-
光合作用在绿叶中进行,也可在非同化器官叶柄,绿花,花萼,绿色水果,球果,茎组织,甚至根中发生[1-4]。非同化器官光合作用,无论表现为净光合作用还是内部二氧化碳(CO2)再固定,都是增加碳获取的重要方式[5]。蔡锡安等[6]研究发现植物茎秆组织能同化树干向生境排放的60%~90%CO2。LIU等[7]研究发现茎光合作用能够促进旱柳Salix matsudana扦插幼苗的器官发育。在干旱林地或沙漠中发现一些常见木本植物依赖绿茎作为碳同化器官[8]。ÁVILA-LOVERA等[9]发现霍金斯树Cercidium praecox在雨季主要由叶片进行光合作用,在旱季叶片完全脱落,主要由绿茎发生光合作用。植物碳同化方式多种多样,花环结构与3种不同细胞类型被认为是C4光合碳同化途径关键特征[10]。HIBBERD等[11]发现在典型C3植物烟草Nicotiana tabacum和芹菜Apium graveolens中,木质部和韧皮部周围的茎和叶柄细胞表现出NADP-苹果酸酶(NADP-ME)型细胞类型特征,这些细胞需要的碳来自于呼吸作用。SHEN等[12]发现水稻Oryza sativa叶片中脉具有C4光合特性。王莹等[13]发现木本植物丁香Syringa meyeri,银白杨Populus alba,落叶松Larix gmelinii绿色茎秆组织中均表现出典型C4光合生化特征。毛竹Phyllostachys edulis属禾本科Gramineae亚热带竹种,自然分布于中国南方省份,具有生长快,产量高,固碳能力强等特点。目前,关于毛竹光合作用前人已做了一些工作,温星等[14]发现毛竹幼叶叶绿素质量分数和净光合速率随其生长发育不断增加,从幼叶生长至第15天完全展叶,叶片就具备正常的光合生理功能。陈登举等[15]发现毛竹茎秆中光合色素含量较高,叶绿体发育完整,其类囊体垛叠程度高于叶片并含有淀粉粒。同时,毛竹在糖代谢[16]、激素调节[17]、非生物胁迫[18]、基因组鉴定与表达分析[19−20]等方面研究取得了较好的进展,但毛竹笋快速生长期茎秆光合碳同化分子特征的研究鲜有报道。本研究以快速生长阶段毛竹笋竹为研究对象,测定毛竹茎秆不同节间C3光合碳同化途径关键酶核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)、C4光合碳同化关键酶磷酸烯醇式丙酮酸羧化酶(PEPC)、丙酮酸磷酸双激酶(PPDK)、NADP-ME、NADP-苹果酸脱氢酶(NADP-MDH)、磷酸烯醇式丙酮酸羧激酶(PEP-CK)活性及各个关键酶基因相对表达量,探讨毛竹快速生长期笋竹茎秆光合碳同化规律,以期为进一步揭示毛竹茎秆快速生长机制提供参考。
-
供试毛竹来自浙江省杭州市临安区青山湖街道毛竹高效示范园。2018年4月中旬至5月下旬,选取生长状况良好,生境相同,株高6.0±0.2 m,基径约15 cm的当年自然生毛竹笋竹,在10:00−12:00从茎秆基部将其伐倒,由基部至顶部方向第1节间起顺序编号,依次取编号为7、10、13、16、19节间,切取各节间1/3处下部的绿色外层组织,取样厚度2~3 mm。成熟叶片样品采自成竹冠层,在同一生境和采样时间段选取生长状况良好的自然生成竹,取其冠层无斑点、无病害、延展性良好、大小均一的深绿色成熟叶片,去叶脉。节间组织和叶片样品均液氮冷冻,−80 ℃冰箱保存备用。取5株毛竹笋竹,5次重复,每株为1个独立实验。
-
酶液提取参照BERVEILLER等的方法[20],稍有改动。取待测毛竹笋竹绿色茎秆和叶片各0.5 g分置于研磨机中,加入5 mL预冷的提取液,研磨至匀浆。12 000 r·min−1离心30 min,取上清液即为粗酶液。Rubisco酶活性的测定参照姜振升等[21]的方法。PEPC和NADP-ME活性测定参照BERVEILLER等的方法[20]。NADP-MDH活性测定参照JOHNSON等的方法[22]。 PEPCK活性测定参照BURNELL的方法[23]。 PPDK活性测定参照HATCH等的方法[24]。
-
毛竹笋竹茎秆和叶片总RNA的提取使用宝生物工程(大连)有限公司(TaKaRa) RNAiso Plus (Code No.9109)*试剂盒,按其说明书的方法提取。使用Nano-100微量分光光度计检测RNA浓度与质量,用琼脂糖(添加量为12 g·L−1)凝胶电泳筛选可用RNA。反转录使用宝生物工程(大连)有限公司(TaKaRa)PrimeScriptTMRT reagent Kit with gDNA Eraser (Perfect Real Time)试剂盒,按其说明书的方法合成cDNA,反转录后的cDNA放于−20 ℃保存。
-
通过美国国家生物信息中心(NCBI, https://www.ncbi.nlm.nih.gov/)和PLAZ 4.0 Monocots(https://bioinformatics. psb.ugent.be/plaza/versions/plaza_v4_monocots/)搜索毛竹光合关键酶基因CDS序列,所有用于目的基因表达的定量引物序列(表1)均利用NCBI引物设计工具Primer-BLAST设计,同源比对后由浙江有康生物科技有限公司合成。各个基因表达分析使用宝生物工程(大连)有限公司(TaKaRa)TB Green™ Premix Ex Taq ™ Ⅱ (Tli RNaseH Plus)试剂盒进行实时荧光定量聚合酶链式反应(qPCR)。反应体系20 μL,采用两步法PCR扩增标准程序在Bio-Rad CFX manager 3.1 PCR仪上扩增。定量结果采用2-ΔΔCt的方法计算[25],选用毛竹PeNTB作为内参基因,每个样品3次重复。
表 1 引物序列
Table 1. Primers used in this study
基因名 5′→3′ 3′→5′ PeNTB TCTTGTTTGACACCGAAGAGGAG AATAGCTGTCCCTGGAGGAGTT Percbl ATCGTGCTCGCGGTATCTTT ATTTCGGTCAGAGCTGGCAT PePEPC TCGAGGGTTCGGACTGTTTGG GAGTTGGCTGAGTTCTTCGGA PeNADP-MDH CTGGATTTGGCCTTGGTGTTG TGTGCGCGGATATTTTTCTG PeNADP-ME TTTAGTGCAGAAGATCGTGGGG ATGCCAATACCTTGCACTCCC PePEP-CK CAGTACCACCACCACTACACCAC CTGGACGTGATGAACGAACCC PePPDK GAAACGTACGGGCAAAAGTG GCTCTACCATCTTGATCGCTG -
所有数据均为5次重复的平均值±标准差。利用Origin 9.0软件(OriginLab公司, 美国)进行统计分析和作图。采用one-way ANOVA进行Tukey多重比较(P<0.01)。
Activities of key enzymes involved in photosynthesis and expression patterns of corresponding genes during rapid growth of Phyllostachys edulis
-
摘要:
目的 揭示毛竹Phyllostachys edulis快速生长期茎秆光合碳同化规律。 方法 以毛竹笋竹为试材,采用分光光度法测定了毛竹茎秆和成熟叶片核酮糖-1,5-二磷酸氧合酶(Rubisco)、磷酸烯醇式丙酮酸羧化酶(PEPC)、NADP-苹果酸酶(NADP-ME)、NADP-苹果酸脱氢酶(NADP-MDH)、PEP羧激酶(PEP-CK)、磷酸烯醇式丙酮酸双激酶(PPDK)活性,运用实时荧光定量聚合链式反应(qPCR)对相应部位光合关键酶基因相对表达量进行分析。 结果 茎秆7~19节间Rubisco活性均极显著低于叶片(P<0.01),随着节间的升高,Rubisco活性逐渐降低;茎秆中PEPC、NADP-ME、NADP-MDH、PPDK活性在第7节间最高,分别是叶片的3.01倍、5.69倍、4.46倍、4.05倍(P<0.01),随着节间的升高,酶活性均极显著降低(P<0.01)。茎秆中PePEPC、PeNADP-ME、PeNADP-MDH、PePPDK基因表达量在第7节间最高,分别是叶片的3.48、7.89、6.48、3.46倍(P<0.01),随着节间的升高,这些基因表达量均极显著降低(P<0.01)。 结论 毛竹快速生长期茎秆主要以NADP-ME和NAD-ME途径对竹腔内部高浓度二氧化碳(CO2)再固定,减少自身碳损耗,形成的碳水化合物被茎秆快速生长再利用。图13表1参37 Abstract:Objective The aim is to reveal the law of photosynthetic carbon assimilation of Phyllostachys edulis stem during rapid growth period. Method The activities of ribulose-1,5-diphosphate oxidase (Rubisco), phosphoenolpyruvate carboxylase (PEPC), NADP-malate (NADP-ME), NADP-malate dehydrogenase (NADP-MDH), PEP carboxykinase (PEP-CK) and phosphoene alcohol pyruvate double kinase (PPDK) in the stems of different internodes of Ph. edulis shoots and mature leaves were determined by spectrophotometry, the relative expression of photosynthetic key enzyme genes in the corresponding parts was analyzed by real-time fluorescence quantitative polymerase chain reaction (qPCR). Result The Rubisco activity of the 7−19 internodes of the stems was significantly lower than that of the leaves (P<0.01). With the increase of the internodes, the Rubisco activity gradually decreased first. The activities of PEPC, NADP-ME, NADP-MDH and PPDK in the stems were the highest among the 7th internodes, which were 3.01 times, 5.69 times, 4.46 times and 4.05 times of the leaves (P<0.01), with the increase of internodes, the activity of PEPC, PPDK, NADP-ME and NADP-MDH first significantly reduced (P<0.01). The gene expression levels of PePEPC, PeNADP-ME, PeNADP-MDH and PePPDK in the stems were the highest among the 7th nodes, which were 3.48 times, 7.89 times, 6.48 times and 3.46 times of the leaves (P<0.01). Increased, PePEPC, PeNADP-ME, PeNADP-MDH, PePPDK gene expression was significantly reduced (P<0.01). Conclusion The fast growing stems of Ph. edulis mainly fix the high concentration of CO2 in the bamboo cavity through the NADP-ME and NAD-ME pathways to reduce their own carbon loss, and the carbohydrates formed are rapidly grown and reused by the stalks. [Ch, 13 fig. 1 tab. 37 ref.] -
Key words:
- Phyllostachys edulis /
- stem /
- photosynthetic enzyme /
- gene expression /
- C4 pathway
-
表 1 引物序列
Table 1. Primers used in this study
基因名 5′→3′ 3′→5′ PeNTB TCTTGTTTGACACCGAAGAGGAG AATAGCTGTCCCTGGAGGAGTT Percbl ATCGTGCTCGCGGTATCTTT ATTTCGGTCAGAGCTGGCAT PePEPC TCGAGGGTTCGGACTGTTTGG GAGTTGGCTGAGTTCTTCGGA PeNADP-MDH CTGGATTTGGCCTTGGTGTTG TGTGCGCGGATATTTTTCTG PeNADP-ME TTTAGTGCAGAAGATCGTGGGG ATGCCAATACCTTGCACTCCC PePEP-CK CAGTACCACCACCACTACACCAC CTGGACGTGATGAACGAACCC PePPDK GAAACGTACGGGCAAAAGTG GCTCTACCATCTTGATCGCTG -
[1] WEISS D, SCHÖNFELD M, HALEVY A H. Photosynthetic activities in the Petunia corolla [J]. Plant Physiol, 1988, 87(3): 666 − 670. [2] XU Huilian, GAUTHIER L, DESJARDINS Y, et al. Photosynthesis in leaves, fruits, stem and petioles of greenhouse-grown tomato plants [J]. Photosynthetica, 1997, 33(1): 113 − 123. [3] CHOMICKI G, BIDEL L P R, MING Feng, et al. The velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic [J]. New Phytol, 2015, 205(3): 1330 − 1341. [4] SUI Xiaolei, SHAN Nan, HU Liping, et al. The complex character of photosynthesis in cucumber fruit [J]. J Exp Bot, 2017, 68(7): 1625 − 1637. [5] ASCHAN G, PFANZ H. Non-foliar photosynthesis: a strategy of additional carbon acquisition [J]. Flora-Morphol Distrib Funct Ecol Plants, 2003, 198(2): 81 − 97. [6] 蔡锡安, 曾小平, 陈远其. 树干皮层光合作用: 生理生态功能和测定方法[J]. 生态学报, 2015, 35(21): 6909 − 6922. CAI Xi’an, ZENG Xiaoping, CHEN Yuanqi. Stem corticular photosynthesis: ecophysiological functions and their measurement [J]. Acta Ecol Sin, 2015, 35(21): 6909 − 6922. [7] LIU Junxiang, GU Lin, YU Yongchang, et al. Stem photosynthesis of twin and its contribution to new organ development in cutting seedlings of Salix matsudana Koidz [J]. Forests, 2018, 9(4): 207 − 218. [8] ÁVILA-LOVERA E, HARO R, EZCURRA E, et al. Costs and benefits of photosynthetic stems in desert species from southern California [J]. Funct Plant Biol, 2019, 46(2): 175 − 186. [9] ÁVILA-LOVERA E, TEZARA W. Water-use efficiency is higher in green stems than in leaves of a tropical tree species [J]. Trees, 2018, 32(6): 1547 − 1558. [10] BROWN W V. Variations in anatomy, associations, and origins of Kranz tissue [J]. Am J Bot, 1975, 62(4): 395 − 402. [11] HIBBERD J M, QUICK W P. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants [J]. Nature, 2002, 415(6870): 451 − 454. [12] SHEN Weijun, YE Luhuan, MA Jing, et al. The existence of C4-bundle-sheath-like photosynthesis in the mid-vein of C3 rice [J]. Rice, 2016, 9(1): 1 − 14. [13] 王莹, 王文杰, 许慧男, 等. 3种C3木本植物绿色组织C4酶活性, 色素含量及叶绿素荧光参数的比较[J]. 植物研究, 2011, 31(4): 461 − 466. WANG Ying, WANG Wenjie, XU Huinan, et al. Comparison of 5 species C4 enzymes activities, pigments contents and chlorophyll fluorescence parameters in leaf and branch chlorenchyma of 3 species C3 woody plants [J]. Bull Bot Res, 2011, 31(4): 461 − 466. [14] 温星, 程路芸, 李丹丹, 等. 毛竹叶片发育过程中光合生理特性的变化特征[J]. 浙江农林大学学报, 2017, 34(3): 437 − 442. WEN Xing, CHENG Luyun, LI Dandan, et al. Photosynthetic characteristics in the development process of Phyllostachys edulis [J]. J Zhejiang A&F Univ, 2017, 34(3): 437 − 442. [15] 陈登举, 高培军, 吴兴波, 等. 毛竹茎秆叶绿体超微结构及其发射荧光光谱特征[J]. 植物学报, 2013, 48(6): 635 − 642. CHEN Dengju, GAO Peijun, WU Xingbo, et al. Chloroplast ultrastructure and emission fluorescence spectrum characteristics for stems of Phyllostachys pubescens [J]. Chin Bull Bot, 2013, 48(6): 635 − 642. [16] 翟建云, 孙建飞, 马元丹, 等. 毛竹快速生长期茎秆不同节间碳水化合物代谢的变化[J]. 竹子学报, 2018, 37(1): 42 − 48. ZHAI Jianyun, SUN Jianfei, MA Yuandan, et al. Changes of carbohydrates metabolism in different internodes of Phyllostachys edulis during rapid growth period [J]. J Bamboo Res, 2018, 37(1): 42 − 48. [17] 方楷, 杨光耀, 杨清培, 等. 毛竹成竹过程中内源激素动态变化[J]. 江西农业大学学报, 2011, 33(6): 1107 − 1111. FANG Kai, YANG Guangyao, YANG Qingpei, et al. Dynamic changes of endogenesis hormone in bamboo formation course (Phyllostachys edulis) [J]. Acta Agric Univ Jiangxi, 2011, 33(6): 1107 − 1111. [18] LIU Jun, CHENG Zhanchao, XIE Lihua, et al. Multifaceted role of PheDof12-1 in the regulation of flowering time and abiotic stress responses in moso bamboo (Phyllostachys edulis) [J]. Int J Mol Sci, 2019, 20(2): 424 − 436. [19] PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nat Genet, 2013, 45(4): 456 − 461. [20] BERVEILLER D, DAMESIN C. Carbon assimilation by tree stems: potential involvement of phosphoenolpyruvate carboxylase [J]. Trees, 2008, 22(2): 149 − 157. [21] 姜振升, 孙晓琦, 艾希珍, 等. 低温弱光对黄瓜幼苗Rubisco与Rubisco活化酶的影响[J]. 应用生态学报, 2010, 21(8): 2045 − 2050. JIANG Zhensheng, SUN Xiaoqi, AI Xizhen, et al. Responses of Rubisco and Rubisco activase in cucumber seedlings to low temperature and weak light [J]. J Appl Ecol, 2010, 21(8): 2045 − 2050. [22] JOHNSON H S, HATCH M D. Properties and regulation of leaf NADP-malate dehydrogenase and ‘malic’ enzyme in plants with the C4 dicarboxylic acid pathway of photosynthesis [J]. Biochem J, 1970, 119(2): 273 − 280. [23] BURNELL J N. Purification and properties of phosphoenolpyruvate carboxykinase from C4 plants [J]. Funct Plant Biol, 1986, 13(5): 577 − 587. [24] HATCH M D, SLACK C R. Pyruvate, Pi dikinase from leaves [J]. Methods Enzymol, 1975, 42: 212 − 219. [25] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCt method [J]. Methods, 2001, 25(4): 402 − 408. [26] HATCH M D. C4 photosynthesis: a unique elend of modified biochemistry, anatomy and ultrastructure [J]. Biochim Biophys Acta (BBA)-Rev Bioenerg, 1987, 895(2): 81 − 106. [27] CACEFO V, RIBAS A F, ZILLIANI R R, et al. Decarboxylation mechanisms of C4 photosynthesis in Saccharum spp. : increased PEPCK activity under water-limiting conditions [J]. BMC Plant Biol, 2019, 19(1): 144 − 157. [28] IVANOV A G, KROL M, SVESHNIKOV D, et al. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine [J]. Planta, 2006, 223(6): 1165 − 1177. [29] BERVEILLER D, VIDAL J, DEGROUARD J, et al. Tree stem phosphoenolpyruvate carboxylase (PEPC): lack of biochemical and localization evidence for a C4‐like photosynthesis system [J]. New Phytol, 2007, 176(4): 775 − 781. [30] 王星星, 刘琳, 张洁, 等. 毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化[J]. 植物生态学报, 2012, 36(5): 456 − 462. WANG Xingxing, LIU Lin, ZHANG Jie, et al. Changes of photosynthetic pigment and photosynthetic enzyme activity in stems of Phyllostachys pubescens during rapid growth stage after shooting [J]. J Plant Ecol, 2012, 36(5): 456 − 462. [31] 王柯杨, 卜柯丽, 马元丹, 等. 毛竹茎秆发育过程中不同节间叶绿素荧光的变化[J]. 浙江农林大学学报, 2019, 36(4): 697 − 703. WANG Keyang, BU Keli, MA Yuandan, et al. Changes of chlorophyll fluorescence in different internodes during Phyllostachys edulis stem development [J]. J Zhejiang A&F Univ, 2019, 36(4): 697 − 703. [32] LI Yuan, DONG Xiumei, JIN Feng, et al. Histone acetylation modifications affect tissue-dependent expression of poplar homologs of C4 photosynthetic enzyme genes [J]. Front Plant Sci, 2017, 8: 950. [33] ZACHARIAH E J, SABULAL B, NAIR D N K, et al. Carbon dioxide emission from bamboo culms [J]. Plant Biol, 2016, 18(3): 400 − 405. [34] 王文杰, 祖元刚, 王慧梅. 林木非同化器官树枝(干)光合功能研究进展[J]. 生态学报, 2007, 27(4): 1583 − 1595. WANG Wenjie, ZU Yuangang, WANG Huimei. Review on the photosynthetic function of non-photosynthetic woody organs of stem and branches [J]. Acta Ecol Sin, 2007, 27(4): 1583 − 1595. [35] VUORINEN A H, KAISER W M. Dark CO2 fixation by roots of willow and barley in media with a high level of inorganic carbon [J]. J Plant Physiol, 1997, 151(4): 405 − 408. [36] BLOEMEN J, MCGUIRE M A, AUBREY D P, et al. Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees [J]. New Phytol, 2013, 197(2): 555 − 565. [37] PFANZ H, ASCHAN G, LANGENFELD-HEYSER R, et al. Ecology and ecophysiology of tree stems: corticular and wood photosynthesis [J]. Die Naturwissenschaften, 2002, 89(4): 147 − 162. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200277