recruits the TOPLESS corepressor to control flowering in chrysanthemum [J]. Plant Physiology, 2023, 193(4): 2413−2429.
    [64]
    WANG Xueting, YAO Yao, WEN Shiyun, et al. Genome-wide characterization of Chrysanthemum indicum nuclear factor Y, subunit C gene family reveals the roles of CiNF-YCs in flowering regulation[J/OL]. International Journal of Molecular Sciences, 2022, 23(21): 12812[2025-08-25]. DOI: 10.3390/ijms232112812.
    [65]
    YE Yong, LU Xinke, KONG En, et al. OfWRKY17-OfC3H49 module responding to high ambient temperature delays flowering via inhibiting OfSOC1B expression in Osmanthus fragrans[J/OL]. Horticulture Research, 2025, 12(1): uhae273[2025-08-25]. DOI: 10.1093/hr/uhae273.
    [66]
    TASAKI K, HIGUCHI A, FUJITA K, et al. Development of molecular markers for breeding of double flowers in Japanese gentian[J/OL]. Molecular Breeding, 2017, 37(3): 33[2025-08-25]. DOI: 10.1007/s11032-017-0633-9.
    [67]
    CHOI K, KIM J, HWANG H J, et al. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors [J]. The Plant Cell, 2011, 23(1): 289−303.
    [68]
    HU Qian, YIN Mengru, GAO Zheng, et al. Late flowering in chrysanthemum induced by low ambient temperature is mediated by FLOWERING LOCUS C-like [J]. Journal of Experimental Botany, 2025, 76(8): 2192−2206.
    [69]
    ZHAN Yanli, WANG Cuibo, QI Yuying, et al. Cloning and expression analysis of flowering inhibitor CmFLC-like1 gene in chrysanthemum [J]. Acta Horticulturae Sinica, 2015, 42(7): 1347−1355.
    [70]
    ZHOU Min, CHENG Hua, ZHANG Zixin, et al. Cloning and functional analysis of CmETR2 gene in chrysanthemum [J]. Journal of Nanjing Agricultural University, 2020, 43(3): 431−437.
    [71]
    LIU Xiaoru, PAN Ting, LIANG Weiqi, et al. Overexpression of an orchid (Dendrobium nobile) SOC1/TM3-like ortholog, DnAGL19, in Arabidopsis regulates HOS1-FT expression[J/OL]. Frontiers in Plant Science, 2016, 7: 99[2025-08-25]. DOI: 10.3389/fpls.2016.00099.
    [72]
    YANG Xiulian, JIA Ruirui, SHI Tingting, et al. Advances on molecular biology research of flowering regulation in ornamental plants [J]. Journal of Anhui Agricultural University, 2021, 48(3): 344−351.
    [73]
    LI Dan, LIU Chang, SHEN Lisha, et al. A repressor complex governs the integration of flowering signals in Arabidopsis [J]. Developmental Cell, 2008, 15(1): 110−120.
    [74]
    GUAN Yunxiao, DING Lian, JIANG Jiafu, et al. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium[J/OL]. Horticulture Research, 2021, 8(1): 87[2025-08-25]. DOI: 10.1038/s41438-021-00525-y.
    [75]
    HUANG Yaoyao, XING Xiaojuan, TANG Yun, et al. An ethylene-responsive transcription factor and a flowering locus KH domain homologue jointly modulate photoperiodic flowering in Chrysanthemum[J]. Plant, Cell & Environment, 2022, 45(5): 1442−1456.
    [76]
    WANG Jiawei. Regulation of flowering time by the miR156-mediated age pathway [J]. Journal of Experimental Botany, 2014, 65(17): 4723−4730.
    [77]
    HYUN Y, RICHTER R, VINCENT C, et al. Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem [J]. Developmental Cell, 2016, 37(3): 254−266.
    [78]
    LI Xiaoyan, GUO Fu, MA Shengyun, et al. Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental Gloxinia (Sinningia speciosa) [J]. Journal of Zhejiang University: Science B, 2019, 20(4): 322−331.
    [79]
    HUANG Ziwei, LIU Guoqin, CHEN Rui, et al. The RhSPL4-RhPRR5L module positively regulates flowering time in rose (Rosa hybrida) [J]. Horticultural Plant Journal, 2025, 11(5): 1930−1942.
    [80]
    YAMAGISHI M, NOMIZU T, NAKATSUKA T. Overexpression of lily microRNA156-resistant SPL13A stimulates stem elongation and flowering in Lilium formosanum under non-inductive (non-chilling) conditions[J/OL]. Frontiers in Plant Science, 2024, 15: 1456183[2025-08-25]. DOI: 10.3389/fpls.2024.1456183.
    [81]
    WEI Qian, MA Chao, XU Yanjie, et al. Control of Chrysanthemum flowering through integration with an aging pathway[J/OL]. Nature Communications, 2017, 8: 829[2025-08-25]. DOI: 10.1038/s41467-017-00812-0.
    [82]
    GAO Xuekai, LIU Lei, WANG Tianle, et al. Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum [J]. New Phytologist, 2025, 245(5): 2309−2321.
    [83]
    YONG Xue, ZHENG Tangchu, HAN Yu, et al. The miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN (PmSBP) transcription factor regulates the flowering time by binding to the promoter of SUPPRESSOR OF OVEREXPRESSION OF CO1 (PmSOC1) in Prunus mume [J/OL]. International Journal of Molecular Sciences, 2022, 23(19): 11976[2025-08-25]. DOI: 10.3390/ijms231911976.
    [84]
    JIN S, AHN J H. Regulation of flowering time by ambient temperature: repressing the repressors and activating the activators [J]. New Phytologist, 2021, 230(3): 938−942.
    [85]
    YANG Mingkang, LIN Wenjie, XU Yarou, et al. Flowering-time regulation by the circadian clock: from Arabidopsis to crops [J]. The Crop Journal, 2024, 12(1): 17−27.
    [86]
    YIN Yuying, FANG Lin, LI Lin, et al. Advances in flowering regulation of Paphiopedilum [J]. Chinese Journal of Tropical Crops, 2022, 43(4): 769−778.
    [87]
    YUAN Yixin, WANG Zhiling, DONG Rui, et al. LATE ELONGATED HYPOCOTYL is a core component of far-red light-induced flowering in chrysanthemum[J/OL]. Horticultural Plant Journal, 2025[2025-08-25]. DOI: 10.1016/j.hpj.2025.04.010.
    [88]
    ZHANG Yiteng, LONG Shuo, WU Wei, et al. Effects of light, water and fertilizer on flowering characteristics of Katsura [J]. Contemporary Horticulture, 2023(15): 1−4, 8.
    [89]
    BEOM L, JUN J, HYUN L, et al. Correlation between carbohydrate contents in the leaves and inflorescence initiation in Phalaenopsis[J/OL]. Scientia Horticulturae, 2020, 265: 109270[2025-08-25]. DOI: 10.1016/j.scienta.2020.109270.
    [90]
    YANG Fengxi, ZHU Genfa, WEI Yonglu, et al. Low-temperature-induced changes in the transcriptome reveal a major role of CgSVP genes in regulating flowering of Cymbidium goeringii[J/OL]. BMC Genomics, 2019, 20(1): 53[2025-08-25]. DOI: 10.1186/s12864-019-5425-7.
    [91]
    LAZARE S, BURGOS A, BROTMAN Y, et al. The metabolic (under)groundwork of the lily bulb toward sprouting [J]. Physiologia Plantarum, 2018, 163(4): 436−449.
    [92]
    JIANG Xindi, ZHAO Bing. Effects of low temperature and combined gibberellin on the regulation techniques of flowering stage of potted Hydrangea [J]. Northern Horticulture, 2024(1): 67−75.
    [93]
    LEEGGANGERS H A C F, NIJVEEN H, BIGAS J N, et al. Molecular regulation of temperature-dependent floral induction in Tulipa gesneriana [J]. Plant Physiology, 2017, 173(3): 1904−1919.
    [94]
    LI Xiaofang, JIA Linyan, XU Jing, et al. FT-like NFT1 gene may play a role in flower transition induced by heat accumulation in Narcissus tazetta var. chinensis [J]. Plant and Cell Physiology, 2013, 54(2): 270−281.
    [95]
    WENG Qingshi. Study on the Regulation of Florescence and Physiological Responses During Flowering of Cymbidium kanran [D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
    [96]
    ZHANG Yingjie, LI Ao, LÜ Yunfei, et al. Changes in endogenous hormones content and effect of plant growth regulators of Phalaenopsis during flowering period [J]. Journal of Tropical and Subtropical Botany, 2022, 30(1): 104−110.
    [97]
    LI Xiaosha, CHEN Tao, REN Angyan, et al. Impacts of gibberellin on flowering and morphological characteristics of different ornamental sunflower varieties [J]. Jiangsu Agricultural Sciences, 2024, 52(3): 184−192.
    [98]
    DONG Bin, DENG Ye, WANG Haibin, et al. Gibberellic acid signaling is required to induce flowering of chrysanthemums grown under both short and long days[J/OL]. International Journal of Molecular Sciences, 2017, 18(6): 1259[2025-08-25]. DOI: 10.3390/ijms18061259.
    [99]
    ŽÁRSKÝ V, PAVLOVÁ L, EDER J, et al. Higher flower bud formation in haploid tobacco is connected with higher peroxidase/IAA-oxidase activity, lower IAA content and ethylene production [J]. Biologia Plantarum, 1990, 32(4): 288−293.
    [100]
    WANG Shanli, VISWANATH K K, TONG C G, et al. Floral induction and flower development of orchids[J/OL]. Frontiers in Plant Science, 2019, 10: 1258[2025-08-25]. DOI: 10.3389/fpls.2019.01258.
    [101]
    LI Ao, ZHANG Yingjie, SUN Jixia, et al. Effects of plant growth regulators and temperature on the rate of double peduncle, flowering period and flower characteristics of Phalaenopsis [J]. Chinese Journal of Tropical Crops, 2021, 42(3): 732−738.
    [102]
    LIANG Wenchao, BU Xing, LUO Siqian, et al. Effects of nitrogen, phosphorus and potassium compound fertilization on the physiological characteristics of Chaenomeles speciosa ‘Changshouguan’ after processing of warming in the post floral stage [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(5): 81−88.
    [103]
    HUANG Yongyi, TANG Min, YE Guang, et al. Application of flowering regulation technology in Cymbidium tortisepalum Fukuyama industrialization [J]. Northern Horticulture, 2015(8): 186−190.
    [104]
    GENG Xiaodong, ZHOU Ying, XU Zheng. Study on introduction and cultivation of dendritic rose in Suzhou[J]. Contemporary Horticulture, 2020(5): 64, 66.
    [105]
    PEI Qing. The Study on Chrysanthemum Seedling and Its Pinching and Planting Period [D]. Nanjing: Nanjing Agricultural University, 2018.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(1)

Article views(257) PDF downloads(16) Cited by()

Related
Proportional views

Advance in flowering regulation technologies and molecular mechanisms of ornamental plants

doi: 10.11833/j.issn.2095-0756.20250476

Abstract: As a crucial ornamental and economic trait of ornamental plants, flowering time directly affects their commercial value and market supply capacity. Achieving precise regulation of flowering time and year-round production has become an urgent demand for industrial development. Therefore, exploring how to achieve precise flowering period regulation based on the floral induction process of ornamental plants and its relationship with environmental factors holds significant importance for meeting market demands. With the continuous in-depth research on the flowering mechanism and the advancement of cultivation techniques, remarkable progress has been made in the regulation of the flowering period of ornamental plants. This paper summarized the morphological formation and developmental patterns of flower bud differentiation in ornamental plants, and systematically reviewed the latest research progress on 6 floral induction molecular pathways (photoperiod, gibberellin, ambient temperature, vernalization, autonomous, and age), and major flowering time regulation technologies (light, temperature, plant growth regulator, and cultivation method) in ornamental plants. Based on the main problems existing in the research, the key research directions for the future were proposed, to provide theoretical support and practical reference for the precise flowering period regulation and commercial production of ornamental plants. [Ch, 2 fig. 1 tab. 105 ref.]

ZHANG Qiaoyu, WU Shasha, DUAN Yanru, et al. Advance in flowering regulation technologies and molecular mechanisms of ornamental plants[J]. Journal of Zhejiang A&F University, 2025, 42(5): 898−910 doi:  10.11833/j.issn.2095-0756.20250476
Citation: ZHANG Qiaoyu, WU Shasha, DUAN Yanru, et al. Advance in flowering regulation technologies and molecular mechanisms of ornamental plants[J]. Journal of Zhejiang A&F University, 2025, 42(5): 898−910 doi:  10.11833/j.issn.2095-0756.20250476
  • 花期早晚对于植物能否在适宜的环境条件下完成生命周期具有重要意义。对于大部分观赏植物而言,花是最主要的经济器官,花的开放时间直接决定了其观赏价值和市场效益。随着花期调控技术的不断进步,观赏植物能突破自然花期限制在消费旺季集中开放,显著提升了市场竞争力和经济价值。例如通过低温诱导等技术可把蝴蝶兰Phalaenopsis开花时间从自然花期的3—5月调至春节前,使蝴蝶兰成为“年宵花之王”[1]。此外,菊花Chrysanthemum × morifolium自然花期集中在10—11月,利用其短日照诱导开花的特性,在8月初开始遮光处理,可将开花时间提早至国庆,而通过长日照补光则能延至元旦上市[24]。植物成花不仅受环境因子的调控,还与内部生理状态密切相关,同时涉及复杂的基因调控网络[58]。近年来,观赏植物栽培技术和成花机制研究不断深入,为花期精准调控提供了理论依据。本研究结合国内外最新研究成果,系统综述了观赏植物花芽分化进程、不同成花途径的分子机制及花期调控技术,以期为实现观赏植物精准花期控制及商品化生产提供理论依据。

    • 花芽分化是直接决定观赏植物开花时间的关键过程[9],目前其形态变化研究已取得一定进展[5]。在此过程中植物体顶端分生组织的形态发生显著变化,包括生长点隆起或凹陷、细胞分裂活性增强及芽鳞结构改变等,生长锥的形态转变及花芽内部器官原基的发育状态是判断花芽分化阶段的核心标准[1011]。但由于花器官结构和发育顺序的差异,不同物种花芽分化阶段划分存在差异。通常可将花芽分化过程划分为未分化期、花原基分化期、花被分化期以及雌雄蕊分化期[1214]。而兰科Orchidaceae和菊科Asteraceae等具有花序结构的植物,其花芽分化过程较为复杂,还包含花序分化阶段[1519]。菊科植物的典型特征是头状花序,其花芽分化始于花原基分生组织的发育,分化初始生长锥伸长变大,表面细胞层数明显增加,苞片原基形成后,按向心顺序形成小花原基,并进一步分化为舌状花和管状花[1718]。兰科植物也因其独特的花部器官结构,分化过程需再经历合蕊柱及花粉块分化2个特殊时期[19]。以蝴蝶兰为例,花芽分化自顶端分生组织启动开始进入花序原基分化期,生长锥膨大隆起;随后从花序分生组织的侧翼分化出圆球状凸起进入花原基分化期;最终形成萼片、花瓣、蕊柱和花粉块后,完成分化[10]。而月季Rosa chinensis等单生花植物的花芽分化则更为简单,其顶端分生组织直接转化为单一花原基,无需构建花序结构[2022]

      此外,不同观赏植物花芽分化的起始时间也存在明显差异(表1),桂花Osmanthus fragrans、荷花Nelumbo nucifera、白玉兰Yulania denudata和杜鹃Rhododendron simsii花芽分化开始时间集中在上半年;芍药Paeonia lactiflora、寒兰Cymbidium kanran、墨兰Cymbidium sinense和大百合Cardiocrinum giganteum则集中在下半年。其中,部分植物花芽分化持续时间长达3个月以上,如桂花、牡丹Paeonia suffruticosa、芍药、春兰、胼胝兜兰Paphiopedilum callosum、大百合、山茶花Camellia japonica;部分则短至1个月左右,如郁金香属Tulipa植物。综上所述,不同观赏植物的花芽分化时间和动态发育过程都存在较大差异,直接塑造了其开花时间的多样性。因此,探究花芽分化过程对于实现花期精准调控至关重要。

      观赏植物 花芽分化开始时间 花芽分化持续时间/d 自然花期 参考文献
      桂花‘厚瓣金桂’Osmanthus fragrans‘Houban Jingui’ 4月 135 9—10月 [23]
      荷花Nelumbo nucifera 4—6月 3~5 6—8月 [21]
      牡丹Paeonia suffruticosa 7月 90~120 4—5月 [24]
      芍药Paeonia lactiflora 11月 140 4—5月 [25]
      郁金香属Tulipa 7月 30~45 3—5月 [22, 26]
      寒兰Cymbidium kanran 8—10月 45~60 10—12月 [27]
      墨兰Cymbidium sinense 9—10月 120~150 2—3月 [28]
      春兰Cymbidium goeringii 5月 120 2—3月 [29]
      胼胝兜兰Paphiopedilum callosum 3月 360 4—5月 [19]
      夏菊‘优香’Chrysanthemum × morifolium‘Yuuka’ 4—5月 25~44 6—9月 [16]
      秋菊‘黄金球’Chrysanthemum × morifolium‘Golden Ball’ 8—9月 30 11月 [18]
      大百合Cardiocrinum giganteum 11月 150 6—7月 [12]
      八仙花‘经典红’Hydrangea macrophylla‘Classic Red’ 9—10月 120 6—7月 [30]
      白玉兰Yulania denudata 5月 41 2—3月 [3132]
      杜鹃Rhododendron simsii 6月 120 3—5月 [33]
      山茶花‘烈香’Camellia japonica‘High Fragrance’ 5月 120 12月至翌年3月 [14]

      Table 1.  Process of flower bud differentiation and the flowering time in ornamental plants

    • 从生物学本质来看,植物开花是先在营养生长阶段完成“幼年期—成年期”的发育转变,再通过整合外部环境刺激与内源发育信号,启动花芽分化并最终完成开花,这一过程依赖精密复杂的调控网络实现[3436]。目前已知的花期调控路径主要包括光周期、赤霉素、环境温度、春化、自主和年龄等6条分子途径,这些途径在模式植物中已形成清晰的网络,但对于观赏植物花期调控的研究较少,且呈现显著的物种特异性和环境响应复杂性。

    • 光是植物光合作用的能量来源,同时也影响其成花。在光周期途径中,植物叶片会响应内源和外源信号,决定何时从营养生长向生殖生长转变[35]。其中,CONSTANS (CO)是光周期途径中的关键基因,它通过调控成花素Flowering Locus T (FT)和开花整合子Suppressor of Overexpression of CONSTANS 1 (SOC1),进而激活APETALA1 (AP1)和LEAFY (LFY)的表达,最终形成花分生组织,实现营养生长向生殖生长的转变[36]

      根据自然花期,菊花可分为夏菊、秋菊和寒菊等,秋菊通常需要严格的短日照诱导才能完成开花,而夏菊一般对光周期不敏感[3]。在夏菊‘优香’Chrysanthemum × morifolium ‘Yuuka’中,FT-like基因FLOWERING LOCUS T-like 1(CmFTL1)被证实是在长日照下促进开花的成花素,RADICAL-INDUCED CELL DEATH 1 (CmRCD1)通过负调控与CO相同家族的B-BOX DOMAIN PROTEIN 8 (CmBBX8)蛋白活性,阻碍CmBBX8靶向CmFTL1启动子,从而抑制CmFTL1的表达,延迟开花[3739]。HIGUCHI等[40]发现甘野菊Chrysanthemum seticuspeAnti-florigenic FT (CsAFT)基因作为开花抑制子参与光周期路径。GIGANTEA (CsGI)在日中性条件下上调CsAFT的表达[41],而CsAFT与FD-like1(CsFDL1)相互作用,直接拮抗CsFTL3的成花诱导活性,从而延迟花期[4243]NUTRITION RESPONSE AND ROOT GROWTH(CmNRRa)的表达在秋菊‘神马’Chrysanthemum × morifolium ‘Jinba’中受光周期影响,CmNRRa与14-3-3蛋白Cm14-3-3μ协同抑制CmFTL3和AP1/FRUITFULL (FUL)同源基因CmAFL1的表达,从而负调控菊花光周期开花途径[38]。菊花中CmBBX24的表达受到短日照抑制,其异源过表达的拟南芥Arabidopsis thaliana出现推迟开花的表型,且光周期路径相关基因CO、FTSOC1均下调表达,表明CmBBX24可能通过光周期诱导途径来影响开花时间[4445]

      此外,从文心兰Oncidium ‘Gower Ramsey’中分离得到受光周期调控的FT同源基因OnFT,该基因可以上调花分生组织特性基因AP1,并使转基因拟南芥早花[46]。春兰的CgFT基因在短日照下比长日照下表达量高,且过表达CgFT能显著上调CgLFYCgAP1、CgFULSEPALLATA1 (CgSEP1)的表达,并促进开花[4748]。在对光周期相对不敏感的月季中,光强是调控其开花的关键信号,在低光强条件下,RcPIFs在蛋白水平和转录水平都出现明显积累,并与RcCO形成复合物,干扰RcCO与RcFT启动子结合,从而抑制其表达并推迟开花;与之相反,在高光强条件下,光敏色素B (RcphyB)招募RcOST1L以促进RcPIF4降解并提早开花[4950] (图1)。

      Figure 1.  Molecular regulatory network of light-mediated floral transition in ornamental plants

    • 赤霉素(GAs)在植物的生长发育过程中扮演重要角色,尤其是对开花时间的调控。在拟南芥中,赤霉素能够促进生长抑制因子DELLA降解,正调控SOC1、LFYFT的表达,促进成花转变[51]。与拟南芥不同,外源赤霉素对一次开花型月季的成花具有抑制作用,而对连续开花品种无显著影响。在春季短日照条件下,外源赤霉素可激活一次开花月季中的RoKSN基因,进而以RoKSN依赖的方式抑制RoFTRoSOC1、RoAP1和RoLFY的表达[5253]。但在夏季长日照环境下,施用赤霉素生物合成抑制剂多效唑并不能有效抑制RoKSN表达,也不能促进开花[54]。在菊花中,CmMYB2可通过调控赤霉素途径影响花期,过表达CmMYB2能显著提高叶片中GA的含量,上调GA合成相关基因(如CmGA20oxCmGA3ox)并下调GA信号抑制基因CmDELLAs的表达,从而促进菊花早花[55]。在胼胝兜兰花器官分化的第5阶段,GA3能促进PcDELLAs蛋白降解以解除其对PcTCP15的抑制,同时上调PcXTH9,加速抽薹并提前开花[19]

    • 环境温度途径中控制开花的关键因子是SHORT VEGETATIVE PHASE (SVP)[56]SVP是开花抑制因子,能够与FT启动子结合进而抑制FT基因的表达[57]。在台湾蝴蝶兰Phalaenopsis aphrodite中,PaFT1在诱导开花的低温处理期间会特异性上调,且可抑制由SVP过表达引起的开花延迟[58]。此外,PhSVP可结合PhFTs启动子区域的CArG-box元件并抑制其表达,从而影响蝴蝶兰杂交品种‘Little Gem Stripes’的成花转变[59]。在墨兰中,CsSVPs能参与低温诱导开花的调控,在过表达CsSVP3后,CsFTCsAP1、CsSOC1等基因的表达受到显著抑制,从而在开花的早期阶段发挥作用[60]。将芍药中的PISVP基因转化拟南芥,其开花时间延迟,且FT、SOC1、LFY、AP1等开花促进因子的表达量显著下调[61]。此外,CmSVP也可能通过环境温度途径抑制菊花成花[6263]。野菊Chrysanthemum indicumNuclear Factor YC (CiNF-YC)家族中的CiNF-YC3与环境温度途径密切相关,过表达CiNF-YC3的拟南芥植株中,SVP表达量上调,开花明显延迟[64]。转录因子OfWRKY17能响应高温环境并促进OfC3H49的表达,且OfWRKY17-OfC3H49模块能够通过抑制OfSOC1B的表达成为桂花开花的负调节因子[65]。梅花Prunus mume中PmRGL2/PmFRL3蛋白复合体能够响应低温积累,并通过上调PmSVPPmSVP-like抑制其开花[6] (图2) 。

      Figure 2.  Molecular regulatory network of temperature-mediated floral transition in ornamental plants

    • 许多植物需要长时间的低温积累(即春化)才能开花。参与春化作用的关键基因是FLOWERING LOCUS C (FLC)和FRIGIDA (FRI)[66]。在春化作用发生之前,FRI通过上调表达FLC来推迟植物成花[67]。而长时间的低温会逐渐抑制FLC的表达,进而释放出开花促进因子SOC1和FT,实现成花转变[8]

      在观赏植物中,有关春化作用相关的基因研究集中在菊科和兰科植物方面。在夏菊中,CmFLC-like受15 ℃低温春化诱导表达,通过直接结合CmFTL3和CmAFL1启动子的CArG-box元件,抑制其转录进而延迟花期[6869]。在菊花‘神马’乙烯受体基因CmETR2的超表达植株中,FLC的表达量显著上调,并表现出晚花的表型,推测该基因可能通过参与春化途径调控开花[70]。金钗石斛Dendrobium nobile需要经过春化作用才能在春季开花,其关键基因AGAMOUS-like 19 (DnAGL19)的表达在低温诱导的腋芽中大幅上调,且该基因在拟南芥中的异源过表达能提早花期,证实了DnAGL19在金钗石斛春化途径中的重要功能[71]

    • 与春化途径相似,自主途径也通过调控FLC基因影响AP1和LFY的表达,最终调节植物开花过程[72]。参与拟南芥自主途径的基因主要有6个:FVEFCAFLKFYFLDFPA,这些基因都是FT的同源基因,它们之间存在复杂的相互作用,但主要作用均是抑制FLCSVP的转录和翻译,解除其对FTSOC1的抑制从而促进开花[73]。在菊花中,TIFY家族基因CmJAZ1-like的过表达株系出现晚花现象,且CmDRM1和CmFVE基因的表达水平显著降低,CmFLCCmSVP的表达水平显著升高,表明CmJAZ1-like介导的开花时间调控可能依赖于自主途径[74]。此外,CmERF110通过与自主开花途径基因CmFLK互作,影响生物钟进而加速菊花的开花进程[75]

    • 年龄途径是植物依靠自身年龄控制开花的一种独立调节机制,由microRNA156 (miR156)-SPLs-miR172的级联路径组成[76]。随着植物的生长,miR156表达水平下降,SPLs的积累上升,进而直接促进LFY、AP1和SOC1表达量以促进开花[77]。而miR172是SPL的靶基因,其表达受SPL调控,并进一步负调控开花抑制子AP2[78]

      月季RcSPL1蛋白的积累受上游Rc-miR156的负调控,超表达RcSPL1会显著提高下游基因RcAP1、RcFULRcLFY的表达量,促进月季开花[7]。此外,HUANG等[79]发现作为植物开花和昼夜节律信号之间的关键连接点,RhSPL4-RhPRR5L模块正向调控月季开花时间。miR156靶基因SPL13A通过激活年龄途径相关基因AP1和primary-MIR172,促进台湾百合Lilium formosanum茎伸长和成花转变[80]。菊花中,CmNF-YB8是调控花期的关键因子,其表达受年龄调控,可直接结合菊花cmo-MIR156基因的启动子并调控其表达,当CmNF-YB8沉默时,cmo-MIR156表达降低、CmSPLs表达量升高,导致菊花提前完成幼年期向成年期的转变并提早开花,而异位表达cmo-MIR156可恢复CmNF-YB8沉默植株的早花表型,证实CmNF-YB8通过年龄途径中的cmo-MIR156-SPL模块调控菊花花期[81]。此外,野菊中的Cinf-yb8突变体开花时间较野生型显著提前,而CiLDL1-RNAi株系则延迟,原因是CiNF-YB8与CiLDL1通过竞争结合CiNF-YC1的组蛋白折叠结构域(HFD)分别形成功能拮抗的异源三聚体复合物,CiLDL1和CiNF-YB8对cin-MIR156ab表达具有相反的调控作用,影响该基因座上H3K4me2的水平[82]

      在复杂的成花转变调控网络中,6条调控途径并不是独立的,它们之间相互促进或制约。如RcTAF15b协同RcSPL1将年龄途径和自主途径整合,共同调节下游开花基因的表达,加速月季成花[7];在梅花中受外源赤霉素负调控的基因PmSBP1/6与miR156f的表达模式呈负相关;在烟草中异源过表达PmSBP1/6能响应光周期调控呈现早花表型,且内源SOC1表达显著上调。上述结果表明PmSBP1/6可能同时受赤霉素和光周期途径调控[83]。此外,在不同观赏植物中,相同基因会表现出不同的功能,如过表达CmJAZ1-like基因延迟了菊花的开花,而AtJAZ1ΔJas的过表达则加速拟南芥开花[74]

    • 植物能够精准感知并及时响应环境的变化,从而为开花选择最佳时机[84]。基于观赏植物成花的理论基础,对其花期调控技术展开探究,并在生产中进行了广泛应用。目前,主要通过光照调控、温度管理、植物生长调节剂调控以及不同栽培方式管理对观赏植物进行花期调控。

    • 光周期调控可显著影响多种观赏植物的开花时间[85]。对于短日照植物而言,适当减少光照时长能促进开花,如典型的短日照植物菊花,需要黑暗时长超过临界最小值才会开花[41]。多数兰科植物对光周期反应较弱[86],但充足的光照有助于营养积累,进而促进开花。如随着光照时间的增加,墨兰花期延长,12 h光照处理相比于8 h光照处理能够延长墨兰花期5~10 d[28]。光质和光强对花期调控的影响亦非常重要,远红光能够在长日照条件下促进夏菊开花[87];在强光下月季开花时间显著早于弱光[50];30%遮光处理的低光强条件可使卡特树兰Cattleya intermedia的盛花期显著提前[88];蝴蝶兰在低光强下花序出现时间比高光强推迟47 d[89]

    • 温度对不同观赏植物花期的影响不同。许多热带兰科植物需低温诱导成花,如春兰在低于5.0 ℃,且处理时长达105~350 h时最有利于其成花[29, 90];百合科Liliaceae植物能够通过低温春化打破种球休眠并促进花芽分化,如在4.0 ℃条件下处理百合9周能够使花期提前[91];4.0 ℃低温处理5~7周可提前八仙花的花期,且低温时长较长时,开花天数相对延长[92]。此外,适度高温会促进兜兰花芽分化启动,如长瓣兜兰Paphiopedilum dianthum在23.3 ℃时花芽分化开始时间较16.7~17.7 ℃时提早约15 d[9];18.0 ℃处理6周会诱导晚春时节郁金香Tulipa gesneriana子球茎从营养期向生殖期转变[93];水仙Narcissus tazetta在30 ℃下处理80 d能够显著提高其开花率[94]。合理的温差也会影响植物开花。寒兰在昼夜温度为28 ℃/18 ℃组合下花期提前55 d,而25 ℃/15 ℃的组合延迟花期14 d[95]

    • 植物生长调节剂可以调控植物体内重要的信号分子,通过调节细胞分裂、分化和器官发育过程,在花芽分化和开花进程中发挥关键作用。赤霉素可显著促进多种观赏植物的花芽分化和开花进程。对花序原基膨大期的蝴蝶兰喷施100 mg·L−1 GA3,能使蝴蝶兰开花提前5~10 d[96];对低温处理的春兰喷施60~90 mg·L−1 GA3能进一步增强促花效果[90];向日葵Helianthus annus在50~300 mg·L−1GA3处理下花期提前2~5 d,但持花期缩短[97];用0.1 mmol·L−1GA3处理的菊花能在不同光周期下均提早开花[98]。值得注意的是,GA3的使用剂量需精确控制,如在八仙花中,过高或过低剂量都可能导致花序畸形或推迟开花,7.5 mg·kg−1GA3处理促花效果最好[92]。除赤霉素外,其他植物生长调节剂也参与花期调控。高浓度生长素(IAA)可抑制花梗伸长,而低浓度则促进花芽形成[99]。脱落酸(ABA)能阻碍蝴蝶兰花序形成[100]。喷施6-苄氨基嘌呤(6-BA)能刺激蝴蝶兰花芽分化,增加其花梗数和花朵数[101],还能诱导白玉兰当年二次开花[32]。外源施加乙烯利(ETH)可使寒兰推迟开花10~20 d[95]

    • 栽培管理方式(如水肥管理、修剪与摘心等)能在一定程度上影响花期。适当的氮磷钾配比能显著促进海棠‘长寿冠’Chaenomeles speciosa ‘Changshouguan’的花芽分化,当施以氮肥1.2 g·株−1、磷肥0.3 g·株−1和钾肥0.4 g·株−1时,促花效果最佳[102]。对莲瓣兰Cymbidium tortisepalum ‘Fukuyama’增施质量比为14∶20∶20的氮磷钾三元缓效复合肥,可为花器官原基形成提供充足养分,有效促进花芽分化[103]。对月季进行合理修剪可以消除其顶端抑制作用,促进侧芽萌发和花芽形成,进而促进花期[104]。此外,摘心能够打破菊花的顶端优势,使顶端的养分重新分配至侧芽,促使侧芽启动花芽分化;但二次摘心会导致整体花芽分化启动时间推迟[105]

    • 花期调控作为观赏植物育种与生产的核心环节,已从传统环境调控技术向分子机制研究深度推进。借助花期调控技术及分子生物学,不仅鉴定出许多调控成花诱导与花发育时序的关键基因,也初步构建了遗传因子与环境信号互作的花期调控网络。然而相较于模式植物,观赏植物花期调控的研究仍存在显著局限:①多数观赏植物基因组信息匮乏、遗传背景复杂,且高效遗传转化体系尚未建立,导致关键基因的功能验证难以开展,阻碍了多年生花卉花期调控机制的解析;②现有研究多聚焦于单一因子对花期的影响,对于多因子的协同作用机制尚未阐明,缺乏可用于生产实践的多变量调控模型;③过度依赖温室系统的高能耗设施,成本高昂且对环境造成压力,与低碳农业的发展方向相悖。

      要进一步优化花期调控的手段,未来研究需从基础机制与技术应用创新两方面进行突破,可重点关注以下几点:①挖掘特定观赏植物品种独特的花期调控通路与机制。如通过比较基因组学分析菊科中光周期敏感型品种(秋菊)与不敏感型品种(夏菊)差异,鉴定调控菊科光周期不敏感特性的关键基因,为解析观赏植物花期调控的替代途径提供线索;②强化多因子互作网络的解析,如整合环境信号、激素水平与基因表达数据,构建三者协作的花期调控模型;③突破遗传转化效率低下的瓶颈,建立高效基因编辑体系定向修饰开花关键基因,培育花期可控的新品种;④从转录水平及表观遗传角度深入解析环境因子调控观赏植物花期的分子机制,进而挖掘关键靶基因用于定向育种。这些研究可为观赏植物的分子育种与高效生产提供理论支撑,进而推动观赏花卉产业向高品质、低能耗及可持续的方向发展,最终实现“按需开花”。

Reference (105)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return