留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喀斯特农田土壤呼吸对干湿交替的响应特征

吕文强 董天燕 白富文

冉钰岑, 何芳, 刘菊莲, 等. 极危植物九龙山榧的大小孢子发生和雌雄配子体发育研究[J]. 浙江农林大学学报, 2022, 39(5): 940-949. DOI: 10.11833/j.issn.2095-0756.20220181
引用本文: 吕文强, 董天燕, 白富文. 喀斯特农田土壤呼吸对干湿交替的响应特征[J]. 浙江农林大学学报, 2024, 41(4): 760-768. DOI: 10.11833/j.issn.2095-0756.20230522
RAN Yucen, HE Fang, LIU Julian, et al. Microsporogenesis, megasporogensis and development of male and female gametophytes of Torreya jiulongshanensis, a critically endangered plant[J]. Journal of Zhejiang A&F University, 2022, 39(5): 940-949. DOI: 10.11833/j.issn.2095-0756.20220181
Citation: LÜ Wenqiang, DONG Tianyan, BAI Fuwen. Response of soil respiration to dry-wet alternation in karst farmland[J]. Journal of Zhejiang A&F University, 2024, 41(4): 760-768. DOI: 10.11833/j.issn.2095-0756.20230522

喀斯特农田土壤呼吸对干湿交替的响应特征

DOI: 10.11833/j.issn.2095-0756.20230522
基金项目: 国家自然科学基金资助项目(42071142);贵州师范学院2021年度校级科学研究基金博士项目(2021BS023)
详细信息
    作者简介: 吕文强(ORCID: 0000-0002-2204-1618),副教授,博士,从事全球变化与碳循环研究。E-mail: lvbuwei123@126.com
  • 中图分类号: S153

Response of soil respiration to dry-wet alternation in karst farmland

  • 摘要:   目的  探究中国西南喀斯特地区农田石灰性土壤二氧化碳(CO2)排放通量对该区频繁发生的干湿交替的响应规律。  方法  以喀斯特农田石灰性土壤为研究对象,设计2种干湿交替强度(模拟降水量为10和25 mm),以干湿交替循环周期10 d为1个循环过程,研究喀斯特农田土壤呼吸对干湿交替的响应。  结果  干湿交替强度显著影响土壤呼吸速率和土壤总CO2排放量(P<0.05)。在2种干湿交替强度下,随着水分施加,土壤CO2排放通量会在短时间内达到最大值,然后逐渐下降。对于10 mm降水干湿交替强度,不同循环周期下的土壤CO2排放通量和土壤总CO2排放量之间的差异并不显著。然而,对于25 mm降水干湿交替强度,大多数循环周期下的土壤CO2排放通量和土壤总CO2排放量之间的差异显著(P<0.05)。相关分析表明:干湿交替多重周期作用下,土壤含水量和土壤CO2排放通量之间的相关关系不断降低。  结论  干湿交替强度和干湿交替过程是影响喀斯特农田土壤呼吸排放的重要因素。图5表1参64
  • 九龙山榧Torreya jiulongshanensis为红豆杉科Taxaceae榧属Torreya高大乔木,雌雄异株,仅分布于浙江中部和西南部,模式产地为遂昌九龙山,被列为浙江省极小种群保护植物,最近一次被评估为极危(CR)植物[1]。2021年颁布的《国家重点保护野生植物名录》中,其被列为国家Ⅱ级保护植物(http://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm)。目前,九龙山榧的种群数量极少,仅17株,其中模式产地仅1雌2雄共3株,每年结籽量很少,无幼树和幼苗,更新困难,而且生境破坏严重,人为干扰程度大[2-4]。九龙山榧作为榧属的古老孑遗植物,对研究古植物学和古地理学具有重要意义,其对于改良香榧T. grandis ‘Merrillii’品质也可能具有很大的潜在价值[5]

    植物的有性生殖发育异常是濒危的主要原因之一,珍稀濒危植物或多或少存在生殖障碍[6-7]。研究发现:云南红豆杉Taxus yunnanensis不仅生殖周期长,且在1个雌配子体上有多个颈卵器,但最终只有1个或者少数几个颈卵器能得到精子,传粉效率低及雌雄性生殖系统发育不同步是造成其濒危的主要原因[8];香果树Emmenopterys henryi在胚发育过程中存在明显胚后熟现象,致使种子萌发率低,更新困难[9];羊角槭Acer yangjuechi在雌配子体发育过程中存在严重的生殖障碍,出现胚珠败育、胚囊退化及珠心组织细胞死亡等现象,是其濒危的重要原因[10];崖柏Thuja sutchuenensis从大、小孢子叶球形成至种子成熟的整个发育过程中均存在败育,而胚珠败育及雌配子体游离核时期至幼胚发育期间的败育是其生殖障碍的主要原因[11]

    自20世纪初以来,国内外学者先后对榧属几种植物生殖生物学开展了研究[12-14]。然而,关于九龙山榧生殖生物学的研究至今未见报道。本研究采用石蜡切片法,对九龙山榧大、小孢子的发生和雌、雄配子体的发育过程进行研究,并与红豆杉科其他植物加以比较,旨在从生殖生物学角度探讨九龙山榧的种子发育及结籽率低下是否与其大、小孢子的发生和雌、雄配子的发育异常有关,以期为九龙山榧保育措施的制定提供生殖生物学依据。

    九龙山榧取自模式产地:丽水市遂昌县王村口镇西坑下村(28°20′01″N,118°55′22″E,海拔501 m)。以林缘仅有的1雌株和与雌株相近的1雄株为样株。

    2018年6月底至2019年4月初,在小孢子叶球(雄球花)的芽分化到散粉期间,对其外部形态发育过程进行观测、拍照,并记录发育的各个时间段和重要时间节点。2018年6月28日至2019年2月13日,隔3 d采1次;2019年2月中旬至2019年4月初散粉,每天采样。每次取样5个。

    2018年11月12日至2019年11月30日,在大孢子叶球(雌球花)的芽分化到种子发育期间,对其外部形态发育过程进行观测、拍照,记录各个发育时间段和重要时间节点。2018年11月12日至2019年4月4日,隔6 d采1次;2019年4月5—30日,每天取样。每次取样5个。

    2019年4月5—6日的散粉期间,用毛笔对吐露传粉滴的胚珠进行人工授粉,授粉2 h后进行观察,对仍有传粉滴吐露的胚珠进行补粉,直到该大孢子叶球不再吐露传粉滴。2019年5月1日至2019年11月30日,隔6 d对大孢子叶球进行采样。每次采集3~5个。

    采集的大、小孢子叶球浸泡固定于FAA溶液(体积分数为38%甲醛溶液∶冰醋酸∶体积分数为70%乙醇溶液=1∶1∶18,体积比)中,置于4 ℃冰箱中冷藏保存。采用常规石蜡切片法进行制片,切片厚度为5~7 μm[15],用改良爱氏苏木精染色[16],中性树胶封片,在Motic BA410E显微镜下观察并拍照。

    2.1.1   小孢子叶球的生长发育

    2018年6月29日,九龙山榧雄株的多数枝条叶腋处已经可见新生的混合芽,长为2.78~3.96 mm[(2.40±0.11) mm],宽为1.18~1.58 mm[(1.38±0.14) mm],混合芽着生于当年生枝条上,偶见于2年生枝条(图1A)。2018年9月22日,幼嫩的小孢子叶球体积明显变大,长为2.24~2.55 mm[(2.40±0.11) mm],宽为1.18~1.58 mm[(1.36±0.16) mm],外裹鳞片叶,深绿色,顶端扁而宽;营养芽的体积变化不大,顶端与茎端相似,保持较尖的圆锥形(图1B)。此时,从外观上很容易将小孢子叶球与营养芽区分出来。2018年10月12日,小孢子叶球呈圆锥形(图1C),外裹绿色鳞片叶,基部着生4枚苞片,2轮鳞片。小孢子叶球单生,长为2.78~3.96 mm[(3.37±0.47) mm],宽为1.01~1.91 mm[(1.62±0.38) mm],有一短轴,轴上螺旋状紧密排列着30~40枚小孢子叶,小孢子叶背面常着生4个(稀为3或5个)小孢子囊。2019年2月26日,小孢子叶球中下部变圆,呈浅绿色,芽鳞逐渐张开,露出小孢子囊(图1D)。2019年3月25日,小孢子叶球叶轴伸长,小孢子囊突破苞片、鳞片,逐渐伸到芽鳞外(图1E),紧密的小孢子叶变得松散,小孢子囊完全暴露在空气中,开裂后花粉散出,此时小孢子叶球成熟(图1F)。成熟的小孢子叶球呈长圆柱形,饱满,小孢子叶逐渐变成黄绿色。

    图 1  大、小孢子叶球(雌、雄球花)的发育
    Figure 1  Development of microstrobilus and macrostrobilus (male and female strobili)

    2019年4月4日,小孢子囊开始散粉,散粉时间持续4 d,时间较快。散粉前小孢子囊开裂,花粉散出,颜色呈黄色。同一小孢子叶球中,叶轴基部的小孢子囊散粉通常比叶轴上部的早开裂(图1G)。散粉后,小孢子叶球迅速干缩(图1H)。

    2.1.2   大孢子叶球的生长发育

    2018年11月12日,1年生枝条顶端存在普通芽和生殖芽,外观难以区分(图1I)。此时,生殖芽内部的苞叶叶腋出现珠被原基的隆起(图2A)。此后珠被不断生长,2019年3月25日,珠被生长至珠心上方,包被珠心(图2B)。此时,大孢子叶球2个,成对生于叶腋,外观呈圆锥形,长为0.38~0.49 mm[(0.47±0.12) mm],宽为0.26~0.29 mm[(0.28±0.09) mm],两侧微微隆起,外裹绿色鳞片状叶,着生于1年生雌株枝条顶端。每一大孢子叶球的短轴上紧密排列着4枚两两交互对生的苞片和最基部1枚侧生的苞片,具1个直立胚珠。2019年3月28日,在小孢子叶球即将散粉前,大孢子叶球逐渐从外包苞片和鳞片中突破,伸到芽鳞外,胚珠开始暴露在空气中,为接收花粉做准备(图1J)。2019年4月6日,假种皮开始露出(图2C)。此时,大孢子叶球呈圆球形,长为1.48~2.12 mm[(1.86±0.24) mm],宽为1.07~1.47 mm[(1.37±0.28) mm]。2019年4月4—7日为散粉期,胚珠的珠孔端吐露出传粉滴,授粉后传粉滴消失(图1K)。2019年4月23日,假种皮的长度逐渐生长至珠被1/2处,可见明显的珠孔和珠心上部的溶解腔(图2D)。2019年4月30日,胚珠个体逐渐变大,外层的珠被和假种皮逐渐伸长,但还未完全包裹住胚珠的珠孔(图1L)。2019年6月8—29日,成对的大孢子叶球仅1个发育,发育的假种皮长度逐渐超过珠被,突破鳞片,包裹住胚珠(图1M图1N),先端较尖。2019年8月29日,胚珠长度增大,深绿色,胚珠着生的枝条顶端出现新生的小孢子叶球(图1O)。2019年9月22日,大孢子叶球呈卵球形,长为6.18~7.28 mm[(6.85±0.42) mm],宽为3.15~3.50 mm[(3.32±0.11) mm],胚珠底部变黄,假种皮先端变红(图1P)。

    图 2  大孢子发生和雌配子体发育(含受精作用)
    Figure 2  Megasporogenesis and female gametophyte development (including fertilization)

    2018年8月20日,小孢子叶原基表皮下方的孢原细胞已经分化形成次生造孢细胞。次生造孢细胞紧密相连,呈多边形(图3A)。2018年11月12日,外层的次生壁细胞开始分裂、分化,小孢子囊由外而内最终形成矩形的表皮层,呈椭圆形的小孢子囊内壁,呈不规则散状排列的2层中层细胞,以及最内呈长条形的绒毡层(图3B)。小孢子囊发育类型为基本型。2018年11月15日,造孢细胞分化形成小孢子母细胞,最初的小孢子母细胞由于体积较大、排列紧密,呈多边形,胞质浓厚,细胞核大(图3C)。2019年1月3日,在小孢子母细胞不断形成时期,最外层的表皮细胞经垂周分裂后,垂周壁加厚,径向壁延长,细胞内液泡化,细胞核和核仁逐渐消失,木质化加强,以适应内部小孢子母细胞数目的增加;内壁细胞径向延长,并纤维化加厚;中层细胞被挤压,切向壁延长呈扁平状紧贴内壁;绒毡层细胞在小孢子母细胞时期最初呈长条形单核延长,发育后期细胞个体逐渐变大,细胞质变浓,并以单核或双核形式存在(图3D)。2019年2月2日,排列紧密的小孢子母细胞逐渐从胼胝质中解离,变成游离的小孢子母细胞,形状从多边形变为圆形(图3E)。

    图 3  小孢子发生和雄配子体发育(含精子形成)
    Figure 3  Microsporogenesis and male gametophyte development (including spermatogenesis)

    2019年2月26日至3月6日为小孢子母细胞减数分裂期。小孢子母细胞经过第1次减数分裂,形成2个子核(图3F),2个子核之间不形成细胞壁直接进入减数分裂Ⅱ期,再次分裂之后形成四面体形、左右对称形2种类型的四分体(图3G)。小孢子囊壁和中层细胞开始解体,绒毡层细胞多为双核,由绒毡层出现的位置判断绒毡层细胞为周原质团细胞,绒毡层类型为变形绒毡层。小孢子囊内约7%绒毡层出现异常膨大,堆叠在一起(图3H)。2019年3月12日,四分体中的4个小孢子之间开始形成各自的细胞壁(图3I)。2019年3月16日,四分体开始解体,胼胝质壁消失,小孢子的细胞壁逐渐加厚,形成游离小孢子细胞(图3J),绒毡层部分细胞进入药室内部(图3K)。2019年3月19日为小孢子细胞单核靠边期,表皮细胞木质化加强,内壁继续解体,中层细胞仅留下残迹,绒毡层仍以双核或单核形式存在(图3L)。一些小孢子囊内游离小孢子内液泡化导致细胞变形,约占11%(图3M)。

    2019年3月31日,单核靠边的小孢子细胞壁开始逐渐增厚,细胞核经过有丝分裂形成2个核,细胞质也在2个核之间形成细胞板将2个核隔开,其中大的核为管核,小的核为生殖核。此时,成熟花粉粒形成(图3N)。成熟花粉粒的直径为30 μm,双核,表面褶皱成不规则状,无气囊。花粉成熟期时,小孢子囊内壁与中层细胞仅剩残迹,绒毡层消失,表皮细胞完全木质化并且带状加厚(图3O)。2019年4月4—7日,开始散粉时,小孢子囊囊基部囊壁没有加厚的开裂口破裂,从开裂口散出(图3P)。2019年5月30日,在胚珠上方花粉粒萌发成花粉管,伸入珠心组织1/3处,花粉管中可清晰看到管细胞、生殖细胞和不育细胞,生殖细胞比不育细胞稍大(图3Q)。2019年6月24日,花粉管入侵至珠心1/2处,生殖核明显增大,管核与不育核明显变小,且即将消失(图3R)。2019年7月27日,花粉管抵达雌配子体壁,此时管核和不育核已消失,位于花粉管先端的精原细胞已分裂成2个形状相似、大小相同的精细胞。精细胞核大、细胞质浓,形状为椭圆形或圆形(图3S)。2019年11月29日,花粉管伸长至颈卵器上方,精细胞明显增大,细胞质浓厚(图3T)。九龙山榧小孢子及雄配子体发育进程见表1

    表 1  九龙山榧的有性生殖过程
    Table 1  Process of sexual reproduction in T. jiulongshanensis
    发育时期(年-月-日)小孢子和雄配子体发育大孢子和雌配子体发育
    2018-08-20 次生造孢细胞
    2018-11-15 小孢子母细胞形成
    2019-02-26—2019-03-06 小孢子母细胞减数分裂期
    2019-03-12—2019-03-16 四分体时期
    2019-03-16 小孢子从四分体中相互分离
    2019-03-19 单核靠边期
    2019-04-06 散粉与传粉 造孢组织
    2019-04-23 减数分裂Ⅱ后期
    2019-05-18 功能大孢子
    2019-05-30 管细胞、生殖细胞和不育细胞
    2019-06-06 游离核时期
    2019-06-24 管核与不育核即将消失
    2019-07-27 精原细胞分裂形成两个大小相同的精细胞
    2019-08-11 细胞化阶段
    2019-09-22 颈卵器母细胞
    2019-09-22—2019-11-29 颈卵器阶段
    2019-11-29 受精
    下载: 导出CSV 
    | 显示表格

    2019年4月6日,在散粉期,珠心下方与珠被齐平的水平线上出现一团核大、质浓、呈多边形的造孢细胞(图2E)。①大孢子发生时期:2019年4月23日,造孢细胞分化,在近中央位置形成大孢子母细胞,并进行减数分裂Ⅰ,形成大孢子二分体,二分体再进行减数分裂Ⅱ(图2F),最终形成纵向直列的4个大孢子。2019年5月18日,合点端的大孢子不断发育,最终形成功能性大孢子,近珠孔的3个大孢子逐渐退化(图2G)。②游离核时期:2019年6月6日,合点端的功能大孢子继续进行多次有丝分裂,形成多核的雌配子体,但不形成细胞壁,细胞核呈游离状态,分布在雌配子体的细胞质中(图2H)。游离核之间由染色质丝相连。③细胞化时期:2019年8月11日,当游离核分裂8次,形成256个游离核后,在连接游离核间原生质丝的基础上,开始向心式形成细胞壁,最后整个雌配子体完全细胞化(图2I)。④颈卵器时期:当雌配子体不断发育到一定程度,近珠孔端的一些细胞开始逐渐膨大,形成颈卵器母细胞。2019年9月22日,颈卵器母细胞进行平周和垂周分裂,最终形成4个较小的颈细胞和1个较大的中央细胞(图2J)。刚形成的颈细胞呈圆形,细胞核明显,个体较周围细胞小,中央细胞呈圆形,细胞核较大,周围细胞质浓。中央细胞进行1次不均等分裂,形成卵核和腹沟核,腹沟核很快消失。由于此过程发生较快,因此未捕捉到正在退化的腹沟核。2019年9月30日,初形成的卵核位于颈卵器的近珠孔端,周围有少量细胞质包围,卵核下方有1个大液泡(图2K)。2019年10月13日,卵核开始下沉,往颈卵器的中央开始移动,同时蛋白泡出现(图2L)。2019年11月12日,受精前,成熟的颈卵器中蛋白泡消失,细胞质变浓,卵细胞发育成熟且位于中央,等待受精(图2M)。九龙山榧的颈卵器为椭圆形,多数位于雌配子体的近珠孔端,同一胚珠中有2个颈卵器。颈卵器的周围通常紧密排列着1层套细胞,套细胞的细胞核大、体积较小(图2L~M)。本研究观察到九龙山榧每个胚珠中只产生1个雌配子体,含2个单生型颈卵器,与香榧相同。九龙山榧的大孢子及雌配子体发育进程见表1

    九龙山榧的受精作用发生于2019年11月29日,从传粉到受精约7个月,在花粉管中产生2个大小相似的精细胞(图3T),受精前其中一个精细胞进入颈卵器中与卵细胞结合,另一个则停留在花粉管中(图2N)。在精细胞接触卵细胞前,精细胞边缘整齐,细胞核明显,两者接触时,精细胞边缘开始变得模糊,细胞质因变得蓬松而染色较浅(图2O)。在精细胞和卵细胞逐渐融合的过程中,精细胞核区逐渐消失,细胞质相融(图2P)。

    裸子植物小孢子母细胞发育节律主要分为4种类型[17-20]:①小孢子母细胞的减数分裂过程起始于初冬,进入休眠期停止减数分裂,在翌年春季解除休眠后完成后续发育,如侧柏Platycladus orientalis。②翌年春天形成造孢细胞,再分化成小孢子母细胞,小孢子母细胞不经过休眠直接开始进行减数分裂,如穗花杉Amentotaxus argotaenia。③小孢子母细胞于当年年底前已经分化形成,经过翌年春季才开始后续的减数分裂过程,如欧洲赤松Pinus sylvestris。④小孢子母细胞进行减数分裂并形成游离小孢子再越冬,翌年春季继续发育为成熟花粉,红豆杉属Taxus加拿大红豆杉T. canadenesis、短叶红豆杉T. brevifolia、南方红豆杉T. wallichiana var. mairei和云南红豆杉T. yunnanensis等属此类型。九龙山榧与香榧小孢子母细胞的发育方式相同[21],这种发育方式避免了其减数分裂过程受到寒冷冬季低温影响,降低了减数分裂发生异常的风险。九龙山榧在减数分裂时期部分小孢子囊的绒毡层发生异常增生和膨大现象。陈祖铿等[22]对穗花杉研究发现:绒毡层细胞发生异常膨大在裸子植物发育中为异常现象,其结果会导致小孢子母细胞受到挤压,在减数分裂过程中发生异常,最终引起花粉败育。这也曾在太白红杉Larix chinensis [23]的小孢子发育过程中有过报道。九龙山榧花粉囊中的绒毡层从小孢子母细胞时期一直持续存在到单核靠边期,直到形成成熟花粉粒才完全降解。绒毡层的延迟降解可能会争夺游离小孢子细胞发育所需的营养物质和空间。单核靠边期时,少部分小孢子囊中出现小孢子细胞内液泡化现象,导致一些细胞形状变化、破裂。但由于花粉粒能在雌花胚珠的珠心上方萌发出花粉管,且雄配子体的发育基本正常,说明花粉粒具备正常的生理活性和后期生殖功能,这与本研究对其花粉活力测定的结果一致。由此可见,小孢子的发生和雄配子体的发育均正常。

    裸子植物的花粉萌发普遍迟缓且花粉管的生长非常缓慢[24]。穗花杉于5月底开始散粉,7月中下旬形成精子,历时约2个月[25];短叶红豆杉于4月底萌发花粉管,6月初形成精子,历时1个多月[26];南方红豆杉2月中下旬散粉,4月中旬体细胞迅速分裂形成2个精子,历时约2个月[20];香榧于4月下旬散粉,7月中下旬花粉管中体细胞核分裂出2个大小相等的精核,过程近3个月[27]。九龙山榧4月初散粉,4月底花粉才开始萌发出花粉管,7月底雌配子体上方产生2个精原细胞。因此,九龙山榧从传粉到形成精子,整个过程历时近4个月,发育周期均较红豆杉科其他种更长。这可能是雄配子体在花粉管中发育缓慢以等待颈卵器中的卵细胞发育成熟以完成受精[20]。受精延迟现象在裸子植物中普遍存在。白豆杉Pseudotaxus chienii于4月17日传粉,5月下旬陆续发生受精作用,两者相隔1个多月[28];穗花杉于5月25日至6月15日传粉,7月20—29日受精,两者相隔约2个月[22];云南红豆杉的受精作用发生于3月底至4月初,传粉与受精相隔约4个月[8];香榧于4月下旬授粉,9月上旬发生受精作用,从传粉到受精间隔4~5个月[27]。在本研究中,九龙山榧于4月初开始传粉,11月下旬发生受精作用,从传粉到受精需要约7个月,晚于红豆杉科已经报道的大多数植物。

    植物有性生殖过程的任何一个环节出现障碍,都会造成生殖失败,种子减少,更新困难从而致濒[29]。九龙山榧小孢子叶球8月中旬开始发生,至2019年7月底才形成精子,历时11个月余;大孢子叶球11月中上旬开始发生,至2019年11月底才进行受精作用,过程历时12个月余,雌雄生殖系统发育的周期均较红豆杉科以往报道的其他种更长。生殖过程历时久、环节多,增加花粉败育、胚珠死亡的概率[8],且从传粉到受精时间跨度大,加之个体数量极少,仅1雌株2雄株,胚珠发育严重滞后于小孢子叶球的散粉期,可能导致受精率降低甚至受精作用受阻。此外,陈佳妮等[30]发现:香榧结籽高于榧树,在于前者成熟叶片的氮含量和光合能力显著高于后者。九龙山榧为喜光的阳生树种[31],其结籽率低的原因可能还与雌株树体老化、光合生理特性、外界营养不足等有关。

    可见,九龙山榧冗长的生殖周期、复杂的生殖过程和雌性生殖系统发育明显滞后于雄性生殖系统,加之人为干扰强、树体老化、营养不足、个体数量少等均可能造成其结籽率底、自然更新困难,进而致濒。从实际出发,对九龙山榧的保育可以借鉴香榧的培育技术:①由于九龙山榧雌雄异株,小种群中的花粉密度很难达到较高的水平,胚珠传粉滴的吐露容易受不良天气的影响,因此在散粉期收集足够的花粉,将花粉合理优化保存,分期在晴天进行人工授粉以提高授粉率[32];②加强雌株的科学管理,平衡施肥,追施磷、钾复合肥[33],浅根多次施肥,繁殖期叶面施淡肥[34],从而促进胚的发育和提高坐果率。

    材料采集过程中得到浙江遂昌王村口镇西坑下村严东根先生的无私帮助。在此深表谢意!

  • 图  1  2 种干湿交替强度下土壤 CO2排放通量随时间的变化特征

    Figure  1  Dynamics of soil CO2 emission flux under two different intensities of wet-dry alternation

    图  2  2 种干湿交替强度下土壤含水量随时间的变化特征

    Figure  2  Dynamics of soil moisture under two different intensities of wet-dry alternation

    图  3  2种干湿交替强度下不同循环周期土壤CO2排放通量平均值

    Figure  3  Average soil CO2 emission flux of three drying and rewetting cycles with two different intensities of wet-dry alternation

    图  4  2 种干湿交替强度下土壤 CO2累计排放量随时间的变化特征

    Figure  4  Dynamics of accumulated soil carbon release under two different intensities of wet-dry alternation

    图  5  2 种干湿交替强度下不同循环周期土壤总 CO2排放量

    Figure  5  Total CO2 release of three drying and rewetting cycles with two different intensities of wet-dry alternation

    表  1  土壤CO2排放通量与土壤湿度的相关关系

    Table  1.   Correlation between soil CO2 emission flux respiration and soil moisture

    周期样本数/个拟合方程相关系数P
    160y =0.001 9x2+5.998 2x−41.7430.750.000
    260y =−0.054 1x2+8.147 1x−124.870.640.000
    360y =−0.049 2x2+6.103 0x−76.9110.180.170
      说明:y为土壤CO2排放通量,x为土壤体积含水量。
    下载: 导出CSV
  • [1] AHIRWAL J, MAITI S K, SINGH A K, et al. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India [J]. Science of Total Environment, 2017, 583: 153 − 162.
    [2] DENG Lei, LIU Guobin, SHANGGUAN Zhouping. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis [J]. Global Change Biology, 2014, 20(11): 3544 − 3556.
    [3] ZAMANIAN K, ZAREBANADKOUKI M, KUZYAKOVY Y. Nitrogen fertilization raises CO2 efflux from inorganic carbon: a global assessment [J]. Global Change Biology, 2018, 24(7): 2810 − 2817.
    [4] 田娜, 王义祥, 翁伯琦. 土壤碳储量估算研究进展[J]. 亚热带农业研究, 2010, 6(3): 193 − 198.

    TIAN Na, WANG Yixiang, WENG Boqi. Advances in estimating soil carbon storage [J]. Subtropical Agriculture Research, 2010, 6(3): 193 − 198.
    [5] 谢高地, 肖玉. 农田生态系统服务及其价值的研究进展[J]. 中国生态农业学报, 2013, 21(6): 645 − 651.

    XIE Gaodi, XIAO Yu. Review of agro-ecosystem services and their values [J]. Chinese Journal of Eco-Agriculture, 2013, 21(6): 645 − 651.
    [6] 林而达. 气候变化与农业可持续发展[M]. 北京: 北京出版社, 2001.

    LIN Erda. Climate Change and Agricultural Sustainable Development [M]. Beijing: Beijing Publishing House, 2001.
    [7] AUSTIN A T, YAHDJIAN L, STARK J M, et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems [J]. Oecologia, 2004, 141: 221 − 235.
    [8] 牛百成, 赵成义, 冯广龙, 等. 干湿交替对新疆绿洲农田土壤CO2排放的影响[J]. 水土保持通报, 2016, 36(3): 74 − 80.

    NIU Baicheng, ZHAO Chengyi, FENG Guanglong, et al. Effects of alternate drying and wetting on soil CO2 emissions in oasis farmland of Xinjiang region [J]. Bulletin of Soil and Water Conservation, 2016, 36(3): 74 − 80.
    [9] CHEN Ruirui, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories [J]. Global Change Biology, 2014, 20(7): 2356 − 2367.
    [10] 赵蓉, 李小军, 赵洋, 等. 固沙植被区两类结皮斑块土壤呼吸对不同频率干湿交替的响应[J]. 生态学杂志, 2015, 34(1): 138 − 144.

    ZHAO Rong, LI Xiaojun, ZHAO Yang, et al. CO2 efflux from two biologically-crusted soils in response to drying-rewetting cycles with different frequencies in the Tengger Desert [J]. Chinese Journal of Ecology, 2015, 34(1): 138 − 144.
    [11] 赵蓉, 李小军, 赵洋, 等. 固沙植被区土壤呼吸对反复干湿交替的响应[J]. 生态学报, 2015, 35(20): 6720 − 6727.

    ZHAO Rong, LI Xiaojun, ZHAO Yang, et al. Response of soil respiration to repeated cycles of drying and rewetting in soils of the sand-fixed region of the Tengger Desert [J]. Acta Ecologica Sinica, 2015, 35(20): 6720 − 6727.
    [12] 张传更, 高阳, 王广帅, 等. 干湿交替和外源氮对农田土壤CO2和N2O释放的影响[J]. 农业环境科学学报, 2018, 37(9): 2079 − 2090.

    ZHANG Chuangeng, GAO Yang, WANG Guangshuai, et al. Effects of drying-wetting and additional nitrogen on CO2 and N2O emissions from farmland soils [J]. Journal of Agro-Environment Science, 2018, 37(9): 2079 − 2090.
    [13] 包振宗, 侯艳艳, 朱新萍, 等. 干湿交替和模拟氮沉降对巴音布鲁克高寒湿地土壤CO2排放的影响[J]. 农业环境科学学报, 2018, 37(3): 598 − 604.

    BAO Zhenzong, HOU Yanyan, ZHU Xinping, et al. Effect of alternating wetting and drying and simulated nitrogen deposition on soil CO2 emission in alpine wetlands of Bayinbulak [J]. Journal of Agro-Environment Science, 2018, 37(3): 598 − 604.
    [14] 乐艺, 张晓雅, 高俊琴, 等. 模拟干湿交替对若尔盖高寒湿地土壤呼吸及可溶解性碳氮稳定性的影响[J]. 水土保持研究, 2020, 27(1): 81 − 87.

    YUE Yi, ZHANG Xiaoya, GAO Junqin, et al. Effect of simulated drying-rewetting cycles on soil respiration and dissolved organic carbon and nitrogen stability in Zoige Alpine Wetlands [J]. Research of Soil and Water Conservation, 2020, 27(1): 81 − 87.
    [15] 高雅晓玲, 苗淑杰, 乔云发, 等. 干湿循环促进风沙土土壤有机碳矿化[J]. 干旱区资源与环境, 2020, 34(1): 140 − 147.

    GAO Yaxiaoling, MIAO Shujie, QIAO Yunfa, et al. Dry-wet cycles promote soil organic carbon mineralization in aeolian sandy soil [J]. Journal of Arid Land Resources and Environment, 2020, 34(1): 140 − 147.
    [16] 黄石德, 叶功富, 林捷, 等. 干湿交替对武夷山不同海拔土壤碳矿化的影响[J]. 生态学杂志, 2018, 37(2): 312 − 321.

    HUANG Shide, YE Gongfu, LIN Jie, et al. Effects of drying-wetting cycles on soil organic carbon mineralization along an elevation gradient in Wuyi Mountain [J]. Chinese Journal of Ecology, 2018, 37(2): 312 − 321.
    [17] GAO Junqin, FENG Jin, ZHANG Xuewen, et al. Drying-rewetting cycles alter carbon and nitrogen mineralization in litter-amended alpine wetland soil [J]. Catena, 2016, 145: 285 − 290.
    [18] 李勇. 喀斯特地区土壤呼吸对干湿交替的响应规律及其微生物学机制研究[D]. 北京: 中国科学院大学, 2019.

    LI Yong. Response of Soil Respiration to Drying and Rewetting Alternations and Microbiological Mechanism in Karst Area [D]. Beijing: University of Chinese Academy of Sciences, 2019.
    [19] 王融融, 余海龙, 李诗瑶, 等. 干湿交替对土壤呼吸和土壤有机碳矿化的影响述评[J]. 水土保持研究, 2022, 29(1): 78 − 85.

    WANG Rongrong, YU Hailong, LI Shiyao, et al. Review on the effects of soil alternate drying-rewetting cycle on soil respiration and soil organic carbon mineralization [J]. Research of Soil and Water Conservation, 2022, 29(1): 78 − 85.
    [20] 李峰平, 章光新, 董李勤. 气候变化对水循环与水资源的影响研究综述[J]. 地理科学, 2013, 33(4): 457 − 464.

    LI Fengping, ZHANG Guangxin, DONG Liqin. Studies for impact of climate change on hydrology and water resources [J]. Scientia Geographica Sinica, 2013, 33(4): 457 − 464.
    [21] 张雪雯, 莫熠, 张博雅, 等. 干湿交替及凋落物对若尔盖泥炭土可溶性有机碳的影响[J]. 湿地科学, 2014, 12(2): 134 − 140.

    ZHANG Xuewen, MO Yi, ZHANG Boya, et al. Effect of wetting-drying cycle and litter on dissolved organic carbon in peat soil in Zoigê Plateau [J]. Wetland Science, 2014, 12(2): 134 − 140.
    [22] ZEPPEL M J B, WILKS J V, LEWIS J D. Impacts of extreme precipitation and seasonal changes in precipitation on plants [J]. Biogeosciences, 2014, 11(11): 3083 − 3093.
    [23] SENEVIRATNE S I, LÜTHI D, LITSCHI M, et al. Land-atmosphere coupling and climate change in Europe [J]. Nature, 2006, 443(7108): 205 − 209.
    [24] WU Zhuoting, DIJKSTRA P, KOCH G W, et al. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation [J]. Global Change Biology, 2011, 17(2): 927 − 942.
    [25] BLOIS J L, ZARNETSKE P L, FITZPATRICK M C, et al. Climate change and the past, present, and future of biotic interactions [J]. Science, 2013, 341(6145): 499 − 504.
    [26] 袁道先. 岩溶石漠化问题的全球视野和我国的治理对策与经验[J]. 草业科学, 2008, 25(9): 19 − 25.

    YUAN Daoxian. Global view on karst rock desertification and integrating control measures and experiences of China [J]. Pratacultural Science, 2008, 25(9): 19 − 25.
    [27] 吕妍, 张黎, 闫慧敏, 等. 中国西南喀斯特地区植被变化时空特征及其成因[J]. 生态学报, 2018, 38(24): 1 − 13.

    LÜ Yan, ZHANG Li, YAN Huimin, et al. Spatial and temporal patterns of changing vegetation and the influence of environmental factors in the karst region of southwest China [J]. Acta Ecologica Sinica, 2018, 38(24): 1 − 13.
    [28] 李周, 高凯敏, 刘锦春, 等. 西南喀斯特地区2种草本对干湿交替和N添加的生长响应[J]. 生态学报, 2016, 36(11): 3372 − 3380.

    LI Zhou, GAO Kaimin, LIU Jinchun, et al. Growth response of two annual herb species to alternating drying-wetting and nitrogen addition in the karst area of southwest China [J]. Acta Ecologica Sinica, 2016, 36(11): 3372 − 3380.
    [29] AHMAD W, SINGH B, DIJKSTRA F A, et al. Temperature sensitivity and carbon release in an acidic soil amended with lime and mulch [J]. Geoderma, 2014, 214/215: 168 − 176.
    [30] BERTRAND I, DELFOSSE O, MARY B. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: apparent and actual effects [J]. Soil Biology and Biochemistry, 2007, 39(1): 276 − 272.
    [31] KUNGIKRISHNAN A, THANGARAJAN R, BOLAN N S, et al. Functional relationships of soil acidification, liming, and greenhouse gas flux [J]. Advances in Agronomy, 2016, 139: 1 − 71.
    [32] CARDINAEL R, CHEVALLIER T, GUENET B, et al. Organic carbon decomposition rates with depth and contribution of inorganic carbon to CO2 emissions under a Mediterranean agroforestry system [J]. European Journal of Soil Science, 2020, 71(5): 909 − 923.
    [33] RAMNARINE R, WAGNER-RIDDLE C, DUNFIELD K E, et al. Contributions of carbonates to soil CO2 emissions [J]. Canadian Journal of Soil Science, 2012, 92(4): 599 − 607.
    [34] BIRCH H F. The effect of soil drying on humus decomposition and nitrogen availability [J]. Plant and Soil, 1958, 10: 9 − 31.
    [35] CANARINI A, KIAER L P, DIJKSTRA F A. Soil carbon loss regulated by drought intensity and available substrate: a meta-analysis [J]. Soil Biology and Biochemistry, 2017, 112: 90 − 99.
    [36] FIERER N, SCHIMEL J P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil [J]. Soil Science Society of America Journal, 2003, 67(3): 798 − 805.
    [37] LUO Yiqi, ZHOU Xuhui. Soil Respiration and the Environment [D]. San Diego: Academic Press, 2006.
    [38] LIU Yanchun, LIU Shirong, WANG Jingxin, et al. Variation in soil respiration under the tree canopy in a temperate mixed forest, central China, under different soil water conditions [J]. Ecological Research, 2014, 29(2): 133 − 142.
    [39] ZHANG Xiang, ZHANG Yiping, SHA Liqing, et al. Effects of continuous drought stress on soil respiration in a tropical rainforest in southwest China [J]. Plant and Soil, 2015, 394: 343 − 353.
    [40] DENEF K, ZOTARELLI L, BODDEY R M, et al. Microaggregate-associated carbon as a diagnostic fraction for management-induced change in soil organic carbon in two Oxisols [J]. Soil Biology and Biochemistry, 2007, 39(5): 1165 − 1172.
    [41] GORDON H, HAYGARTH P M, BARDGETT R D, et al. Drying and rewetting effects on soil microbial community composition and nutrient leaching [J]. Soil Biology and Biochemistry, 2008, 40(2): 302 − 311.
    [42] SCHJØNNING P, THOMSEN I K, MOLDRUP P, et al. Linking soil microbial activity to water-and air-phase contents and diffusivities [J]. Soil Science Society of America Journal, 2003, 67(1): 156 − 165.
    [43] STARK J M, FIRESTONE M K. Mechanisms for soil moisture effects on activity of nitrifying bacteria [J]. Applied and Environmental Microbiology, 1995, 61(1): 218 − 221.
    [44] DOUGHTY C E, METCALFE D B, GIRARDIN C A J, et al. Drought impact on forest carbon dynamics and fluxes in Amazonia [J]. Nature, 2015, 519: 78 − 82.
    [45] HINKO-NAJERA N, FEST B, LIVESLEY S Y, et al. Reduced throughfall decreases autotrophic respiration, but not heterotrophic respiration in a dry temperate broadleaved evergreen forest [J]. Agricultural and Forest Meteorology, 2015, 200: 66 − 77.
    [46] SHI Andong, MARSCHNER P. Soil respiration and microbial biomass in multiple drying and rewetting cycles: effect of glucose addition [J]. Geofisica Internacional, 2017, 305: 219 − 227.
    [47] CHOW A T, TANJI K K, GAO Suduan, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils [J]. Soil Biology and Biochemistry, 2006, 38(3): 477 − 488.
    [48] DENEF K, SIX J, BOSSUYT H, et al. Influence of dry-wet cycles on the interrelationship between aggre-gate, particulate organic matter, and microbial community dynamics [J]. Soil Biology and Biochemistry, 2001, 33(12/13): 1599 − 1611.
    [49] RUSER R, FLESSA H, RUSSOW R, et al. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting [J]. Soil Biology and Biochemistry, 2006, 38(2): 263 − 274.
    [50] 吴亚华, 郭丽, 陈敏, 等. 干湿交替对城市绿地土壤CO2排放的影响[J]. 广东化工, 2018, 45(10): 70 − 72.

    WU Yahua, GUO Li, CHEN Min, et al. Effect of alternating drying-wetting on CO2 emission of urban green space soil [J]. Guangdong Chemical Industry, 2018, 45(10): 70 − 72.
    [51] STEVENSON B A, VERBURG P S J. Effluxed CO2-13C from sterilized and unsterilized treatments of a calcareous soil [J]. Soil Biology and Biochemistry, 2006, 38(7): 1727 − 1733.
    [52] DONG Yanjie, CAI Miao, ZHOU Jianbin. Effects of moisture and carbonate additions on CO2 emission from calcareous soil during closed-jar incubation [J]. Journal of Arid Land, 2014, 6(1): 37 − 43.
    [53] LARDNER T, GEORGE S, TIBBETT M. Interacting controls on innate sources of CO2 efflux from a calcareous arid zone soil under experimental acidification and wetting [J]. Journal of Arid Environments, 2015, 122: 117 − 123.
    [54] NOBEL P S, PALTA J A. Soil O2 and CO2 effects on root respiration of cacti [J]. Plant and Soil, 1989, 120: 263 − 271.
    [55] SERRANO-ORTIZ P, ROLAND M, SANCHEZ-MORAL S, et al. Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle: review and perspectives [J]. Agricultural and Forest Meteorology, 2010, 150(3): 321 − 329.
    [56] INGLIMA I, ALBERTI G, BERTOLINI T, et al. Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux [J]. Global Change Biology, 2009, 15(5): 1289 − 1301.
    [57] 富利, 张勇勇, 赵文智. 荒漠-绿洲区生长季不同土地覆被类型土壤呼吸对水热因子的响应[J]. 草业科学, 2019, 36(1): 37 − 46.

    FU Li, ZHANG Yongyong, ZHAO Wenzhi. Response of soil respiration to hydrothermal factors under different land cover types in a desert-oasis ecotone, northwest China [J]. Pratacultural Science, 2019, 36(1): 37 − 46.
    [58] YANG Xiaodong, ALI A, XU Yilu, et al. Soil moisture and salinity as main drivers of soil respiration across natural xeromorphic vegetation and agricultural lands in an arid desert region [J]. Catena, 2019, 177: 126 − 133.
    [59] 竹万宽, 许宇星, 王志超, 等. 尾巨桉人工林土壤呼吸对林下植被管理措施的响应[J]. 浙江农林大学学报, 2023, 40(1): 164 − 175.

    ZHU Wankuan, XU Yuxing, WANG Zhichao, et al. Response of soil respiration to understory vegetation management in Eucalyptus urophylla × E. grandis plantation [J]. Journal of Zhejiang A&F University, 2023, 40(1): 164 − 175.
    [60] 刘鹏, 贾昕, 杨强, 等. 毛乌素沙地油蒿灌丛生态系统的土壤呼吸特征[J]. 林业科学, 2018, 54(5): 10 − 17.

    LIU Peng, JIA Xin, YANG Qiang, et al. Characterization of soil respiration in a shrubland ecosystem of Artemisia ordosica in Mu Us Desert [J]. Scientia Silvae Sinicae, 2018, 54(5): 10 − 17.
    [61] 刘宝, 吴文峰, 何盛强, 等. 不同林龄闽楠林土壤呼吸与碳储量研究[J]. 森林与环境学报, 2018, 38(4): 431 − 438.

    LIU Bao, WU Wenfeng, HE Shengqiang, et al. Study on the soil respiration and carbon reserve in different age stands of Phoebe bournei [J]. Journal of Forest and Environment, 2018, 38(4): 431 − 438.
    [62] 陈炎根, 胡艳静, 黄莎, 等. 不同间伐强度对杉木人工林土壤呼吸速率的短期影响[J]. 浙江农林大学学报, 2023, 40(5): 1054 − 1062.

    CHEN Yangen, HU Yanjing, HUANG Sha, et al. Short-term effects of different thinning intensities on soil respiration rate in the Cunninghamia lanceolata plantation [J]. Journal of Zhejiang A&F University, 2023, 40(5): 1054 − 1062.
    [63] CRUZ-PAREDES C, TÁJMEL D, ROUSK J. Can moisture affect temperature dependences of microbial growth and respiration? [J/OL]. Soil Biology and Biochemistry, 2021, 156: 108223[2023-09-21]. doi: 10.1016/j.soilbio.2021.108223.
    [64] MIKHA M M, RICE C W, MILLIKEN G A. Carbon and nitrogen mineralization as affected by drying and wetting cycles [J]. Soil Biology and Biochemistry, 2005, 37(2): 23 − 95.
  • [1] 曹立, 王维枫, 马雪红, 王祥福, 李玉, 李丽, 于水强.  间伐对秦岭松栎混交林土壤异养呼吸的影响 . 浙江农林大学学报, 2024, 41(1): 22-29. doi: 10.11833/j.issn.2095-0756.20230193
    [2] 颜顾浙, 方伟, 卢络天, 蒋逸捷, 张笑, 马晓敏, 邱巍, 徐秋芳.  土壤酶活性对不同植物连作的差异响应 . 浙江农林大学学报, 2023, 40(3): 520-530. doi: 10.11833/j.issn.2095-0756.20220494
    [3] 张世林, 高润红, 高明龙, 韩淑敏, 张文英, 赵静.  气候变化背景下中国樟子松潜在分布预测 . 浙江农林大学学报, 2023, 40(3): 560-568. doi: 10.11833/j.issn.2095-0756.20220451
    [4] 樊宇翔, 杨波, 李艳梅, 王邵军, 张路路, 张昆凤, 解玲玲, 肖博, 王郑钧, 郭志鹏.  蚂蚁活动对小果野芭蕉群落土壤呼吸季节动态的影响 . 浙江农林大学学报, 2023, 40(3): 502-510. doi: 10.11833/j.issn.2095-0756.20220533
    [5] 陈炎根, 胡艳静, 黄莎, 刘波, 吴继来, 王懿祥.  不同间伐强度对杉木人工林土壤呼吸速率的短期影响 . 浙江农林大学学报, 2023, 40(5): 1054-1062. doi: 10.11833/j.issn.2095-0756.20220704
    [6] 竹万宽, 许宇星, 王志超, 杜阿朋.  尾巨桉人工林土壤呼吸对林下植被管理措施的响应 . 浙江农林大学学报, 2023, 40(1): 164-175. doi: 10.11833/j.issn.2095-0756.20220138
    [7] 邵佳, 周文晶, 宋瑶, 潘洋, 秦华, 陈俊辉.  不同原料生物质炭对重金属污染土壤微生物活性的影响 . 浙江农林大学学报, 2022, 39(3): 644-652. doi: 10.11833/j.issn.2095-0756.20210438
    [8] 朱文见, 张慧, 王懿祥.  采伐对森林土壤呼吸影响的研究进展 . 浙江农林大学学报, 2021, 38(5): 1000-1011. doi: 10.11833/j.issn.2095-0756.20210365
    [9] 林雨萱, 哀建国, 宋新章, 李全, 张君波.  模拟氮沉降和磷添加对杉木林土壤呼吸的影响 . 浙江农林大学学报, 2021, 38(3): 494-501. doi: 10.11833/j.issn.2095-0756.20200326
    [10] 匡媛媛, 范弢.  滇东南喀斯特小生境土壤水分差异性及其影响因素 . 浙江农林大学学报, 2020, 37(3): 531-539. doi: 10.11833/j.issn.2095-0756.20190383
    [11] 杨开业, 巩合德, 李敬, 刘运通, 沙丽清, 宋清海, 金艳强, 杨大新, 李培广, 闻国静, 陈爱国, 庞志强, 张一平.  元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征 . 浙江农林大学学报, 2020, 37(5): 849-859. doi: 10.11833/j.issn.2095-0756.20190647
    [12] 竹万宽, 陈少雄, RogerARNOLD, 王志超, 许宇星, 杜阿朋.  不同种桉树人工林土壤呼吸速率时空动态及其影响要素 . 浙江农林大学学报, 2018, 35(3): 412-421. doi: 10.11833/j.issn.2095-0756.2018.03.004
    [13] 张涛, 李永夫, 姜培坤, 周国模, 刘娟.  土地利用变化影响土壤碳库特征与土壤呼吸研究综述 . 浙江农林大学学报, 2013, 30(3): 428-437. doi: 10.11833/j.issn.2095-0756.2013.03.021
    [14] 梁晶, 方海兰, 郝冠军, 孙倩.  上海城市绿地不同植物群落土壤呼吸及因子分析 . 浙江农林大学学报, 2013, 30(1): 22-31. doi: 10.11833/j.issn.2095-0756.2013.01.004
    [15] 黄石德.  降水和凋落物对木荷马尾松混交林土壤呼吸的影响 . 浙江农林大学学报, 2012, 29(2): 218-225. doi: 10.11833/j.issn.2095-0756.2012.02.011
    [16] 唐洁, 李志辉, 汤玉喜, 吴敏, 李永进, 王胜.  洞庭湖区滩地不同土地利用类型土壤呼吸动态 . 浙江农林大学学报, 2011, 28(3): 439-443. doi: 10.11833/j.issn.2095-0756.2011.03.014
    [17] 叶耿平, 刘娟, 姜培坤, 周国模, 吴家森.  集约经营措施对毛竹林生长季土壤呼吸的影响 . 浙江农林大学学报, 2011, 28(1): 18-25. doi: 10.11833/j.issn.2095-0756.2011.01.004
    [18] 窦春英, 徐温新, 叶正钱, 张圆圆, 姚芳, 吕家珑.  6种典型农田土壤的锌吸附-解吸特性 . 浙江农林大学学报, 2010, 27(1): 8-14. doi: 10.11833/j.issn.2095-0756.2010.01.002
    [19] 李安定, 喻理飞, 韦小丽.  喀斯特区土壤水分动态模拟及实地造林的研究 . 浙江农林大学学报, 2008, 25(2): 211-215.
    [20] 李德会, 李贤伟, 王巧, 荣丽, 杨渺, 刘朔.  林木根系呼吸影响因素及根系呼吸对全球变化的响应 . 浙江农林大学学报, 2007, 24(2): 231-238.
  • 期刊类型引用(1)

    1. 马长乐,杨建欣,桂晴,龚买玉,周龙飞,刘佳. 榧树属植物资源研究进展. 经济林研究. 2024(04): 1-13 . 百度学术

    其他类型引用(1)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230522

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/4/760

图(5) / 表(1)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  67
  • PDF下载量:  12
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-10-21
  • 修回日期:  2024-03-19
  • 录用日期:  2024-03-19
  • 网络出版日期:  2024-04-24
  • 刊出日期:  2024-07-12

喀斯特农田土壤呼吸对干湿交替的响应特征

doi: 10.11833/j.issn.2095-0756.20230522
    基金项目:  国家自然科学基金资助项目(42071142);贵州师范学院2021年度校级科学研究基金博士项目(2021BS023)
    作者简介:

    吕文强(ORCID: 0000-0002-2204-1618),副教授,博士,从事全球变化与碳循环研究。E-mail: lvbuwei123@126.com

  • 中图分类号: S153

摘要:   目的  探究中国西南喀斯特地区农田石灰性土壤二氧化碳(CO2)排放通量对该区频繁发生的干湿交替的响应规律。  方法  以喀斯特农田石灰性土壤为研究对象,设计2种干湿交替强度(模拟降水量为10和25 mm),以干湿交替循环周期10 d为1个循环过程,研究喀斯特农田土壤呼吸对干湿交替的响应。  结果  干湿交替强度显著影响土壤呼吸速率和土壤总CO2排放量(P<0.05)。在2种干湿交替强度下,随着水分施加,土壤CO2排放通量会在短时间内达到最大值,然后逐渐下降。对于10 mm降水干湿交替强度,不同循环周期下的土壤CO2排放通量和土壤总CO2排放量之间的差异并不显著。然而,对于25 mm降水干湿交替强度,大多数循环周期下的土壤CO2排放通量和土壤总CO2排放量之间的差异显著(P<0.05)。相关分析表明:干湿交替多重周期作用下,土壤含水量和土壤CO2排放通量之间的相关关系不断降低。  结论  干湿交替强度和干湿交替过程是影响喀斯特农田土壤呼吸排放的重要因素。图5表1参64

English Abstract

冉钰岑, 何芳, 刘菊莲, 等. 极危植物九龙山榧的大小孢子发生和雌雄配子体发育研究[J]. 浙江农林大学学报, 2022, 39(5): 940-949. DOI: 10.11833/j.issn.2095-0756.20220181
引用本文: 吕文强, 董天燕, 白富文. 喀斯特农田土壤呼吸对干湿交替的响应特征[J]. 浙江农林大学学报, 2024, 41(4): 760-768. DOI: 10.11833/j.issn.2095-0756.20230522
RAN Yucen, HE Fang, LIU Julian, et al. Microsporogenesis, megasporogensis and development of male and female gametophytes of Torreya jiulongshanensis, a critically endangered plant[J]. Journal of Zhejiang A&F University, 2022, 39(5): 940-949. DOI: 10.11833/j.issn.2095-0756.20220181
Citation: LÜ Wenqiang, DONG Tianyan, BAI Fuwen. Response of soil respiration to dry-wet alternation in karst farmland[J]. Journal of Zhejiang A&F University, 2024, 41(4): 760-768. DOI: 10.11833/j.issn.2095-0756.20230522
  • 二氧化碳(CO2)等温室气体排放增加以及全球变暖日益加剧,如何减缓大气“温室效应”,是人类目前面临的重要问题之一。土壤被认为是陆地生态系统中最大的碳库[1],其中土壤有机碳储量为1 500~2 000 Pg,无机碳储量为700~1 000 Pg[2],是土壤CO2排放的主要来源[3]。土壤碳库在全球碳循环中起着重要的碳源、碳汇作用,具有巨大的碳汇潜力,其微小变化将可能对大气CO2产生显著影响,在全球碳循环过程中扮演着非常重要的角色[4]。农田是陆地生态系统重要的组成部分,约占全球陆地面积的10.62%[5];农田土壤作为陆地生态系统最活跃的碳库,其CO2排放量约占全球人为温室气体排放总量的21%~25%[6]。由此可见,深入开展农田土壤呼吸作用及其影响因素研究,对准确评估陆地生态系统碳收支具有重要的理论和现实意义。

    土壤干湿交替被认为是土壤呼吸的重要影响因素,通过激发或抑制土壤呼吸来改变陆地生态系统碳储量,进而影响土壤呼吸时空特征及碳通量[718]。研究表明:受降水量、土壤初始含水量、降水格局、生态系统类型、干旱持续事件及干湿交替频率和强度的影响[19],土壤干湿交替引起的土壤碳排放呈现不同的变化规律。在全球气候变化大背景下,极端干旱/降水事件和人类活动会使土壤发生频繁的干湿交替过程[2022];未来随着气候变化及降水格局的改变,土壤干湿交替现象及其发生频率会进一步提高[2325]。中国西南喀斯特区碳酸盐岩出露面积达51.36 万km2[26],区内农田面积占比21.6%[27],对于喀斯特地区碳循环具有举足轻重的作用。由碳酸盐岩发育的石灰性土壤是该区农田主要土壤类型之一,不同于其他农田土壤类型,具有明显的区域特色。一方面,喀斯特地区土壤干湿交替特征鲜明,干旱、半干旱地区土壤干湿交替主要由降水量少引起,喀斯特地区降水充沛,但土层浅薄,储水能力低,岩石渗漏性强,导致土壤干湿交替发生更加频繁[28];另一方面,土壤无机碳对土壤CO2排放具有一定的贡献[2933],以往的研究较少的考虑这一贡献。现有的非喀斯特地区土壤碳循环过程对干湿交替的响应规律,可能并不适用于喀斯特地区。因此,开展喀斯特地区农田石灰性土壤CO2排放对干湿交替的响应研究,可提升喀斯特地区土壤CO2排放通量评估的准确性。

    本研究以喀斯特农田土壤为研究对象,通过室内控制实验,分析喀斯特农田土壤呼吸对不同干湿交替的响应规律,为深入理解气候变化下喀斯特农田土壤碳固持和减少碳排放提供理论依据。

    • 研究区位于贵州省贵阳市乌当区(26°38N,106°48′E),属于亚热带季风气候,年平均气温为14.9 ℃,年均降水量为1 130.4 mm。该地区是喀斯特地貌发育区,碳酸盐类岩层分布广,地貌类型以山地、丘陵为主,岩石类型以石灰岩为主,土壤类型主要由黄壤、黄棕壤、石灰土组成。本研究区内土壤类型为石灰土, pH为7.21,有机碳质量分数为55.40 g·kg−1,速效氮为87.36 mg·kg−1,速效磷为1.87 mg·kg−1。该区土壤干湿交替主要由降水事件导致。

    • 以研究区内石灰性农田作为研究对象,采取表层土(0~20 cm) 带回实验室,放在通风状况良好、阴凉的地方风干。风干后的土壤挑出石块和可见植物残体样品,研磨,过2 mm筛备用。

    • 试验于2022年8—9月在贵州师范学院温室大棚进行。将处理好的风干土充分混合均匀,平铺到聚氯乙烯(PVC)管底部(PVC管底部密封,高15 cm,内径10 cm,土层厚度5 cm,上部留有10 cm的空间)。根据贵阳市多年降水特征(该区以小于10 mm的降水为主)模拟2个降水量处理,分别是10和25 mm降水量,试验持续30 d (720 h)。在每个降水量处理下设置3个以10 d为降水周期的干湿循环周期,每个处理设置6个重复,其中3个重复用于测量土壤CO2排放,另外3个重复用于同步测量土壤含水量。对用于测量土壤CO2排放通量的PVC管,整个实验期间,只对其进行CO2监测,不对其进行破坏性采样。采用喷壶喷洒的方式模拟降水,向土壤表面均匀喷洒蒸馏水,喷水当天记作第1 天,第11 天、第21 天分别采用相同方法向土壤表面喷洒蒸馏水。第1天喷水后至第10天喷水前记作第1个周期,第11天加水后至第20天加水前记作第2个周期,第21天加水后至第30天记作第3个周期。洒水后第1天,在不同的时间(喷水后1、2、4、6、8、12、24 h)测定土壤呼吸速率,再在第4天、第7天和第10天各测定土壤呼吸速率1次。每次测定土壤呼吸速率时,用密封盖对PVC管进行密封,形成采样气室,每次监测持续时间为15 min,分别监测罩箱内0、5、10和15 min时的CO2浓度。在每次土壤呼吸速率监测结束后,打开密封盖,保持PVC管处于自然通风状态。土壤CO2使用CO2测定仪器-红外传感器(Vaisala GMP252)测定。土壤体积含水量(5 cm)用土壤温湿度速测仪(JL-19-2)测定。

      CO2排放通量利用式(1)计算:

      $$ F = \frac{M}{{{V_0}}} \times \frac{P}{{{P_0}}} \times \frac{{{T_0}}}{T} \times H \times \frac{{{\rm{d}}c}}{{{\rm{d}}t}} 。 $$ (1)

      式(1)中:F为CO2排放通量(mg·m−2·h−1);M为标准状态下CO2的摩尔质量(44 g·mol−1);H为采样箱高度 (m);P为采样点大气压强 (kPa);P0T0分别是标准状态下的大气压强和空气绝对温度(101.325 kPa和273.15 K);V0是标准状态下气体摩尔体积22.41 L·mol−1T是采样时该点的温度 (K);dc/dt是CO2浓度随时间变化的速率。干湿交替处理CO2累计排放量计算公式为:

      $$ E = \sum_{i=1}^n {\left(\frac{{{F_i} + {F_{i - 1}}}}{2}\right)} \times ({t_i} - {t_{i - 1}}) 。 $$ (2)

      式(2)中:E为CO2累计排放量(mg·m−2);F为CO2排放通量(mg·m−2·h−1);i为采样次数(i=1,2$, \cdots ,n $);t为采样时间(h)。

    • 数据前期处理、统计分析及绘图分别用Excel 2013、SPSS 18.0和Origin 9完成。采用单因素方差分析(one-way ANOVA) 分别对不同干湿交替强度下土壤呼吸速率与土壤累计CO2排放量的影响进行差异性检验,采用Pearson相关分析法分析土壤呼吸和土壤湿度的相关性。

    • 2种干湿交替强度下,随着水分的施加,土壤CO2排放通量短时间内达到最大值,随后逐渐下降(图1)。其中,25 mm降水干湿交替强度下,土壤CO2排放通量达到最大值的时间要明显晚于10 mm降水干湿交替强度。土壤含水量变化基本与水分的施加同步,随周期性的水分施加土壤湿度呈现从大到小的趋势(图2)。

      图  1  2 种干湿交替强度下土壤 CO2排放通量随时间的变化特征

      Figure 1.  Dynamics of soil CO2 emission flux under two different intensities of wet-dry alternation

      图  2  2 种干湿交替强度下土壤含水量随时间的变化特征

      Figure 2.  Dynamics of soil moisture under two different intensities of wet-dry alternation

      图3所示:在第1个周期中,10和25 mm降水干湿交替强度下,平均土壤CO2排放通量分别是162.62、346.28 mg·m−2·h−1;第2个周期中2种干湿交替强度下,平均土壤CO2排放通量分别是139.15、 144.00 mg·m−2·h−1,比第1个周期分别降低了14.17%、58.42%;第3个周期的2种干湿交替强度下,平均土壤CO2排放通量分别是108.85、43.54 mg·m−2·h−1,比第1个周期分别降低了32.86%、87.43%。方差分析结果显示:10 mm降水干湿交替强度下,不同周期土壤CO2排放通量之间差异不显著;25 mm降水干湿交替强度下,不同循环周期间土壤CO2排放通量差异显著(P<0.05);第1个和第3个周期土壤CO2排放通量在不同干湿交替强度下显著不同(P<0.05),而第2个周期干湿交替强度对土壤CO2排放通量影响不显著(P>0.05,图3)。

      图  3  2种干湿交替强度下不同循环周期土壤CO2排放通量平均值

      Figure 3.  Average soil CO2 emission flux of three drying and rewetting cycles with two different intensities of wet-dry alternation

    • 在整个干湿交替周期中,25 mm降水干湿交替强度的土壤CO2累计排放量比10 mm降水干湿交替强度更多。土壤CO2累计排放量在每个周期中都是在水分施加后先是快速增大,之后增大的趋势减缓(图4)。图5表明:在不同周期,25 mm降水干湿交替强度下,第1个周期土壤总CO2排放量和第2个循环周期差异不显著,第1个周期和第2个周期土壤总CO2排放量与第3个周期差异均显著(P<0.05)。10 mm降水干湿交替强度下,不同周期土壤总CO2排放量之间差异不显著;不同的干湿交替强度下,各周期之间土壤总CO2排放量差异显著(P<0.05)。

      图  4  2 种干湿交替强度下土壤 CO2累计排放量随时间的变化特征

      Figure 4.  Dynamics of accumulated soil carbon release under two different intensities of wet-dry alternation

      图  5  2 种干湿交替强度下不同循环周期土壤总 CO2排放量

      Figure 5.  Total CO2 release of three drying and rewetting cycles with two different intensities of wet-dry alternation

    • 表1可知:第1个和第2个干湿交替周期的土壤含水量和土壤CO2排放通量之间有极显著的相关关系(P<0.001),而第3个干湿交替周期土壤含水量和土壤CO2排放通量之间相关不显著。干湿交替多个周期作用下,土壤含水量和土壤CO2排放通量之间的相关程度不断降低。

      表 1  土壤CO2排放通量与土壤湿度的相关关系

      Table 1.  Correlation between soil CO2 emission flux respiration and soil moisture

      周期样本数/个拟合方程相关系数P
      160y =0.001 9x2+5.998 2x−41.7430.750.000
      260y =−0.054 1x2+8.147 1x−124.870.640.000
      360y =−0.049 2x2+6.103 0x−76.9110.180.170
        说明:y为土壤CO2排放通量,x为土壤体积含水量。
    • 1958年,BIRCH[34]最早观测到降水导致的土壤水分变化能够激发土壤呼吸,该现象被称为“Birch效应”。干旱土壤再湿润过程引起的CO2脉冲可持续20 d以上[35],且土壤呼吸速率可提高5倍以上(与恒湿土壤相比)[36],因此,干湿交替被认为是影响土壤呼吸的重要因素[37]。研究表明:受降水量、土壤初始含水量、降水格局、生态系统类型、干旱持续事件和干湿交替频率和强度的影响[19],土壤干湿交替引起的土壤碳排放可能呈现不同的变化规律。本研究结果表明:干湿交替强度显著影响土壤呼吸。2种干湿交替强度下,随着水分的施加,土壤CO2排放通量均从较低水平逐渐达到最大值,然后再逐渐降低。这是因为随着水分的施加,土壤水分达到饱和或者积水状态,较高的土壤水分使土壤透气性变差,微生物呼吸的氧气利用受到限制[38]。而后,随着时间的推移,土壤水分降低,土壤透气性得到改善,氧气的利用率提高,土壤CO2排放通量迅速提高[39]。其原因,一方面可能是干湿交替引起的空气压迫以及土壤的膨胀-收缩过程,导致土壤团聚体发生物理破坏并促使有机质暴露于微生物,最终通过加速微生物对有机质的分解而排放大量CO2[4041]。另一方面在极端干旱环境下,微生物通过休眠或者细胞脱水等方式存活[4243],当土壤水分增加时,微生物得到水分补给,其活性增强[4445],且总量和丰度升高[46]

      此外,2种不同强度干湿交替下不同周期土壤CO2排放通量也具有一定的差异。在不同的周期内,25 mm降水干湿交替强度每个周期土壤CO2排放通量差异显著,而10 mm降水干湿交替强度下的不同周期土壤CO2排放通量差异不显著。有研究表明:土壤呼吸短时间内升高后逐渐下降的原因可能是由于经过多次的干湿交替过程中,土壤可利用有机质被消耗减少[47],从而影响了土壤的生物活性,使土壤呼吸下降。在没有外源有机碳输入的情况下,土壤经过反复的干湿交替后,土壤团聚体稳定性得到提高,释放有机质的能力减弱,土壤有机质释放量减少[48]。25 mm降水干湿交替强度下,第1个周期土壤可利用有机质得到充分释放利用,而在第2个和第3个周期这种可利用有机质被消耗后不断减少,因此,该干湿交替强度下,从第1个周期到第3个周期,土壤CO2排放通量下降趋势明显。10 mm降水干湿交替强度下,3个周期的土壤CO2排放通量差异不显著。这有2个原因:一方面,土壤可利用有机质可能并未得到充分释放,反复的干湿交替作用下,土壤仍能释放出可利用有机质被微生物利用;另一方面,本研究所涉及的土壤类型为喀斯特地区的石灰性土壤,在10 mm降水干湿交替强度下,土壤碳酸盐溶解/沉淀过程排放的土壤CO2占比可能较大,从而导致喀斯特地区石灰性土壤对干湿交替的响应与其他土壤类型存在一定差异,如赵蓉等[11]研究了固沙植被区土壤呼吸对反复干湿交替的响应,表明5、10和20 mm降水3个干湿交替强度下,不同循环周期土壤CO2排放通量均呈下降之势。

    • 干湿交替强度显著影响土壤CO2累计排放量。25 mm降水干湿交替强度的土壤CO2累计排放量明显比10 mm降水干湿交替强度大。土壤从干旱状态到湿润后,土壤团聚体等结构被破坏,增加了土壤中有机质,土壤微生物消耗更多氧气,排放出更多的CO2[49]。这种增加的可利用有机质和干湿交替强度有关。在较强的干湿交替强度下,土壤释放的可利用有机质可能更多。同时,施加较少的水分时,不能使水分渗入到土壤内部,土壤水分很容易被蒸发,下层土壤并没有水分渗入,土壤环境变化较小,大部分土壤微生物依然处于休眠状态,使得土壤CO2累计排放量较小;水分施加量增大时,可以使下层土壤有更多的水分渗入,土壤环境发生较大变化,打破了土壤微生物的休眠状态,使得微生物更加活跃[50]。另外,本研究的土壤类型为喀斯特地区的石灰性土壤。近年的研究结果表明:土壤无机碳对土壤CO2排放具有一定的贡献[2832],增加土壤湿度通常会导致碳酸盐排放的CO2增加[5153]。这种现象可以通过2个主要途径解释:首先,增加土壤湿度会促进有机碳的矿化并减少CO2的扩散[5455],从而导致土壤中CO2浓度的增加,可能进一步促使碳酸盐系统的溶解/沉淀过程发生[53, 56]。其次,土壤湿度本身会推动碳酸盐与CO2之间的平衡反应[5253, 56]

    • 土壤含水量是影响土壤呼吸的另一个重要非生物因子,对土壤呼吸影响相当复杂。土壤含水量既可以直接影响根和微生物呼吸,也可以通过影响土壤物理特性等其他环境因子间接影响土壤呼吸速率。关于土壤呼吸和土壤湿度的关系,不同的研究者在自己特定的条件下得出完全不同的结论。有研究发现:土壤呼吸和土壤含水量有着显著的相关关系[5759],但也有研究指出:土壤呼吸和土壤湿度相关关系不显著[6062]。本研究中,第1个和第2个干湿交替周期的土壤含水量和土壤CO2排放通量的相关关系显著,第3个周期,土壤含水量和土壤呼吸之间的相关关系不显著,整体上表现出随干湿交替过程的发生,土壤含水量和土壤呼吸之间的相关关系减弱。原因可能是,第1个周期,土壤从最开始的干旱状态变湿润,短期之内土壤团聚体遭受破坏,土壤中与土壤水分条件密切相关的可利用有机质增加[4041]。同时,水分条件也可以对微生物的代谢活动产生影响,如水分的变化迅速改变了微生物生长速率[63]。随着多次干湿交替的进行,土壤团聚体的稳定性不断增强,土壤微生物活性降低[64],从而减弱了土壤含水量变化对土壤呼吸的影响,致使土壤呼吸和土壤湿度的相关性不断变弱。

    • ①干湿交替强度显著影响土壤呼吸。2种干湿交替强度下,随着水分的施加,土壤CO2排放通量较短时间内达到最大值,然后再逐渐降低。在不同周期内,10 mm降水干湿交替强度下,不同周期土壤CO2排放通量之间差异不显著;25 mm降水干湿交替强度下,不同周期土壤CO2排放通量之间差异显著。第1个和第3个周期土壤CO2排放通量在不同干湿交替强度下显著不同,而第2个周期表现出干湿交替强度对土壤CO2排放通量影响不显著。②2种干湿交替强度对土壤CO2累计排放量影响显著 。在整个干湿交替循环过程中,25 mm降水干湿交替强度的土壤CO2累计排放量比10 mm降水干湿交替强度多。在不同周期,25 mm降水干湿交替强度下,第1个周期土壤总CO2排放量和第2个周期差异不显著,与第3个周期土壤总CO2排放量差异显著,10 mm降水干湿交替强度下不同周期土壤总CO2排放量之间差异不显著。不同的干湿交替强度下,各周期之间土壤总CO2排放量差异显著。③干湿交替多个周期作用下,土壤含水量和土壤CO2排放通量之间的相关程度不断降低。

参考文献 (64)

目录

/

返回文章
返回