Effects of nitrification inhibitors on soil N2O emission and nitrification in a paddy soil
-
摘要:
目的 为探究硝化抑制剂对土壤硝化作用及氧化亚氮(N2O)排放的影响。选取水稻土为研究对象,采用微宇宙培养,研究尿素配施硝化抑制剂[3,4-二甲基吡唑磷酸盐(DMPP)和2-氯-6-三氯甲基吡啶(CP)]对水稻土pH、无机氮、N2O排放以及氨氧化微生物的影响。 方法 设置不加尿素和硝化抑制剂(ck)、单施尿素[氮(N)200 mg·kg–1,U]、尿素+DMPP (添加量为氮量的1%,DMPP)和尿素+CP (添加量为氮量的2%,CP) 4个处理。 结果 添加硝化抑制剂可以显著提高土壤pH(P<0.05)。与ck相比,施用尿素显著增加了土壤铵态氮NH4 +-N质量分数( P<0.05),而两者之间硝态氮(NO3 –-)N质量分数无显著差异。DMPP和CP处理的NO3 –-N质量分数处于较低水平,且2个处理的净硝化速率都显著低于ck和U处理(P<0.05),有明显的硝化抑制效果。与ck相比,施用尿素显著提高了土壤N2O排放(P<0.05),而配施硝化抑制剂显著降低了N2O的累积排放(P<0.05)。与单施尿素相比,添加硝化抑制剂可有效降低氨氧化细菌(AOB) amoA基因拷贝数,而对氨氧化古菌(AOA) amoA丰度没有显著影响。相关性分析显示:N2O排放量与土壤pH、AOB丰度和NO3 –-N质量分数呈显著相关(P<0.05),说明土壤pH、AOB丰度和NO3 –-N质量分数是影响土壤N2O排放的关键因素。 结论 在中性水稻土中,AOB主导了土壤N2O的排放和硝化作用,DMPP和CP可通过有效降低AOB丰度来抑制硝化作用和减少N2O排放。图4表3参34 -
关键词:
- 水稻土 /
- 3,4-二甲基吡唑磷酸盐(DMPP) /
- 2-氯-6-三氯甲基吡啶(CP) /
- 氧化亚氮 /
- 氨氧化微生物
Abstract:Objective This study, with the conduct of a microcosm incubation using paddy soils, is aimed to investigate the effects of urea combined nitrification inhibitors 3, 4-dimethylpyrazole phosphate (DMPP) and 2-chloro-6 -trichloromethyl pyridine (CP) on pH, inorganic nitrogen, N2O emission and ammonia oxidizers with the ultimate purpose to explore the effects of nitrification inhibitors on soil nitrification and N2O emission. Method Four treatments were included in the whole process, namely no urea and nitrification inhibitor (ck), urea alone (N 200 mg·kg−1, Urea + DMPP (1% of N, DMPP) and urea + CP (2% of N, CP). Result Addition of nitrification inhibitors significantly increased soil pH relative to ck and U with urea addition significantly enhancing soil NH4 +-N content (P<0.05) but having no effect on NO3 – -N content when compared with ck; The NO3 – -N contents and net nitrification rates were significantly lower under DMPP and CP treatments than those under ck and U treatments (P<0.05), indicating that nitrification inhibitors had an obvious effect of nitrification inhibition in paddy soils; Compared with ck, urea addition significantly increased soil N2O emission (P<0.05), while combined application of urea and nitrification inhibitors significantly reduced the cumulative N2O emission (P<0.05); Nitrification inhibitors decreased the amoA gene copy number of ammonia-oxidizing bacteria (AOB), but had no effect on the abundance of ammonia-oxidizing archaea (AOA) when compared with U . Correlation analysis showed that soil N2O emission was significantly correlated with soil pH, AOB abundance and NO3 –-N content (P<0.05), indicating that soil pH, AOB abundance and NO3 –-N content were the key factors affecting soil N2O emission. Conclusion In neutral paddy soils, AOB rather than AOA dominated soil N2O emission and nitrification while DMPP and CP could inhibit soil nitrification and reduce N2O emission by decreasing AOB abundance. [Ch, 4 fig. 3 tab. 34 ref.] -
表 1 PCR扩增的引物序列
Table 1. Primers sequences for PCR amplification
表 2 硝化抑制剂对土壤净硝化速率的影响
Table 2. Net nitrification rate of each treatment for the three incubation intervals
间隔天数/d 净硝化速率/(mg·kg−1·d−1) ck U CP DMPP 1~7 6.30±0.24 a 5.99±0.06 a 0.56±0.09 b 0.55±0.09 b 7~14 20.71±4.91 b 28.47±0.66 a 0.82±0.73 c 1.93±1.35 c 14~21 29.83±5.56 a 24.89±1.56 a 2.18±1.24 b 4.33±1.38 b 说明:表中数值为平均值±标准误。同行不同小写字母表示处理间差异显著(P<0.05)。 表 3 N2O排放量与土壤因子之间的相关性
Table 3. Correlation between N2O emissions and soil environmental factors
因子 M NH4 +-N NO3 −-N AOA AOB pH M 1 NH4+-N −0.526 1 NO3−-N 0.827** −0.906** 1 AOA −0.046 0.333 −0.248 1 AOB 0.960** −0.452 0.743** 0.012 1 pH −0.600* 0.995** −0.941** 0.313 −0.526 1 说明:M指N2O累积排放量;NH4+-N和NO3−-N分别指二者的质量分数;AOA.氨氧化古菌丰度;AOB. 氨氧化细菌丰度;*、**分别表示在0.05 、0.01水平上显著相关。 -
[1] RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century [J]. Science, 2009, 326(5949): 123 − 125. doi: 10.1126/science.1176985 [2] SMITH K A. Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at different spatial scales [J]. European Journal of Soil Science, 2017, 68(2): 137 − 155. doi: 10.1111/ejss.12409 [3] TAO Rui, ZHAO Xiran, WU Xiaoliang, et al. Nitrapyrin coupled with organic amendment mitigates N2O emissions by inhibiting different ammonia oxidizers in alkaline and acidic soils[J/OL]. Applied Soil Ecology, 2021, 166: 104062[2022-08-20]. doi : 10.1016/j.apsoil.2021.104062. [4] 曹文超, 宋贺, 王娅静, 等. 农田土壤N2O排放的关键过程及影响因素[J]. 植物营养与肥料学报, 2019, 25(10): 1781 − 1798. doi: 10.11674/zwyf.18441 CAO Wenchao, SONG He, WANG Yajing, et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils [J]. Journal of Plant Nutrition and Fertilizes, 2019, 25(10): 1781 − 1798. doi: 10.11674/zwyf.18441 [5] 李杰, 石元亮, 王玲莉, 等. 硝化抑制剂对稻田土壤N2O排放和硝化、反硝化菌数量的影响[J]. 植物营养与肥料学报, 2019, 25(12): 2095 − 2101. doi: 10.11674/zwyf.19361 LI Jie, SHI Yuanliang, WANG Lingli, et al. Comparison of nitrification inhibitors on N2O emission and abundances of nitrifier and denitrifier in paddy soils [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2095 − 2101. doi: 10.11674/zwyf.19361 [6] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤N2O产生的关键微生物过程及减排措施[J]. 环境科学, 2014, 35(2): 792 − 800. ZHU Yongguan, WANG Xiaohui, YANG Xiaoru, et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies [J]. Environmental Science, 2014, 35(2): 792 − 800. [7] 马芬, 杨荣全, 郭李萍. 控制氮肥施用引起的活性氮气体排放: 脲酶/硝化抑制剂研究进展与展望[J]. 农业环境科学学报, 2020, 39(4): 908 − 922. doi: 10.11654/jaes.2020-0129 MA Fen, YANG Rongquan, GUO Liping. Decrease the emission of active nitrogen gases in nitrogen fertilizer application: research progresses and perspectives of urease/nitrification inhibitors [J]. Journal of Agro-Environment Science, 2020, 39(4): 908 − 922. doi: 10.11654/jaes.2020-0129 [8] 宋亚娜, 林艳, 陈子强. 氮肥水平对稻田细菌群落及N2O排放的影响[J]. 中国生态农业学报, 2017, 25(9): 1266 − 1275. SONG Ya,na, LIN Yan, CHEN Ziqiang. Effect of nitrogen fertilizer level on bacterial community and N2O emission in paddy soil [J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1266 − 1275. [9] AKIYAMA H, YAN Xiaoyuan, YAGI K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis [J]. Global Change Biology, 2010, 16(6): 1837 − 1846. [10] 俞巧钢, 殷建祯, 马军伟, 等. 硝化抑制剂DMPP应用研究进展及其影响因素[J]. 农业环境科学学报, 2014, 33(6): 1057 − 1066. doi: 10.11654/jaes.2014.06.001 YU Qiaogang, YIN Jianzhen, MA Junwei, et al. Effects of nitrification inhibitor DMPP application in agricultural ecosystems and their influencing factors: a review [J]. Journal of Agro-Environment Science, 2014, 33(6): 1057 − 1066. doi: 10.11654/jaes.2014.06.001 [11] YU Qiangguang, CHEN Yingxu, YE Xuezhu, et al. Evaluation of nitrification inhibitor 3, 4-dimethyl pyrazole phosphate on nitrogen leaching in undisturbed soil columns [J]. Chemosphere, 2007, 67(5): 872 − 878. doi: 10.1016/j.chemosphere.2006.11.016 [12] 杨秀霞, 商庆银, 陈柳燕, 等. 新型氮肥增效剂在水稻上的节肥增产效果研究[J]. 江西农业大学学报, 2016, 38(4): 616 − 622. YANG Xiuxia, SHANG Qingyin, CHEN Liuyan, et al. Effects of the new synergist of entrench on grain yield and fertilizer-saving for rice [J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(4): 616 − 622. [13] 孙海军, 闵炬, 施卫明, 等. 硝化抑制剂施用对水稻产量与氨挥发的影响[J]. 土壤, 2015, 47(6): 1027 − 1033. doi: 10.13758/j.cnki.tr.2015.06.003 SUN Haijun, MIN Ju, SHI Weiming, et al. Effects of nitrification inhibitor on rice production and ammonia volatilization in paddy rice field [J]. Soils, 2015, 47(6): 1027 − 1033. doi: 10.13758/j.cnki.tr.2015.06.003 [14] GU Yan, WU Lianghuan, HU Zhaoping. Inhibitory effect of soil pH value and moisture on soil nitrification by nitrapyrin application [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8): 132 − 138. [15] MENÉNDEZ S, BARRENA I, SETIEN I, et al. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions [J]. Soil Biology and Biochemistry, 2012, 53: 82 − 89. doi: 10.1016/j.soilbio.2012.04.026 [16] PUTTANNA K C I O, GOWDA N M N, RAO E V S P. Effect of concentration, temperature, moisture, liming and organic matter on the efficacy of the nitrification inhibitors benzotriazole, o-nitrophenol, m-nitroaniline and dicyandiamide [J]. Nutrient Cycling in Agroecosystems, 1999, 54(3): 251 − 257. doi: 10.1023/A:1009826927579 [17] XU Yonggang, YU Wantai, MA Qiang, et al. Responses of bacterial and archaeal ammonia oxidisers of an acidic luvisols soil to different nitrogen fertilization rates after 9 years [J]. Biology and Fertility of Soils, 2012, 48(7): 827 − 837. doi: 10.1007/s00374-012-0677-2 [18] 刘钰莹, 张妍, 汪哲远, 等. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 223 − 232. LIU Yuying, ZHANG Yan, WANG Zheyuan, et al. Effects of combined application of nitrification inhibitors and biochars on nitrogen transformation and nitrogen use efficiency in paddy soil [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 223 − 232. [19] DI H J, CAMERON K C, SHEN J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils [J]. Nature Geoscience, 2009, 2(9): 621 − 624. doi: 10.1038/ngeo613 [20] SIMONIN M, LE ROUX X, POLY F, et al. Coupling between and among ammonia oxidizers and nitrite oxidizers in grassland mesocosms submitted to elevated CO2 and nitrogen supply [J]. Microbial Ecology, 2015, 70(3): 809 − 818. doi: 10.1007/s00248-015-0604-9 [21] 刘天琳, 任佳琪, 王天佑, 等. 中性紫色水稻土硝化作用中细菌和古菌的相对贡献[J]. 土壤通报, 2018, 49(5): 1091 − 1096. doi: 10.19336/j.cnki.trtb.2018.05.13 LIU Tianlin, REN Jiaqi, WANG Tianyou, et al. Relative contribution of bacteria and archaea to soil nitrification in neutral purple paddy soil [J]. Chinese Journal of Soil Science, 2018, 49(5): 1091 − 1096. doi: 10.19336/j.cnki.trtb.2018.05.13 [22] BENCKISER G, CHRIST E, HERBERT T, et al. The nitrification inhibitor 3,4-dimethylpyrazole-phosphat (DMPP) - quantification and effects on soil metabolism [J]. Plant and Soil, 2013, 371(1/2): 257 − 266. [23] 朱云飞, 张琪, 黄一伦, 等. 生物炭与硝化抑制剂联合施用对热带菜地土壤硝化过程及N2O排放的影响[J]. 热带作物学报, 2021, 42(10): 3042 − 3048. doi: 10.3969/j.issn.1000-2561.2021.10.039 ZHU Yunfei, ZHANG Qi, HUANG Yilun, et al. Effects of co-application of biochar and nitrification inhibitor on soil nitrification and N2O emissions in tropical vegetable soil [J]. Chinese Journal of Tropical Crops, 2021, 42(10): 3042 − 3048. doi: 10.3969/j.issn.1000-2561.2021.10.039 [24] 杨剑波, 李学超, 徐晶晶, 等. 两种硝化抑制剂在不同土壤中的效果比较[J]. 土壤, 2021, 42(10): 3042 − 3048. doi: 10.13758/j.cnki.tr.2014.02.021 YANG Jianbo, LI Xuechao, XU Jingjing, et al. Effects of nitrification inhibitors on nitrogen transformation different soils [J]. Soils, 2021, 42(10): 3042 − 3048. doi: 10.13758/j.cnki.tr.2014.02.021 [25] SHI Xuzhen, HU Hangwei, HE Jizheng, et al. Effects of 3,4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses [J]. Biology and Fertility of Soils, 2016, 52(7): 927 − 939. doi: 10.1007/s00374-016-1131-7 [26] ZHENG Jufeng, CHEN Junhui, PAN Gengxing, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China [J]. Science of the Total Environment, 2016, 571: 206 − 217. doi: 10.1016/j.scitotenv.2016.07.135 [27] LI Jie, WANG Shuai, LUO Jiafa, et al. Effects of biochar and 3, 4-dimethylpyrazole phosphate (DMPP) on soil ammonia-oxidizing bacteria and nosZ-N2O reducers in the mitigation of N2O emissions from paddy soils [J]. Journal of Soils and Sediments, 2021, 21(2): 1089 − 1098. doi: 10.1007/s11368-020-02811-z [28] FAN Xiaoping, YIN Chang, CHEN Hao, et al. The efficacy of 3,4-dimethylpyrazole phosphate on N2O emissions is linked to niche differentiation of ammonia oxidizing archaea and bacteria across four arable soils [J]. Soil Biology &Biochemistry, 2019, 130: 82 − 93. [29] SHEN Tianlin, STIEGLMEIER M, DAI Jiulan, et al. Responses of the terrestrial ammonia-oxidizing archaeon Ca Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors [J]. FEMS Microbiology Letters, 2013, 344(2): 121 − 129. doi: 10.1111/1574-6968.12164 [30] MCGEOUGH K L, WATSON C J, MÜLLER C, et al. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils [J]. Soil Biology &Biochemistry, 2016, 94: 222 − 232. [31] WU Di, ZHAO Zichao, HAN Xiao, et al. Potential dual effect of nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrifier denitrification in the mitigation of peak N2O emission events in North China Plain cropping systems [J]. Soil Biology &Biochemistry, 2018, 121: 147 − 153. [32] 孙祥鑫, 李东坡, 武志杰, 等. 持续施用缓/控释尿素条件下水田土壤NH3挥发与N2O排放特征[J]. 应用生态学报, 2016, 27(6): 1901 − 1909. SUN Xiangxin, LI Dongpo, WU Zhijie, et al. Characteristics of ammonia volatilization and nitrous oxide emission from a paddy soil under continuous application of different slow/controlled release urea [J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1901 − 1909. [33] FRIEDL J, SCHEER C, ROWLINGS D W, et al. The nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) reduces N2 emissions from intensively managed pastures in subtropical Australia [J]. Soil Biology &Biochemistry, 2017, 108: 55 − 64. [34] LIU Binbin, MØRKVED P T, FROSTEGARD A, et al. Denitricationgenepools, transcriptionand kineticsof NO, N2O and N2 productionas affected by soil pH [J]. FEMS Microbiology Ecology, 2010, 72(3): 407 − 417. doi: 10.1111/j.1574-6941.2010.00856.x -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220605

计量
- 文章访问数: 39
- 被引次数: 0