-
二氧化碳(CO2)等温室气体排放增加以及全球变暖日益加剧,如何减缓大气“温室效应”,是人类目前面临的重要问题之一。土壤被认为是陆地生态系统中最大的碳库[1],其中土壤有机碳储量为1 500~2 000 Pg,无机碳储量为700~1 000 Pg[2],是土壤CO2排放的主要来源[3]。土壤碳库在全球碳循环中起着重要的碳源、碳汇作用,具有巨大的碳汇潜力,其微小变化将可能对大气CO2产生显著影响,在全球碳循环过程中扮演着非常重要的角色[4]。农田是陆地生态系统重要的组成部分,约占全球陆地面积的10.62%[5];农田土壤作为陆地生态系统最活跃的碳库,其CO2排放量约占全球人为温室气体排放总量的21%~25%[6]。由此可见,深入开展农田土壤呼吸作用及其影响因素研究,对准确评估陆地生态系统碳收支具有重要的理论和现实意义。
土壤干湿交替被认为是土壤呼吸的重要影响因素,通过激发或抑制土壤呼吸来改变陆地生态系统碳储量,进而影响土壤呼吸时空特征及碳通量[7−18]。研究表明:受降水量、土壤初始含水量、降水格局、生态系统类型、干旱持续事件及干湿交替频率和强度的影响[19],土壤干湿交替引起的土壤碳排放呈现不同的变化规律。在全球气候变化大背景下,极端干旱/降水事件和人类活动会使土壤发生频繁的干湿交替过程[20−22];未来随着气候变化及降水格局的改变,土壤干湿交替现象及其发生频率会进一步提高[23−25]。中国西南喀斯特区碳酸盐岩出露面积达51.36 万km2[26],区内农田面积占比21.6%[27],对于喀斯特地区碳循环具有举足轻重的作用。由碳酸盐岩发育的石灰性土壤是该区农田主要土壤类型之一,不同于其他农田土壤类型,具有明显的区域特色。一方面,喀斯特地区土壤干湿交替特征鲜明,干旱、半干旱地区土壤干湿交替主要由降水量少引起,喀斯特地区降水充沛,但土层浅薄,储水能力低,岩石渗漏性强,导致土壤干湿交替发生更加频繁[28];另一方面,土壤无机碳对土壤CO2排放具有一定的贡献[29−33],以往的研究较少的考虑这一贡献。现有的非喀斯特地区土壤碳循环过程对干湿交替的响应规律,可能并不适用于喀斯特地区。因此,开展喀斯特地区农田石灰性土壤CO2排放对干湿交替的响应研究,可提升喀斯特地区土壤CO2排放通量评估的准确性。
本研究以喀斯特农田土壤为研究对象,通过室内控制实验,分析喀斯特农田土壤呼吸对不同干湿交替的响应规律,为深入理解气候变化下喀斯特农田土壤碳固持和减少碳排放提供理论依据。
-
研究区位于贵州省贵阳市乌当区(26°38N,106°48′E),属于亚热带季风气候,年平均气温为14.9 ℃,年均降水量为1 130.4 mm。该地区是喀斯特地貌发育区,碳酸盐类岩层分布广,地貌类型以山地、丘陵为主,岩石类型以石灰岩为主,土壤类型主要由黄壤、黄棕壤、石灰土组成。本研究区内土壤类型为石灰土, pH为7.21,有机碳质量分数为55.40 g·kg−1,速效氮为87.36 mg·kg−1,速效磷为1.87 mg·kg−1。该区土壤干湿交替主要由降水事件导致。
-
以研究区内石灰性农田作为研究对象,采取表层土(0~20 cm) 带回实验室,放在通风状况良好、阴凉的地方风干。风干后的土壤挑出石块和可见植物残体样品,研磨,过2 mm筛备用。
-
试验于2022年8—9月在贵州师范学院温室大棚进行。将处理好的风干土充分混合均匀,平铺到聚氯乙烯(PVC)管底部(PVC管底部密封,高15 cm,内径10 cm,土层厚度5 cm,上部留有10 cm的空间)。根据贵阳市多年降水特征(该区以小于10 mm的降水为主)模拟2个降水量处理,分别是10和25 mm降水量,试验持续30 d (720 h)。在每个降水量处理下设置3个以10 d为降水周期的干湿循环周期,每个处理设置6个重复,其中3个重复用于测量土壤CO2排放,另外3个重复用于同步测量土壤含水量。对用于测量土壤CO2排放通量的PVC管,整个实验期间,只对其进行CO2监测,不对其进行破坏性采样。采用喷壶喷洒的方式模拟降水,向土壤表面均匀喷洒蒸馏水,喷水当天记作第1 天,第11 天、第21 天分别采用相同方法向土壤表面喷洒蒸馏水。第1天喷水后至第10天喷水前记作第1个周期,第11天加水后至第20天加水前记作第2个周期,第21天加水后至第30天记作第3个周期。洒水后第1天,在不同的时间(喷水后1、2、4、6、8、12、24 h)测定土壤呼吸速率,再在第4天、第7天和第10天各测定土壤呼吸速率1次。每次测定土壤呼吸速率时,用密封盖对PVC管进行密封,形成采样气室,每次监测持续时间为15 min,分别监测罩箱内0、5、10和15 min时的CO2浓度。在每次土壤呼吸速率监测结束后,打开密封盖,保持PVC管处于自然通风状态。土壤CO2使用CO2测定仪器-红外传感器(Vaisala GMP252)测定。土壤体积含水量(5 cm)用土壤温湿度速测仪(JL-19-2)测定。
CO2排放通量利用式(1)计算:
$$ F = \frac{M}{{{V_0}}} \times \frac{P}{{{P_0}}} \times \frac{{{T_0}}}{T} \times H \times \frac{{{\rm{d}}c}}{{{\rm{d}}t}} 。 $$ (1) 式(1)中:F为CO2排放通量(mg·m−2·h−1);M为标准状态下CO2的摩尔质量(44 g·mol−1);H为采样箱高度 (m);P为采样点大气压强 (kPa);P0和T0分别是标准状态下的大气压强和空气绝对温度(101.325 kPa和273.15 K);V0是标准状态下气体摩尔体积22.41 L·mol−1;T是采样时该点的温度 (K);dc/dt是CO2浓度随时间变化的速率。干湿交替处理CO2累计排放量计算公式为:
$$ E = \sum_{i=1}^n {\left(\frac{{{F_i} + {F_{i - 1}}}}{2}\right)} \times ({t_i} - {t_{i - 1}}) 。 $$ (2) 式(2)中:E为CO2累计排放量(mg·m−2);F为CO2排放通量(mg·m−2·h−1);i为采样次数(i=1,2$, \cdots ,n $);t为采样时间(h)。
-
数据前期处理、统计分析及绘图分别用Excel 2013、SPSS 18.0和Origin 9完成。采用单因素方差分析(one-way ANOVA) 分别对不同干湿交替强度下土壤呼吸速率与土壤累计CO2排放量的影响进行差异性检验,采用Pearson相关分析法分析土壤呼吸和土壤湿度的相关性。
-
2种干湿交替强度下,随着水分的施加,土壤CO2排放通量短时间内达到最大值,随后逐渐下降(图1)。其中,25 mm降水干湿交替强度下,土壤CO2排放通量达到最大值的时间要明显晚于10 mm降水干湿交替强度。土壤含水量变化基本与水分的施加同步,随周期性的水分施加土壤湿度呈现从大到小的趋势(图2)。
图 1 2 种干湿交替强度下土壤 CO2排放通量随时间的变化特征
Figure 1. Dynamics of soil CO2 emission flux under two different intensities of wet-dry alternation
图 2 2 种干湿交替强度下土壤含水量随时间的变化特征
Figure 2. Dynamics of soil moisture under two different intensities of wet-dry alternation
如图3所示:在第1个周期中,10和25 mm降水干湿交替强度下,平均土壤CO2排放通量分别是162.62、346.28 mg·m−2·h−1;第2个周期中2种干湿交替强度下,平均土壤CO2排放通量分别是139.15、 144.00 mg·m−2·h−1,比第1个周期分别降低了14.17%、58.42%;第3个周期的2种干湿交替强度下,平均土壤CO2排放通量分别是108.85、43.54 mg·m−2·h−1,比第1个周期分别降低了32.86%、87.43%。方差分析结果显示:10 mm降水干湿交替强度下,不同周期土壤CO2排放通量之间差异不显著;25 mm降水干湿交替强度下,不同循环周期间土壤CO2排放通量差异显著(P<0.05);第1个和第3个周期土壤CO2排放通量在不同干湿交替强度下显著不同(P<0.05),而第2个周期干湿交替强度对土壤CO2排放通量影响不显著(P>0.05,图3)。
-
在整个干湿交替周期中,25 mm降水干湿交替强度的土壤CO2累计排放量比10 mm降水干湿交替强度更多。土壤CO2累计排放量在每个周期中都是在水分施加后先是快速增大,之后增大的趋势减缓(图4)。图5表明:在不同周期,25 mm降水干湿交替强度下,第1个周期土壤总CO2排放量和第2个循环周期差异不显著,第1个周期和第2个周期土壤总CO2排放量与第3个周期差异均显著(P<0.05)。10 mm降水干湿交替强度下,不同周期土壤总CO2排放量之间差异不显著;不同的干湿交替强度下,各周期之间土壤总CO2排放量差异显著(P<0.05)。
-
由表1可知:第1个和第2个干湿交替周期的土壤含水量和土壤CO2排放通量之间有极显著的相关关系(P<0.001),而第3个干湿交替周期土壤含水量和土壤CO2排放通量之间相关不显著。干湿交替多个周期作用下,土壤含水量和土壤CO2排放通量之间的相关程度不断降低。
表 1 土壤CO2排放通量与土壤湿度的相关关系
Table 1. Correlation between soil CO2 emission flux respiration and soil moisture
周期 样本数/个 拟合方程 相关系数 P 1 60 y =0.001 9x2+5.998 2x−41.743 0.75 0.000 2 60 y =−0.054 1x2+8.147 1x−124.87 0.64 0.000 3 60 y =−0.049 2x2+6.103 0x−76.911 0.18 0.170 说明:y为土壤CO2排放通量,x为土壤体积含水量。 -
1958年,BIRCH[34]最早观测到降水导致的土壤水分变化能够激发土壤呼吸,该现象被称为“Birch效应”。干旱土壤再湿润过程引起的CO2脉冲可持续20 d以上[35],且土壤呼吸速率可提高5倍以上(与恒湿土壤相比)[36],因此,干湿交替被认为是影响土壤呼吸的重要因素[37]。研究表明:受降水量、土壤初始含水量、降水格局、生态系统类型、干旱持续事件和干湿交替频率和强度的影响[19],土壤干湿交替引起的土壤碳排放可能呈现不同的变化规律。本研究结果表明:干湿交替强度显著影响土壤呼吸。2种干湿交替强度下,随着水分的施加,土壤CO2排放通量均从较低水平逐渐达到最大值,然后再逐渐降低。这是因为随着水分的施加,土壤水分达到饱和或者积水状态,较高的土壤水分使土壤透气性变差,微生物呼吸的氧气利用受到限制[38]。而后,随着时间的推移,土壤水分降低,土壤透气性得到改善,氧气的利用率提高,土壤CO2排放通量迅速提高[39]。其原因,一方面可能是干湿交替引起的空气压迫以及土壤的膨胀-收缩过程,导致土壤团聚体发生物理破坏并促使有机质暴露于微生物,最终通过加速微生物对有机质的分解而排放大量CO2[40−41]。另一方面在极端干旱环境下,微生物通过休眠或者细胞脱水等方式存活[42−43],当土壤水分增加时,微生物得到水分补给,其活性增强[44−45],且总量和丰度升高[46]。
此外,2种不同强度干湿交替下不同周期土壤CO2排放通量也具有一定的差异。在不同的周期内,25 mm降水干湿交替强度每个周期土壤CO2排放通量差异显著,而10 mm降水干湿交替强度下的不同周期土壤CO2排放通量差异不显著。有研究表明:土壤呼吸短时间内升高后逐渐下降的原因可能是由于经过多次的干湿交替过程中,土壤可利用有机质被消耗减少[47],从而影响了土壤的生物活性,使土壤呼吸下降。在没有外源有机碳输入的情况下,土壤经过反复的干湿交替后,土壤团聚体稳定性得到提高,释放有机质的能力减弱,土壤有机质释放量减少[48]。25 mm降水干湿交替强度下,第1个周期土壤可利用有机质得到充分释放利用,而在第2个和第3个周期这种可利用有机质被消耗后不断减少,因此,该干湿交替强度下,从第1个周期到第3个周期,土壤CO2排放通量下降趋势明显。10 mm降水干湿交替强度下,3个周期的土壤CO2排放通量差异不显著。这有2个原因:一方面,土壤可利用有机质可能并未得到充分释放,反复的干湿交替作用下,土壤仍能释放出可利用有机质被微生物利用;另一方面,本研究所涉及的土壤类型为喀斯特地区的石灰性土壤,在10 mm降水干湿交替强度下,土壤碳酸盐溶解/沉淀过程排放的土壤CO2占比可能较大,从而导致喀斯特地区石灰性土壤对干湿交替的响应与其他土壤类型存在一定差异,如赵蓉等[11]研究了固沙植被区土壤呼吸对反复干湿交替的响应,表明5、10和20 mm降水3个干湿交替强度下,不同循环周期土壤CO2排放通量均呈下降之势。
-
干湿交替强度显著影响土壤CO2累计排放量。25 mm降水干湿交替强度的土壤CO2累计排放量明显比10 mm降水干湿交替强度大。土壤从干旱状态到湿润后,土壤团聚体等结构被破坏,增加了土壤中有机质,土壤微生物消耗更多氧气,排放出更多的CO2[49]。这种增加的可利用有机质和干湿交替强度有关。在较强的干湿交替强度下,土壤释放的可利用有机质可能更多。同时,施加较少的水分时,不能使水分渗入到土壤内部,土壤水分很容易被蒸发,下层土壤并没有水分渗入,土壤环境变化较小,大部分土壤微生物依然处于休眠状态,使得土壤CO2累计排放量较小;水分施加量增大时,可以使下层土壤有更多的水分渗入,土壤环境发生较大变化,打破了土壤微生物的休眠状态,使得微生物更加活跃[50]。另外,本研究的土壤类型为喀斯特地区的石灰性土壤。近年的研究结果表明:土壤无机碳对土壤CO2排放具有一定的贡献[28−32],增加土壤湿度通常会导致碳酸盐排放的CO2增加[51−53]。这种现象可以通过2个主要途径解释:首先,增加土壤湿度会促进有机碳的矿化并减少CO2的扩散[54−55],从而导致土壤中CO2浓度的增加,可能进一步促使碳酸盐系统的溶解/沉淀过程发生[53, 56]。其次,土壤湿度本身会推动碳酸盐与CO2之间的平衡反应[52−53, 56]。
-
土壤含水量是影响土壤呼吸的另一个重要非生物因子,对土壤呼吸影响相当复杂。土壤含水量既可以直接影响根和微生物呼吸,也可以通过影响土壤物理特性等其他环境因子间接影响土壤呼吸速率。关于土壤呼吸和土壤湿度的关系,不同的研究者在自己特定的条件下得出完全不同的结论。有研究发现:土壤呼吸和土壤含水量有着显著的相关关系[57−59],但也有研究指出:土壤呼吸和土壤湿度相关关系不显著[60−62]。本研究中,第1个和第2个干湿交替周期的土壤含水量和土壤CO2排放通量的相关关系显著,第3个周期,土壤含水量和土壤呼吸之间的相关关系不显著,整体上表现出随干湿交替过程的发生,土壤含水量和土壤呼吸之间的相关关系减弱。原因可能是,第1个周期,土壤从最开始的干旱状态变湿润,短期之内土壤团聚体遭受破坏,土壤中与土壤水分条件密切相关的可利用有机质增加[40−41]。同时,水分条件也可以对微生物的代谢活动产生影响,如水分的变化迅速改变了微生物生长速率[63]。随着多次干湿交替的进行,土壤团聚体的稳定性不断增强,土壤微生物活性降低[64],从而减弱了土壤含水量变化对土壤呼吸的影响,致使土壤呼吸和土壤湿度的相关性不断变弱。
-
①干湿交替强度显著影响土壤呼吸。2种干湿交替强度下,随着水分的施加,土壤CO2排放通量较短时间内达到最大值,然后再逐渐降低。在不同周期内,10 mm降水干湿交替强度下,不同周期土壤CO2排放通量之间差异不显著;25 mm降水干湿交替强度下,不同周期土壤CO2排放通量之间差异显著。第1个和第3个周期土壤CO2排放通量在不同干湿交替强度下显著不同,而第2个周期表现出干湿交替强度对土壤CO2排放通量影响不显著。②2种干湿交替强度对土壤CO2累计排放量影响显著 。在整个干湿交替循环过程中,25 mm降水干湿交替强度的土壤CO2累计排放量比10 mm降水干湿交替强度多。在不同周期,25 mm降水干湿交替强度下,第1个周期土壤总CO2排放量和第2个周期差异不显著,与第3个周期土壤总CO2排放量差异显著,10 mm降水干湿交替强度下不同周期土壤总CO2排放量之间差异不显著。不同的干湿交替强度下,各周期之间土壤总CO2排放量差异显著。③干湿交替多个周期作用下,土壤含水量和土壤CO2排放通量之间的相关程度不断降低。
Response of soil respiration to dry-wet alternation in karst farmland
-
摘要:
目的 探究中国西南喀斯特地区农田石灰性土壤二氧化碳(CO2)排放通量对该区频繁发生的干湿交替的响应规律。 方法 以喀斯特农田石灰性土壤为研究对象,设计2种干湿交替强度(模拟降水量为10和25 mm),以干湿交替循环周期10 d为1个循环过程,研究喀斯特农田土壤呼吸对干湿交替的响应。 结果 干湿交替强度显著影响土壤呼吸速率和土壤总CO2排放量(P<0.05)。在2种干湿交替强度下,随着水分施加,土壤CO2排放通量会在短时间内达到最大值,然后逐渐下降。对于10 mm降水干湿交替强度,不同循环周期下的土壤CO2排放通量和土壤总CO2排放量之间的差异并不显著。然而,对于25 mm降水干湿交替强度,大多数循环周期下的土壤CO2排放通量和土壤总CO2排放量之间的差异显著(P<0.05)。相关分析表明:干湿交替多重周期作用下,土壤含水量和土壤CO2排放通量之间的相关关系不断降低。 结论 干湿交替强度和干湿交替过程是影响喀斯特农田土壤呼吸排放的重要因素。图5表1参64 Abstract:Objective The objective of this study is to explore the response of soil CO2 emission flux from calcareous soil to frequent dry-wet alternation in farmland of karst areas in southwest China. Method Taking calcareous soil in karst farmland as the research object, two dry-wet alternation intensities (simulated precipitation of 10 and 25 mm) were designed, with a dry-wet alternation cycle of 10 days as one cycle process, to investigate the response of soil respiration to dry-wet alternation in karst farmland. Result The intensity of dry-wet alternation significantly affected soil CO2 emission flux and total soil CO2 emissions (P<0.05). Under two different dry-wet alternation intensities, soil CO2 emission flux reached its maximum shortly after water was applied, and then gradually decreased. For the 10 mm dry-wet alternation intensity, there was no significant difference between soil CO2 emission flux and total soil CO2 emissions under different cycles. However, for the 25 mm dry-wet alternation intensity, the difference between soil CO2 emission flux and total soil CO2 emissions under most cycles was significant (P< 0.05). Correlation analysis revealed that the correlation between soil water content and soil CO2 emission flux decreased continuously under the multiple cycles of dry-wet alternation. Conclusion The intensity and process of dry-wet alternation are important factors affecting soil respiration release in karst farmland. [Ch, 5 fig. 1 tab. 64 ref.] -
Key words:
- karst farmland /
- soil respiration /
- dry-wet alternation /
- response
-
园艺植物是指提供人类食用或观赏的植物,包括果树、蔬菜、观赏植物等,具有较高的经济价值和美化用途[1]。在现代社会中园艺植物产品已成为人们生活中不可缺少的部分,且市场需求在逐年增加。目前,园艺植物生产面临育种周期长、选择范围有限等问题,已经不能满足日益增长变化的市场需求[2]。研究园艺植物生长发育的内在机制对解决上述问题至关重要,并可有效提高其产量和质量。园艺植物通过光合作用产生的碳水化合物,需经过复杂的方式运输到库器官(如根、茎、嫩叶、果实),具体包含有机同化物在源端韧皮部的装载、经韧皮部长距离运输、库器官韧皮部的卸出、韧皮部后运输等一系列过程[3−4]。其中,韧皮部卸载对光合同化物在器官之间的运输和分配有着重要作用,是决定园艺植物产量和生产力的重要因素[5]。韧皮部卸载指在韧皮部运输的同化物从筛分子伴胞复合体(SE-CC)卸出的筛分子卸载和韧皮部短距离后运输2个密切相关的过程,是目前植物研究的热点领域之一。简言之,韧皮部卸载即光合同化物从维管束韧皮部转移到库细胞以促进植物生长发育和能量储存的过程[6−7]。
韧皮部运输的主要糖成分是研究韧皮部卸载的重要基础,植物体内糖的转运不仅对植物的生理活动如光合作用和碳分配等有直接影响,还影响植物的营养发育和花芽分化等过程[8]。本研究从韧皮部运输的主要糖分形式、韧皮部卸载方式、韧皮部卸载的研究方法及对园艺植物的影响等4个方面对园艺植物韧皮部卸载研究进行评述,旨在为后续研究提供参考和借鉴。
1. 韧皮部运输的主要糖分形式
在研究同化物卸载途径前,首先应该清楚韧皮部运输同化物的主要形式。还原糖类在运输过程中极易被氧化,因此,能进行韧皮部长距离运输的糖类为非还原糖或糖醇。大多数高等植物以蔗糖作为光合产物的主要运输形式[9],但自然界也存在以其他形式的糖作为光合产物主要运输形式的植物,如约5%的植物以棉子糖系列寡糖或者山梨醇为主,园艺植物中如黄瓜Cucumis sativus、西瓜Citrullus lanatus等葫芦科Cucurbitaceae植物以棉子糖为主[10−11],蔷薇科Rosaceae以山梨醇为主[12]。需注意区分同化物的储藏形式和运输形式,如西瓜尽管以棉子糖系列寡糖为主要运输糖分,但果实储存糖分则是以蔗糖为主[11]。
2. 韧皮部卸载的方式
虽然韧皮部卸载包括筛分子卸载和韧皮部后运输2个主要过程[6],但是不同的园艺植物在不同的发育时期以及不同的组织器官中,韧皮部卸载的方式也存在很大差别[13]。韧皮部卸载方式主要包括共质体途径、质外体途径或两者交替途径。其中共质体途径又可称为胞间转运,而质外体途径又可称为质膜转运[7]。
2.1 共质体卸载途径
共质体卸载途径指光合同化物通过胞间连丝从筛分子伴胞复合体中将同化物运输到周围韧皮部薄壁细胞,并进一步运送到库器官的过程[14−16]。共质体卸载途径主要受胞间连丝与中间细胞影响,属于顺浓度梯度的被动运输过程。近期研究表明:胞间连丝的种类(如漏斗型)、分叉情况、是否处于闭合态等均会影响胞间连丝的功效,即意味着有时即便存在胞间连丝,但若胞间连丝是闭合态,也无法采用共质体运输[17−19]。在硬骨凌霄Tecoma capensis的研究中发现:中间细胞与周围韧皮部薄壁细胞存在大量的胞间连丝,这进一步证实了中间细胞是共质体卸载的又一重要形态标志[16, 20]。此外,糖类代谢酶在韧皮部卸载过程中有显著作用,如蔗糖合酶(SuSy)与共质体卸载途径密切相关(图1A),可见对关键代谢酶的研究尤为重要,是证明共质体卸载方式的重要证据。
2.2 质外体卸载途径
质外体卸载途径是指光合同化物从筛分子伴胞复合体中跨膜进入质外体空间,再经过机体代谢和(或)跨膜蛋白转运,被周围韧皮部薄壁细胞吸收并运输到库器官的过程[14]。因此,质外体卸载途径与共质体卸载途径的主要区别:一是质外体卸载不通过胞间连丝,二是质外体卸载需借助各类糖转运蛋白逆浓度梯度的主动运输过程[16]。以质外体卸载为主的研究中,转移细胞是判断质外体卸载途径的主要形态标志[16, 21]。在拟南芥Arabidopsis thaliana韧皮部薄壁转移细胞的功能研究中发现,蔗糖通过影响韧皮部薄壁转移细胞中蔗糖输出活性来调节细胞壁向内生长[22],这与先前关于增加的质膜表面积从而提高物质跨膜运输效率的假设是一致的[15]。在代谢酶方面,细胞壁酸性转化酶是调控韧皮部质外体卸载的主要酶,可在胞外空间分解蔗糖(图1B),细胞壁酸性转化酶活性及转录本的表达变化常与共质体向质外体转化时间变化相一致[23−24]。
3. 韧皮部卸载的研究方法
用于研究同化物卸载途径的传统方法主要有空中皮技术、新浆果杯法和组织圆片技术等[14−15]。植物体内物质运输细胞学路径的方法也得到较大程度的革新,目前植物组织及细胞学路径研究的主要方法包括透射电子显微镜技术、荧光染料示踪法、绿色荧光蛋白示踪法、胶体金免疫定位技术等。
3.1 韧皮部超微结构观察
韧皮部及其周围薄壁细胞的超微结构观察可为同化物韧皮部卸载提供细胞学证据。如以‘富有’甜柿Diospyros kaki ‘Fuyu’果实为研究对象,发现韧皮部伴胞与维管薄壁细胞上均分布一定数量的胞间连丝,说明韧皮部卸载路径为共质体路径[26]。此外,有研究表明栽培枣Ziziphus jujuba和野生酸枣Z. jujuba var. spinosa在果实成熟阶段胞间连丝密度以及可溶性糖含量差别较大,前者存在大量胞间连丝,加速了以蔗糖为代表的可溶性糖的显著积累,后者胞间连丝很少且可溶性糖积累不明显[27−28]。这表明超微结构可用于揭示韧皮部卸载强度,是完成卸载的结构基础。
3.2 荧光法鉴别卸载途径
3.2.1 共质体类
目前最常用的共质体标记物为羧基荧光素 (carboxyfluorescein, CF),CF可长距离运输,属“膜不透性”探针[10, 29−30],但会受到质体外微环境pH和液泡区隔化的限制[31]。与CF不同的是,荧光黄染料 (lucifer yellow CH, LYCH)不受pH影响,在生理pH值下有较高的解离度,故不易透膜,因此,同样可以作为共质体标记物[32]。目前CF广泛应用于园艺植物的根、茎、叶、果实[11, 33−40]中,用以判断卸载路径的变化。由表1可见:在大部分已研究的园艺植物中都用该方法来研究韧皮部卸载路径。前期研究也采用CF表明:东方百合‘索邦’Lilium ‘Sorbonne’[24]和石蒜Lycoris radiata[41]的鳞茎形成后期以共质体运输为主。
表 1 园艺植物韧皮部卸载研究汇总Table 1 Summary of studies on phloem unloading of horticultural plants分类 种名 研究内容 研究方法 卸载方式 参考文献 果树 ‘富有’甜柿Diospyros kaki ‘Fuyu’ 果实发育 半薄切片法 共质体 [26] 扁桃Prunus dulcis 种皮发育 半薄切片法 共质体 [52] 果实发育 质外体 [53] 核桃Juglans regia 种皮发育 半薄切片法、胶体金免疫
定位技术、CFDA示踪共质体 [32, 47] 果皮发育 质外体 桃Amygdalus persica 果实发育 半薄切片法 质外体 [55] 蓝莓Vaccinium uliginosum 果实发育 半薄切片法、CFDA示踪 质外体 [46] 苹果Malus domestica 果实发育 胶体免疫金定位技术、CFDA示踪 质外体 [39, 54] 草莓Fragaria ananassa 果实发育 CFDA示踪 质外体 [37] 鸭梨Pyru bretschneideri 果实发育 CFDA示踪 质外体 [38] 猕猴桃Actinidia chinensis 果实发育 半薄切片法、CFDA示踪 质外体 [36] 荔枝Litchi chinensis 果皮发育 CFDA示踪 质外体 [40] 葡萄Vitis vinifera 果实发育 绿色荧光蛋白、CFDA示踪 共质体-质外体 [44] 无花果Ficus carica 果实发育 CFDA示踪 共质体-质外体 [56] 文冠果Xanhoceras sorbifolium 果实发育 半薄切片法、CFDA示踪 共质体-质外体-共质体 [61] 蔓越橘Vaccinium macrocarponl 果实发育 半薄切片法、CFDA示踪 共质体-质外体-质外体 [60] 枣Ziziphus jujuba 果实发育 胶体免疫金定位技术、CFDA示踪 共质体-质外体-质外体 [57−59] 质外体-共质体-质外体 [28, 30, 49] 蔬菜 豌豆Pisum sativum 茎发育 14CO2标记 共质体 [63] 蚕豆Vicia faba 茎发育 14CO2标记 共质体 [64] 黄瓜Cucumis sativus 果实发育 绿色荧光蛋白、CFDA示踪 质外体 [10, 65] 西瓜Citrullus lanatus 果实发育 CFDA示踪 质外体 [11] 甜菜Beta vulgaris 叶片发育 14CO2标记 共质体 [67−69] 根发育 共质体-质外体 番茄Solanum lycopersicum 果皮发育 CFDA示踪 共质体-质外体 [66] 观赏植物 黄梁木Neolamarckia cadamba 叶柄发育 CFDA示踪 共质体 [35] 云南箭竹Fargesia yunnanensis 地上茎发育 CFDA示踪 共质体 [70−71] 硬骨凌霄Tecoma capensis 叶脉 半薄切片法 共质体 [20] 南林-95杨Populus × euramericana ‘Nanlin95’ 叶发育 CFDA示踪 共质体 [33] 茎发育 共质体 根发育 质外体 毛地黄Digitalis purpurea 蜜腺 半薄切片法 质外体 [72] 龟背竹Monstera deliciosa 气根发育 14CO2标记 质外体 [73] 牡丹Paeonia suffruticosa 叶柄发育 半薄切片法、CFDA示踪 生长期:共质体为主,质外体为辅 [34] 茎发育 休眠期:共质体 根发育 慈竹Bambusa emeiensis 地上茎发育 CFDA示踪 共质体-质外体 [35] 油茶Camellia oleifera 果实发育 CFDA示踪 共质体-质外体-共质体 [74−75] 绿色荧光蛋白是直观性极强的遗传标记物,属共质体探针,与CF相比,可获得更准确的示踪结果[15];该方法在拟南芥[42]、木薯Manihot esculenta[43]卸载路径鉴定上得到了很好的应用,但在园艺植物中应用较少,仅在葡萄Vitis vinifera上有报道[44]。
3.2.2 质外体类
Esculin可被蔗糖转运蛋白(SUT)及专一运输蔗糖的SWEET等运输,可指示是否为韧皮部质外体卸载途径[11, 45]。此PTS (trisodium, 3-hydroxy-5,8,10-pyreno trisulfonate)和SRG (sulphorhoda-mine G)等荧光染料只限制在质外体中,不能被细胞壁偶联,也是较为理想的质外体标记物[46]。综合来看,荧光染料可通过不同注射技术引入韧皮部,代谢多久可观察到明显荧光则由园艺植物种类决定,一般为12~72 h[23, 46];绿色荧光蛋白则较为稳定,但其应用受转化体系建立与否的制约,耗时相对长。以上荧光观察均可通过荧光显微镜或者激光共聚焦显微镜进行,从而辅助明确卸载路径。
3.3 代谢酶
3.3.1 亚细胞定位
在质外体卸载的研究中,常用胶体金免疫定位技术研究酸性转化酶在植物器官内的亚细胞定位,以此明确韧皮部卸载的机制[14]。该方法在园艺植物研究中仅涉及到核桃Juglans regia[32, 47]、枣[30]和苹果Malus domestica[39]等少数植物。
3.3.2 酶活性与基因表达
蔗糖是韧皮部运输的主要糖分之一,研究酸性转化酶和蔗糖合酶的活性与基因表达对韧皮部卸载有重要意义。在慈竹Bambusa emeiensis幼笋韧皮部卸载研究中发现:竹笋后期细胞壁酸性转化酶活性及表达量与前期相比明显升高,且同一时期韧皮部卸载方式由共质体向质外体转变,说明细胞壁酸性转化酶与韧皮部卸载方式变化保持一致[48],相似的结果在枣[49]、黄瓜[10]中也有体现。相反,蔗糖合酶活性在马铃薯Solanum tuberosum块茎形成过程中,由质外体途径向共质体途径转变时同步增高[50],蔗糖合酶表达量则在‘索邦’百合[24]和石蒜[41]鳞茎形成的后期阶段显著提高。
4. 园艺植物韧皮部卸载研究
4.1 果树韧皮部卸载研究
韧皮部通过质外体和(或)共质体途径对光合同化物等进行转运来调控果实发育,故韧皮部卸载在提高果树果实质量及产量方面有重要作用[51]。目前对果树韧皮部卸载的研究相对较多。大多数果树卸载路径为单一路径,即只有共质体或质外体卸载路径,还有一些果实韧皮部卸载路径存在转换。由表1可见:蓝莓Vaccinium uliginosum等10种果实的卸载方式为单一路径,且以质外体卸载路径为主;扁桃Prunus dulcis果实维管束结构中没有发现筛分子伴胞复合体与周围韧皮部薄壁细胞存在胞间连丝[52−53],而且其余9种果实在研究中发现荧光染料CF均未从维管束中卸出[26, 36−40, 46, 54−55]。表明其韧皮部卸载路径是质外体路径,现有报道中仅甜柿Diospyros kaki果实的卸载方式因胞间连丝的存在被判定为共质体卸载路径[20, 26]。
共质体卸载路径和质外体卸载路径并不相互排斥,而是可以互相转化的,在果实韧皮部卸载研究中,同化物在果实的不同发育期呈现不同的卸载路径。葡萄、灵武长枣Ziziphus jujuba ‘Lingwuchangzao’、中宁圆枣Ziziphus jujuba ‘Zhongningyuanzao’、无花果Ficus carica和蔓越橘Vaccinium macrocarponl等果实的韧皮部卸载都遵循共质体到质外体路径的转变过程,有相似也有差异。其中葡萄和无花果果实存在发育前期和发育后期2个生长期,在发育前期两者筛分子伴胞复合体和韧皮部薄壁细胞之间均存在大量的胞间连丝,但在发育后期不存在胞间连丝[44, 56]。枣果实的生长期包括膨大前期、快速膨大期、着色期和完熟期。灵武长枣和中宁圆枣的研究发现:荧光染料CF只在膨大前期从维管束中卸出,其他时期CF均未卸出[57−58],通过超微结构观察,进一步验证了灵武长枣果实的卸载路径[59]。而在另一些枣品种中却在果实发育前中后期存在由质外体—共质体—质外体卸载路径相互转换的过程[30, 49]。蔓越橘果实的生长期分为幼果期、膨果期、转色期与成熟期,胞间连丝只在幼果期与膨果期被发现,在转色期和成熟期均未被发现[60]。对核桃果肉韧皮部及其周围薄壁细胞组织定位研究[32]发现:核桃果皮韧皮部卸载主要采取质外体路径,而种皮内则采用共质体路径,说明在果实不同部位存在差异。文冠果Xanthoceras sorbifolium果实在发育前期筛分子伴胞复合体与韧皮部薄壁细胞存在胞间连丝,发育中期未发现胞间连丝,但发育后期胞间连丝重新出现,表明在果实发育过程中韧皮部卸载途径存在共质体—质外体—共质体的转化过程[61]。因此,韧皮部卸载路径可能随着果实的发育进程会出现一次甚至多次的转化,应结合发育阶段准确分析,且具有品种(种)特异性,不同部位也会呈现差异。
4.2 蔬菜韧皮部卸载研究
蔬菜类包括茎菜类、根菜类、果菜类等。蔬菜通过光合作用产生的化合物经韧皮部运输到库器官,而不同库器官之间的光合产物分配被认为是影响其产量的主要因素[62]。目前蔬菜韧皮部卸载研究主要在果菜类和根菜类,尤以果菜类的相关研究较多。针对果菜类不同器官及不同发育过程卸载方式均有研究(表1)。在豌豆Pisum sativum根尖发育过程中发现卸载方式主要以共质体卸载路径为主[63],在蚕豆Vicia faba中也有相似结果[64];在水苏糖运输型植物黄瓜[10]和西瓜[11]的研究中,均发现荧光染料CF并未从维管束中卸出,表明韧皮部卸载路径以质外体为主,此外,己糖转运蛋白CsSUC4在黄瓜果实发育过程中均被限制在韧皮部内,进一步证实黄瓜韧皮部卸载为质外体路径[65]。但在同样为果菜类的番茄Solanum lycopersicum中发现:前期CF可以在番茄果皮薄壁细胞间移动,但后期则不可。表明番茄幼果期以共质体路径为主,发育后期则转变成质外体路径[66]。
近年对根菜类甜菜Beta vulgaris韧皮部卸载的研究较为透彻,不仅包括肉质根还涉及到叶片。通过对甜菜肉质根中细胞壁酸性转化酶和蔗糖合酶表达模式研究,明确了在直根发育过程中韧皮部卸载存在从共质体向质外体转化[67];在叶片研究中,将PCMBS (parachloromercuribenzene sulfonic acid)引入发育中的甜菜叶片,发现同化物的输入未受到影响,且同化物从韧皮部的卸出也未经过跨膜运输,故其韧皮部卸载路径以共质体为主[68−69]。可见,各类蔬菜的韧皮部卸载路径会因器官和发育阶段的不同而有所差异,且在不同器官的发育过程中存在转化现象。后续相关研究应根据蔬菜品种具体分析。
4.3 观赏植物韧皮部卸载研究
4.3.1 观形植物
观形植物多以树形优美的乔木为主,但在观形植物研究方面很少涉及韧皮部卸载途径。在‘南林95杨’Populus ×euramericana ‘Nanlin95’[33]研究中发现:CF在“库”叶、茎尖和根尖都可以卸出,表明韧皮部卸载方式为共质体路径,而在次生茎和次生根中无法卸出,则证明其主要采用质外体路径。同样在黄梁木Neolamarckia cadamba叶柄研究中也发现:CF可在韧皮部薄壁细胞内卸载,证实其卸载方式以共质体路径为主[35]。
4.3.2 观花植物
观花植物的研究对象既有草本也有木本植物,木本植物的韧皮部卸载路径较草本植物多变。在硬骨凌霄叶脉中发现中间细胞与周围韧皮部薄壁细胞存在大量胞间连丝,证明其韧皮部卸载方式为共质体[20]。在毛地黄Digitalis purpurea蜜腺中发现:在花蜜分泌过程中质外体占主导地位[72]。而在油茶Camellia oleifera果实研究中发现:在果实发育的早、中、晚期蔗糖运输途径有差异,遵循从共质体—质外体—共质体的转换规律[74],该结论同样在油茶品种‘华硕’C. oleifera ‘Huashuo’中得到验证[75]。另外,在牡丹Paeonia suffruticosa的研究中发现:牡丹在生长期和休眠期同化物运输方式各不相同,生长期除根部外,各器官之间均存在胞间连丝,即光合同化物在韧皮部中以共质体卸载为主,质外体卸载为辅;但在休眠期光合同化物的运输则以共质体卸载为主[34]。
4.3.3 观叶植物
观叶类植物的研究目前只涉及竹Bambusoideae和龟背竹Monstera deliciosa,但是关于竹笋或竹秆中糖的韧皮部卸载和卸载后路径的信息较少。已有研究发现:慈竹幼笋CF能够扩散出韧皮部,但被限制在维管束内,表明蔗糖在维管束内的卸载以共质体路径为主,但在维管束与周围薄壁细胞间为质外体路径[35];在云南箭竹Fargesia yunnanensis韧皮部卸载过程中存在很多胞间连丝,确定其韧皮部卸载为共质体路径[70−71];龟背竹气根中的蔗糖被细胞壁酸性转化酶分解,经己糖转运至库细胞,这为质外体卸载提供了有力证据[73]。
5. 问题与展望
韧皮部卸载是园艺植物生长发育过程中的关键,是植物体内多因素共同作用的结果,包括自身细胞结构、代谢酶和蔗糖转运蛋白等。通过了解韧皮部卸载的途径与内部机制有助于提高园艺植物的产量与质量。目前对园艺植物韧皮部卸载的研究正处于发展阶段,研究由初期的细胞层面过渡至生理生化层面,并开始关注到分子层面。单种方法可能带来错误的表征,后续研究可综合采用细胞学,糖含量、酶活性及基因表达等定量方法从生理化及分子等多层面明确卸载路径。有研究表明蔗糖代谢酶以及蔗糖转运蛋白与韧皮部卸载途径的变化有关,但在园艺植物韧皮部卸载方面的研究还很欠缺。因此,需重视园艺植物韧皮部卸载与代谢酶以及糖转运蛋白的联系。
现有的报道认为蔷薇科植物以山梨醇为主要运输糖,葫芦科植物以棉子糖类为主,但同科内物种研究仍较少,应扩大研究科内物种数量,寻找不同物种卸载路径中的共性与个性。决定园艺植物质量和产量的重要性状大多与糖的转运密切相关,集中在果实的糖含量、地下变态器官的碳储藏等方面,因此韧皮部卸载在相关生物学过程中可发挥极为重要的作用,但现有研究并未揭示韧皮部卸载路径的精确调控机制。
总体而言,园艺植物韧皮部卸载机制的研究已取得了一些进展,但仍有很多问题未解决。今后的研究重点可包括:①从细胞学、生理生化学及分子生物学等不同层面进行研究,明确卸载路径中的系统性、有效性及互证性;②不同运输糖类在韧皮部卸载中的异同;③糖信号是否介导了韧皮部卸载路径的根本性改变;④结合突变体,深入阐述糖韧皮部卸载的调控机制。应结合分子生物学、基因工程学等领域,进一步揭示韧皮部卸载在园艺植物生长发育中的作用机制,为园艺植物的质量与产量的提升提供更深入的理论支撑。
-
表 1 土壤CO2排放通量与土壤湿度的相关关系
Table 1. Correlation between soil CO2 emission flux respiration and soil moisture
周期 样本数/个 拟合方程 相关系数 P 1 60 y =0.001 9x2+5.998 2x−41.743 0.75 0.000 2 60 y =−0.054 1x2+8.147 1x−124.87 0.64 0.000 3 60 y =−0.049 2x2+6.103 0x−76.911 0.18 0.170 说明:y为土壤CO2排放通量,x为土壤体积含水量。 -
[1] AHIRWAL J, MAITI S K, SINGH A K, et al. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India [J]. Science of Total Environment, 2017, 583: 153 − 162. [2] DENG Lei, LIU Guobin, SHANGGUAN Zhouping. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis [J]. Global Change Biology, 2014, 20(11): 3544 − 3556. [3] ZAMANIAN K, ZAREBANADKOUKI M, KUZYAKOVY Y. Nitrogen fertilization raises CO2 efflux from inorganic carbon: a global assessment [J]. Global Change Biology, 2018, 24(7): 2810 − 2817. [4] 田娜, 王义祥, 翁伯琦. 土壤碳储量估算研究进展[J]. 亚热带农业研究, 2010, 6(3): 193 − 198. TIAN Na, WANG Yixiang, WENG Boqi. Advances in estimating soil carbon storage [J]. Subtropical Agriculture Research, 2010, 6(3): 193 − 198. [5] 谢高地, 肖玉. 农田生态系统服务及其价值的研究进展[J]. 中国生态农业学报, 2013, 21(6): 645 − 651. XIE Gaodi, XIAO Yu. Review of agro-ecosystem services and their values [J]. Chinese Journal of Eco-Agriculture, 2013, 21(6): 645 − 651. [6] 林而达. 气候变化与农业可持续发展[M]. 北京: 北京出版社, 2001. LIN Erda. Climate Change and Agricultural Sustainable Development [M]. Beijing: Beijing Publishing House, 2001. [7] AUSTIN A T, YAHDJIAN L, STARK J M, et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems [J]. Oecologia, 2004, 141: 221 − 235. [8] 牛百成, 赵成义, 冯广龙, 等. 干湿交替对新疆绿洲农田土壤CO2排放的影响[J]. 水土保持通报, 2016, 36(3): 74 − 80. NIU Baicheng, ZHAO Chengyi, FENG Guanglong, et al. Effects of alternate drying and wetting on soil CO2 emissions in oasis farmland of Xinjiang region [J]. Bulletin of Soil and Water Conservation, 2016, 36(3): 74 − 80. [9] CHEN Ruirui, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories [J]. Global Change Biology, 2014, 20(7): 2356 − 2367. [10] 赵蓉, 李小军, 赵洋, 等. 固沙植被区两类结皮斑块土壤呼吸对不同频率干湿交替的响应[J]. 生态学杂志, 2015, 34(1): 138 − 144. ZHAO Rong, LI Xiaojun, ZHAO Yang, et al. CO2 efflux from two biologically-crusted soils in response to drying-rewetting cycles with different frequencies in the Tengger Desert [J]. Chinese Journal of Ecology, 2015, 34(1): 138 − 144. [11] 赵蓉, 李小军, 赵洋, 等. 固沙植被区土壤呼吸对反复干湿交替的响应[J]. 生态学报, 2015, 35(20): 6720 − 6727. ZHAO Rong, LI Xiaojun, ZHAO Yang, et al. Response of soil respiration to repeated cycles of drying and rewetting in soils of the sand-fixed region of the Tengger Desert [J]. Acta Ecologica Sinica, 2015, 35(20): 6720 − 6727. [12] 张传更, 高阳, 王广帅, 等. 干湿交替和外源氮对农田土壤CO2和N2O释放的影响[J]. 农业环境科学学报, 2018, 37(9): 2079 − 2090. ZHANG Chuangeng, GAO Yang, WANG Guangshuai, et al. Effects of drying-wetting and additional nitrogen on CO2 and N2O emissions from farmland soils [J]. Journal of Agro-Environment Science, 2018, 37(9): 2079 − 2090. [13] 包振宗, 侯艳艳, 朱新萍, 等. 干湿交替和模拟氮沉降对巴音布鲁克高寒湿地土壤CO2排放的影响[J]. 农业环境科学学报, 2018, 37(3): 598 − 604. BAO Zhenzong, HOU Yanyan, ZHU Xinping, et al. Effect of alternating wetting and drying and simulated nitrogen deposition on soil CO2 emission in alpine wetlands of Bayinbulak [J]. Journal of Agro-Environment Science, 2018, 37(3): 598 − 604. [14] 乐艺, 张晓雅, 高俊琴, 等. 模拟干湿交替对若尔盖高寒湿地土壤呼吸及可溶解性碳氮稳定性的影响[J]. 水土保持研究, 2020, 27(1): 81 − 87. YUE Yi, ZHANG Xiaoya, GAO Junqin, et al. Effect of simulated drying-rewetting cycles on soil respiration and dissolved organic carbon and nitrogen stability in Zoige Alpine Wetlands [J]. Research of Soil and Water Conservation, 2020, 27(1): 81 − 87. [15] 高雅晓玲, 苗淑杰, 乔云发, 等. 干湿循环促进风沙土土壤有机碳矿化[J]. 干旱区资源与环境, 2020, 34(1): 140 − 147. GAO Yaxiaoling, MIAO Shujie, QIAO Yunfa, et al. Dry-wet cycles promote soil organic carbon mineralization in aeolian sandy soil [J]. Journal of Arid Land Resources and Environment, 2020, 34(1): 140 − 147. [16] 黄石德, 叶功富, 林捷, 等. 干湿交替对武夷山不同海拔土壤碳矿化的影响[J]. 生态学杂志, 2018, 37(2): 312 − 321. HUANG Shide, YE Gongfu, LIN Jie, et al. Effects of drying-wetting cycles on soil organic carbon mineralization along an elevation gradient in Wuyi Mountain [J]. Chinese Journal of Ecology, 2018, 37(2): 312 − 321. [17] GAO Junqin, FENG Jin, ZHANG Xuewen, et al. Drying-rewetting cycles alter carbon and nitrogen mineralization in litter-amended alpine wetland soil [J]. Catena, 2016, 145: 285 − 290. [18] 李勇. 喀斯特地区土壤呼吸对干湿交替的响应规律及其微生物学机制研究[D]. 北京: 中国科学院大学, 2019. LI Yong. Response of Soil Respiration to Drying and Rewetting Alternations and Microbiological Mechanism in Karst Area [D]. Beijing: University of Chinese Academy of Sciences, 2019. [19] 王融融, 余海龙, 李诗瑶, 等. 干湿交替对土壤呼吸和土壤有机碳矿化的影响述评[J]. 水土保持研究, 2022, 29(1): 78 − 85. WANG Rongrong, YU Hailong, LI Shiyao, et al. Review on the effects of soil alternate drying-rewetting cycle on soil respiration and soil organic carbon mineralization [J]. Research of Soil and Water Conservation, 2022, 29(1): 78 − 85. [20] 李峰平, 章光新, 董李勤. 气候变化对水循环与水资源的影响研究综述[J]. 地理科学, 2013, 33(4): 457 − 464. LI Fengping, ZHANG Guangxin, DONG Liqin. Studies for impact of climate change on hydrology and water resources [J]. Scientia Geographica Sinica, 2013, 33(4): 457 − 464. [21] 张雪雯, 莫熠, 张博雅, 等. 干湿交替及凋落物对若尔盖泥炭土可溶性有机碳的影响[J]. 湿地科学, 2014, 12(2): 134 − 140. ZHANG Xuewen, MO Yi, ZHANG Boya, et al. Effect of wetting-drying cycle and litter on dissolved organic carbon in peat soil in Zoigê Plateau [J]. Wetland Science, 2014, 12(2): 134 − 140. [22] ZEPPEL M J B, WILKS J V, LEWIS J D. Impacts of extreme precipitation and seasonal changes in precipitation on plants [J]. Biogeosciences, 2014, 11(11): 3083 − 3093. [23] SENEVIRATNE S I, LÜTHI D, LITSCHI M, et al. Land-atmosphere coupling and climate change in Europe [J]. Nature, 2006, 443(7108): 205 − 209. [24] WU Zhuoting, DIJKSTRA P, KOCH G W, et al. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation [J]. Global Change Biology, 2011, 17(2): 927 − 942. [25] BLOIS J L, ZARNETSKE P L, FITZPATRICK M C, et al. Climate change and the past, present, and future of biotic interactions [J]. Science, 2013, 341(6145): 499 − 504. [26] 袁道先. 岩溶石漠化问题的全球视野和我国的治理对策与经验[J]. 草业科学, 2008, 25(9): 19 − 25. YUAN Daoxian. Global view on karst rock desertification and integrating control measures and experiences of China [J]. Pratacultural Science, 2008, 25(9): 19 − 25. [27] 吕妍, 张黎, 闫慧敏, 等. 中国西南喀斯特地区植被变化时空特征及其成因[J]. 生态学报, 2018, 38(24): 1 − 13. LÜ Yan, ZHANG Li, YAN Huimin, et al. Spatial and temporal patterns of changing vegetation and the influence of environmental factors in the karst region of southwest China [J]. Acta Ecologica Sinica, 2018, 38(24): 1 − 13. [28] 李周, 高凯敏, 刘锦春, 等. 西南喀斯特地区2种草本对干湿交替和N添加的生长响应[J]. 生态学报, 2016, 36(11): 3372 − 3380. LI Zhou, GAO Kaimin, LIU Jinchun, et al. Growth response of two annual herb species to alternating drying-wetting and nitrogen addition in the karst area of southwest China [J]. Acta Ecologica Sinica, 2016, 36(11): 3372 − 3380. [29] AHMAD W, SINGH B, DIJKSTRA F A, et al. Temperature sensitivity and carbon release in an acidic soil amended with lime and mulch [J]. Geoderma, 2014, 214/215: 168 − 176. [30] BERTRAND I, DELFOSSE O, MARY B. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: apparent and actual effects [J]. Soil Biology and Biochemistry, 2007, 39(1): 276 − 272. [31] KUNGIKRISHNAN A, THANGARAJAN R, BOLAN N S, et al. Functional relationships of soil acidification, liming, and greenhouse gas flux [J]. Advances in Agronomy, 2016, 139: 1 − 71. [32] CARDINAEL R, CHEVALLIER T, GUENET B, et al. Organic carbon decomposition rates with depth and contribution of inorganic carbon to CO2 emissions under a Mediterranean agroforestry system [J]. European Journal of Soil Science, 2020, 71(5): 909 − 923. [33] RAMNARINE R, WAGNER-RIDDLE C, DUNFIELD K E, et al. Contributions of carbonates to soil CO2 emissions [J]. Canadian Journal of Soil Science, 2012, 92(4): 599 − 607. [34] BIRCH H F. The effect of soil drying on humus decomposition and nitrogen availability [J]. Plant and Soil, 1958, 10: 9 − 31. [35] CANARINI A, KIAER L P, DIJKSTRA F A. Soil carbon loss regulated by drought intensity and available substrate: a meta-analysis [J]. Soil Biology and Biochemistry, 2017, 112: 90 − 99. [36] FIERER N, SCHIMEL J P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil [J]. Soil Science Society of America Journal, 2003, 67(3): 798 − 805. [37] LUO Yiqi, ZHOU Xuhui. Soil Respiration and the Environment [D]. San Diego: Academic Press, 2006. [38] LIU Yanchun, LIU Shirong, WANG Jingxin, et al. Variation in soil respiration under the tree canopy in a temperate mixed forest, central China, under different soil water conditions [J]. Ecological Research, 2014, 29(2): 133 − 142. [39] ZHANG Xiang, ZHANG Yiping, SHA Liqing, et al. Effects of continuous drought stress on soil respiration in a tropical rainforest in southwest China [J]. Plant and Soil, 2015, 394: 343 − 353. [40] DENEF K, ZOTARELLI L, BODDEY R M, et al. Microaggregate-associated carbon as a diagnostic fraction for management-induced change in soil organic carbon in two Oxisols [J]. Soil Biology and Biochemistry, 2007, 39(5): 1165 − 1172. [41] GORDON H, HAYGARTH P M, BARDGETT R D, et al. Drying and rewetting effects on soil microbial community composition and nutrient leaching [J]. Soil Biology and Biochemistry, 2008, 40(2): 302 − 311. [42] SCHJØNNING P, THOMSEN I K, MOLDRUP P, et al. Linking soil microbial activity to water-and air-phase contents and diffusivities [J]. Soil Science Society of America Journal, 2003, 67(1): 156 − 165. [43] STARK J M, FIRESTONE M K. Mechanisms for soil moisture effects on activity of nitrifying bacteria [J]. Applied and Environmental Microbiology, 1995, 61(1): 218 − 221. [44] DOUGHTY C E, METCALFE D B, GIRARDIN C A J, et al. Drought impact on forest carbon dynamics and fluxes in Amazonia [J]. Nature, 2015, 519: 78 − 82. [45] HINKO-NAJERA N, FEST B, LIVESLEY S Y, et al. Reduced throughfall decreases autotrophic respiration, but not heterotrophic respiration in a dry temperate broadleaved evergreen forest [J]. Agricultural and Forest Meteorology, 2015, 200: 66 − 77. [46] SHI Andong, MARSCHNER P. Soil respiration and microbial biomass in multiple drying and rewetting cycles: effect of glucose addition [J]. Geofisica Internacional, 2017, 305: 219 − 227. [47] CHOW A T, TANJI K K, GAO Suduan, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils [J]. Soil Biology and Biochemistry, 2006, 38(3): 477 − 488. [48] DENEF K, SIX J, BOSSUYT H, et al. Influence of dry-wet cycles on the interrelationship between aggre-gate, particulate organic matter, and microbial community dynamics [J]. Soil Biology and Biochemistry, 2001, 33(12/13): 1599 − 1611. [49] RUSER R, FLESSA H, RUSSOW R, et al. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting [J]. Soil Biology and Biochemistry, 2006, 38(2): 263 − 274. [50] 吴亚华, 郭丽, 陈敏, 等. 干湿交替对城市绿地土壤CO2排放的影响[J]. 广东化工, 2018, 45(10): 70 − 72. WU Yahua, GUO Li, CHEN Min, et al. Effect of alternating drying-wetting on CO2 emission of urban green space soil [J]. Guangdong Chemical Industry, 2018, 45(10): 70 − 72. [51] STEVENSON B A, VERBURG P S J. Effluxed CO2-13C from sterilized and unsterilized treatments of a calcareous soil [J]. Soil Biology and Biochemistry, 2006, 38(7): 1727 − 1733. [52] DONG Yanjie, CAI Miao, ZHOU Jianbin. Effects of moisture and carbonate additions on CO2 emission from calcareous soil during closed-jar incubation [J]. Journal of Arid Land, 2014, 6(1): 37 − 43. [53] LARDNER T, GEORGE S, TIBBETT M. Interacting controls on innate sources of CO2 efflux from a calcareous arid zone soil under experimental acidification and wetting [J]. Journal of Arid Environments, 2015, 122: 117 − 123. [54] NOBEL P S, PALTA J A. Soil O2 and CO2 effects on root respiration of cacti [J]. Plant and Soil, 1989, 120: 263 − 271. [55] SERRANO-ORTIZ P, ROLAND M, SANCHEZ-MORAL S, et al. Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle: review and perspectives [J]. Agricultural and Forest Meteorology, 2010, 150(3): 321 − 329. [56] INGLIMA I, ALBERTI G, BERTOLINI T, et al. Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux [J]. Global Change Biology, 2009, 15(5): 1289 − 1301. [57] 富利, 张勇勇, 赵文智. 荒漠-绿洲区生长季不同土地覆被类型土壤呼吸对水热因子的响应[J]. 草业科学, 2019, 36(1): 37 − 46. FU Li, ZHANG Yongyong, ZHAO Wenzhi. Response of soil respiration to hydrothermal factors under different land cover types in a desert-oasis ecotone, northwest China [J]. Pratacultural Science, 2019, 36(1): 37 − 46. [58] YANG Xiaodong, ALI A, XU Yilu, et al. Soil moisture and salinity as main drivers of soil respiration across natural xeromorphic vegetation and agricultural lands in an arid desert region [J]. Catena, 2019, 177: 126 − 133. [59] 竹万宽, 许宇星, 王志超, 等. 尾巨桉人工林土壤呼吸对林下植被管理措施的响应[J]. 浙江农林大学学报, 2023, 40(1): 164 − 175. ZHU Wankuan, XU Yuxing, WANG Zhichao, et al. Response of soil respiration to understory vegetation management in Eucalyptus urophylla × E. grandis plantation [J]. Journal of Zhejiang A&F University, 2023, 40(1): 164 − 175. [60] 刘鹏, 贾昕, 杨强, 等. 毛乌素沙地油蒿灌丛生态系统的土壤呼吸特征[J]. 林业科学, 2018, 54(5): 10 − 17. LIU Peng, JIA Xin, YANG Qiang, et al. Characterization of soil respiration in a shrubland ecosystem of Artemisia ordosica in Mu Us Desert [J]. Scientia Silvae Sinicae, 2018, 54(5): 10 − 17. [61] 刘宝, 吴文峰, 何盛强, 等. 不同林龄闽楠林土壤呼吸与碳储量研究[J]. 森林与环境学报, 2018, 38(4): 431 − 438. LIU Bao, WU Wenfeng, HE Shengqiang, et al. Study on the soil respiration and carbon reserve in different age stands of Phoebe bournei [J]. Journal of Forest and Environment, 2018, 38(4): 431 − 438. [62] 陈炎根, 胡艳静, 黄莎, 等. 不同间伐强度对杉木人工林土壤呼吸速率的短期影响[J]. 浙江农林大学学报, 2023, 40(5): 1054 − 1062. CHEN Yangen, HU Yanjing, HUANG Sha, et al. Short-term effects of different thinning intensities on soil respiration rate in the Cunninghamia lanceolata plantation [J]. Journal of Zhejiang A&F University, 2023, 40(5): 1054 − 1062. [63] CRUZ-PAREDES C, TÁJMEL D, ROUSK J. Can moisture affect temperature dependences of microbial growth and respiration? [J/OL]. Soil Biology and Biochemistry, 2021, 156: 108223[2023-09-21]. doi: 10.1016/j.soilbio.2021.108223. [64] MIKHA M M, RICE C W, MILLIKEN G A. Carbon and nitrogen mineralization as affected by drying and wetting cycles [J]. Soil Biology and Biochemistry, 2005, 37(2): 23 − 95. 期刊类型引用(2)
1. 廉犇鑫,卢玫珺. 城市滨水空间可达性与公平性研究——以郑州市金水区为例. 绿色科技. 2025(03): 38-44+50 . 百度学术
2. 陈紫园,张春景,李俊英,张春. 城市公园绿地可达性的空间分布差异对人口健康影响研究. 现代农业研究. 2024(12): 77-86 . 百度学术
其他类型引用(0)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230522