-
香榧Torreya grandis ‘Merrillii’ 隶属于红豆杉科Taxaceae榧树属Torreya常绿乔木,是中国特有的珍稀坚果植物,具有重要的经济、社会和生态价值[1]。由于香榧生物学周期长,性状易受环境等因子影响,限制了其育种工作的开展。目前,有关香榧体胚诱导、增殖和离体器官培养再生植株的研究已有一定进展,但关于利用基因工程改良香榧育种的研究尚未见报道[2]。基因工程是生物技术的核心,利用基因工程进行林木遗传改良,以提高作物产量、改善品质、增强抗性是林木分子育种的最有效途径之一[3]。1986年,研究人员通过农杆菌Agrobacterium tumefaciens介导法在杨树Populus trichocarpa×deltoides中成功开展遗传转化,开创了林木遗传转化研究的先河[4]。目前,林木基因转化方法已达10余种,其中,农杆菌介导法因具有操作简单、拷贝数低、转化效率高、重复性好、发生基因沉默率低等优点而被广泛应用[5]。随着木本植物遗传转化研究的不断发展,苹果Malus pumila等重要果树农杆菌介导的遗传转化体系也相继建立,为经济林果树种定向育种提供了高效的方法和手段。1989年,率先成功实现苹果转基因[6],包括早花、矮化、抗病等基因的转化,且有多个品种已成功获得转基因植株。1996年,梨Pyrus communis的遗传转化首见报道[7]。目前,在豆梨P. calleryanana和砂梨P. pyrifolia等均有报道。此外,樱桃Prunus cerasus、李P. salicina等其他水果也实现了遗传转化。然而,果树的遗传转化研究大多数集中于水果,对于坚果树种遗传转化的研究尚处于起步阶段[8]。坚果为包裹着坚硬外壳的植物种子统称[9]。坚果类食品富含不饱和脂肪酸,具有较好的抗氧化和抗衰老活性,对心脑血管等疾病具有良好的预防作用[10]。坚果分为树坚果和籽坚果。树坚果是指具有坚硬外壳的木本植物的籽粒,包括核桃Juglans regia、巴旦木Amygdalus communis、榛子Corylus heteropylla、山核桃Carya cathayensis、香榧等。坚果树种多数为多年生木本植物,组织细胞中含有大量的酚类化合物和单宁等物质,导致采用基因工程技术进行种质资源创新难度较大[11]。目前,树坚果中核桃的基因工程技术研究进展最为深入。自从MCGRANAHAN等[12]1988年成功开展了农杆菌介导的核桃遗传转化以来,科学家已对多个核桃树种进行了基因组测序[13-14],构建了良好的遗传转化体系[15],并对多个重要基因开展了功能验证,获得了多份创新种质资源,开创了果树基因工程的新局面[16]。香榧作为一种重要的树坚果,基因工程研究进展缓慢,遗传转化体系尚不成熟,限制了香榧种质创新和产业发展。本研究以香榧幼胚为转基因受体材料,从幼胚胚龄的选择、农杆菌侵染浓度和时间、羧苄青霉素质量浓度以及阳性筛选时潮霉素质量浓度对香榧遗传转化条件进行探索和优化,利用绿色荧光蛋白(GFP)信号检测分析转化效率,并通过聚合酶链式反应(PCR)检测进行阳性鉴定,以期初步建立农杆菌介导的香榧遗传转化体系,为香榧重要基因功能验证及种质创新提供重要技术体系。
-
于2018年7月5—26日(种子突破种鳞后第8~11周,以下简称第8~11周)采集生长健壮的香榧种子,经消毒后,用无菌修枝剪从种子榧眼端(珠孔端)纵向剪开,剥取完整幼胚(图1A~D)待用。具体消毒步骤参照龚丽等[17]的方法。
-
采用携带GFP报告基因的pCAMBIA1300-GFP载体,内含卡那霉素抗性基因和潮霉素抗性基因[18];农杆菌菌株GV3101。
-
①农杆菌的活化与培养。将−80 ℃冰箱中保存的携带pCAMBIA1300-GFP载体的GV3101农杆菌菌株接种至含有50 mg·L−1卡那霉素的LB固体培养基中划线培养,28 ℃恒温培养箱活化培养2 d。挑取若干单菌落分别放置于盛有附加50 mg·L−1卡那霉素和50 mg·L−1利福平的LB液体培养基的无菌离心管中,28 ℃恒温振荡培养箱继续培养,至菌液混浊。②侵染液的制备。取上述适量菌液稀释10倍,分光光度计下测定吸光度[D(600)]。侵染液制备所需菌液体积按照如下公式计算:所需菌液量(mL)=[所需侵染量(mL)×所需菌液D(600)]/[实测D(600)×10]。计算得出所需菌液体积后,在超净工作台上用移液枪吸取所需菌液至无菌带盖离心管中6 000 r·min−1转速下离心10 min,弃上清液,加入2 mL含有 0.1 mg·L−1萘乙酸和40.0 mg·L−1乙酰丁香酮的1/2 SH液体共培养基,吸打混匀成悬浮液后,再加液体共培养基至所需菌液侵染量,将离心管放回至28 ℃恒温振荡培养箱继续培养1~2 h,待用。
-
①香榧幼胚最佳胚龄筛选。采用第8~11周的香榧幼胚,用农杆菌侵染[D(600)为0.5],并添加乙酰丁香酮共培养后接种至农杆菌脱菌培养基(1/2 SH+0.1 mg·L−1萘乙酸+2.0 g·L−1活性炭+30.0 g·L−1蔗糖+200.0 mg·L−1羧苄青霉素+12.0 g·L−1琼脂)培养4周,分别统计筛选过程中香榧幼胚的污染率、成活率、愈伤组织诱导率以及体细胞胚(简称体胚)发生率。每个处理重复3次,每次处理30个幼胚。②最佳农杆菌侵染吸光度筛选。将农杆菌菌液吸光度设置为4个水平[D(600)为0.3、0.5、0.8、1.0],对香榧幼胚侵染15 min,乙酰丁香酮共培养3 d后接种至脱菌培养基(同①)培养4周,统计幼胚污染率、成活率、愈伤组织诱导率和体胚发生率,确定适宜转化用的菌液浓度。每个处理重复3次,每次处理30个幼胚。③最佳农杆菌侵染时间筛选。采用 D(600)为0.5的农杆菌菌液对幼胚分别侵染5、10、15、20、30 min,共培养3 d后转接至脱菌培养基(同①)培养4周,统计污染率、成活率、愈伤组织诱导率以及体胚发生率,以确定适宜转化用的菌液浓度。每个处理重复3次,每次处理30个幼胚。④最佳羧卞青霉素质量浓度筛选。将共培养后的香榧幼胚接种在含有 0.1 mg·L−1萘乙酸和不同质量浓度羧卞青霉素(100、200、300、400 mg·L−1)的1/2 SH固体培养基中进行抗生素质量浓度筛选。每个处理重复3次,3 d继代培养1次,4周后统计污染率、成活率、愈伤组织诱导率以及体胚发生率,以确定适宜的羧苄青霉素质量浓度。
-
选取生长良好的香榧幼胚在最佳浓度农杆菌侵染液中,悬浮培养最佳侵染时间后,将幼胚转接至附加萘乙酸(0.1 mg·L−1)和乙酰丁香酮(40 mg·L−1)的1/2 SH固体培养基中共培养3 d后,再转接至脱菌培养基(1.2.2节④筛选出的最佳培养基)中培养至无菌。具体步骤参照ZHANG等[8]的方法。将脱菌后的香榧幼胚接种至附加0.1 mg·L−1萘乙酸和质量浓度分别为50、80、100、200 mg·L−1潮霉素的1/2 SH固体培养基中进行筛选培养,2周后转接至附加0.1 mg·L−1萘乙酸和100 mg·L−1潮霉素的1/2 SH固体培养基中进行筛选培养,隔2 d转接1次至完全脱菌并获得潮霉素抗性幼胚。
-
将经潮霉素筛选的抗性幼胚置于体式显微镜(SteREO Discovery V1)下进行450~490 nm蓝光激发,表面能观察到明亮绿色荧光的幼胚为GFP荧光信号阳性幼胚。选取潮霉素基因和GFP绿色荧光鉴定均为阳性的幼胚培养材料,利用TPS法提取DNA。利用GFP基因引物(GFP-F: 5′-GACGCACAATCCCACTATCCTT-3′, GFP-R: 5′-AACCGATGATACGAACGAAAGC-3′),以上述提取的DNA为模板进行GFP基因的PCR扩增[PCR程序为:94 ℃ 2 min;98 ℃ 10 s;68 ℃ 45 s (32个循环);72 ℃ 10 min;4 ℃保存],目的片段大小为750 bp。PCR程序结束后,10 g·kg−1琼脂糖凝胶电泳检测,条带符合预期大小的确定为转化成功的香榧幼胚培养物。
-
受体材料污染率、成活率及GFP阳性率等数据采用SPSS 20.0软件进行统计分析,其中包括平均值和方差分析。计算公式如下:污染率=污染幼胚数/侵染总体胚数×100%;成活率=成活幼胚数/侵染总体胚数×100%; GFP阳性率=GFP阳性幼胚数/成活幼胚数×100%。
-
本研究采用处于第8~11周的香榧幼胚为材料进行农杆菌介导的遗传转化(图1E~H)。第8~11周分别为胚胎选择初期、胚胎选择中期、胚胎选择晚期和优势胚完全发育期。结果表明(表1):4个胚龄的幼胚转化过程中污染率和成活率均存在显著差异(P<0.05)。随着香榧幼胚龄的增加,抗逆性增强,污染率降低,成活率提高。第10周和第11周成活率分别为52.1%和52.3%。香榧幼胚胚性感受态具有较大差异,第10周时愈伤组织诱导率下降为17.9%,但体胚发生率最高,达17.3%;第11周时愈伤组织诱导率和体胚发生率均下降,分别为10.7%和5.6%。尽管香榧第8~11周幼胚均可用于农杆菌介导的遗传转化,但综合污染率、成活率、愈伤组织诱导率和体胚发生率均表明采用第10周香榧幼胚进行农杆菌介导的遗传转化效果最佳。
表 1 香榧幼胚胚龄对遗传转化的影响
Table 1. Different growth stages of embryos on the transformation efficiency in T. grandis ‘Merrillii’
采样时
间/周污染率/
%成活率/
%愈伤组织
诱导率/%体胚发生
率/%8 22.3±0.3 a 35.6±1.3 b 18.1±0.6 a 0.0±0.0 c 9 21.5±0.5 a 40.9±2.3 b 20.1±1.6 a 0.0±0.0 c 10 18.8±0.3 b 52.1±2.0 a 17.9±0.3 b 17.3±1.2 a 11 18.7±0.6 b 52.3±1.3 a 10.7±0.7 b 5.6±0.5 b 说明:同列不同小写字母表示差异显著(P<0.05) -
表2表明:随着菌液D(600)的升高,污染率逐渐上升,成活率逐渐下降。过高的污染率会增加大量的前期采样、灭菌、侵染、共培养及后期脱菌培养的工作量。当菌液D(600)=0.3时,污染率最低,成活率最高,但愈伤组织诱导率和体胚发生率都比D(600)=0.5时低。随着D(600)的升高,愈伤组织诱导率和体胚发生率先上升后下降。当D(600)=0.5时,愈伤组织诱导率和体胚发生率最高,分别为17.9%和17.3%。因此,综合考虑,D(600)=0.5时是最佳侵染浓度(表2)。
表 2 农杆菌菌液浓度对香榧幼胚遗传转化的影响
Table 2. Different concentrations of bacteria on the impact of transformation in T. grandis ‘Merrillii’
D(600) 污染率/
%成活率/
%愈伤组织
诱导率/%体胚发生
率/%0.3 42.0±0.8 d 62.1±1.4 a 15.2±1.0 a 6.9±0.9 b 0.5 48.2±0.6 c 58.7±3.8 a 17.9±1.5 a 17.3±0.3 a 0.8 63.1±3.3 b 36.6±0.8 b 8.9±0.5 b 4.9±0.3 c 1.0 71.5±1.4 a 14.1±0.2 c 0.0±0.0 c 0.0±0.0 d 说明:同列不同小写字母表示差异显著(P<0.05) -
表3表明:随着侵染时间的延长,污染率逐渐升高,成活率逐渐下降,侵染5 min时,污染率最低,成活率最高;当侵染30 min时,污染率最高,达100%。不同侵染时间下,各处理间愈伤组织诱导率和体胚发生率均存在显著差异(P<0.05),侵染10 min时,愈伤组织诱导率和体胚发生率均为最高,分别达17.5%和17.1%;侵染20~30 min时,愈伤组织诱导率和体胚发生率均下降至0。综合以上指标,选择10 min为最佳侵染时间。
表 3 农杆菌菌液不同侵染时间对香榧幼胚遗传转化的影响
Table 3. Effect of different infection times on transformation in T. grandis ‘Merrillii’
侵染时间/
min污染率/
%成活率/
%愈伤组织
诱导率/%体胚发生
率/%5 35.2±0.4 e 72.1±2.3 a 16.2±0.6 b 15.3±0.3 b 10 45.1±0.7 d 65.3±0.6 b 17.5±0.3 a 17.1±1.0 a 15 49.3±1.4 c 60.5±1.4 c 10.8±0.3 c 3.5±0.4 c 20 72.5±0.5 b 42.8±1.1 d 0.0±0.0 d 0.0±0.0 d 30 100.0±3.7 a 0.0±0.0 e 0.0±0.0 d 0.0±0.0 d 说明:同列不同小写字母表示差异显著(P<0.05) -
本研究选用的农杆菌种类为碱型GV3101菌株,因此,在前期研究的基础上,选用羧苄青霉素为农杆菌脱菌抗生素。表4表明:香榧幼胚成活率随着羧苄青霉素质量浓度的升高先上升后下降,当羧苄青霉素质量浓度为300 mg·L−1时成活率最高,为60.5%。随着羧苄青霉素质量浓度的升高,愈伤组织诱导率和体胚发生率均呈先上升后下降的趋势,当质量浓度为300 mg·L−1时,愈伤组织诱导率和体胚发生率最高,分别为15.8%和17.5%。因此,最佳羧苄青霉素质量浓度为300 mg·L−1。
表 4 羧苄青霉素质量浓度对香榧幼胚农杆菌脱除的影响
Table 4. Effects of carboxypenicillin concentration on the removal of Agrobacterium tumebii from T. grandis ‘Merrillii’ embryos
羧苄青霉素/
(mg·L−1)污染率/
%成活率/
%愈伤组织
诱导率/%体胚发生
率/%100 82.2±1.0 a 22.1±0.8 c 6.7±0.2 c 00.0±0.0 c 200 64.9±1.9 b 45.3±2.3 b 7.3±0.1 b 7.1±0.4 b 300 17.3±2.0 c 60.5±1.4 a 15.8±0.3 a 17.5±1.5 a 400 12.1±0.3 d 42.8±1.2 b 0.0±0.0 d 0.0±0.0 c 500 0.0±0.0 e 10.1±0.4 d 0.0±0.0 d 0.0±0.0 c 说明:同列不同小写字母表示差异显著(P<0.05) -
表5表明:随着潮霉素质量浓度的升高,幼胚成活率逐渐下降,当潮霉素质量浓度为50 mg·L−1时,成活率最高,为62.1%;当潮霉素质量浓度升高至100 mg·L−1时,成活率下降至30.5%,但当潮霉素质量浓度继续升高至200 mg·L−1,香榧幼胚培养物的成活率基本不变。当潮霉素质量浓度为50~100 mg·L−1时,各处理间愈伤组织诱导率和体胚发生率无显著性差异;当潮霉素质量浓度升高至200 mg·L-1时,愈伤组织诱导率和体胚发生率均显著下降(P<0.05)。因此, 100 mg·L−1为筛选抗性幼胚培养物的潮霉素最佳质量浓度。
表 5 潮霉素质量浓度对香榧幼胚培养物潮霉素阳性筛选的影响
Table 5. Effect of hygromycin concentration on positive screening of T. grandis ‘Merrillii’ embryo culture
潮霉素/
(mg·L−1)成活率/
%愈伤组织
诱导率/%体胚发生
率/%50 62.1±0.7 a 14.7±0.5 a 12.8±0.3 a 80 45.3±1.7 b 14.3±0.7 a 13.1±0.1 a 100 30.5±1.2 c 15.2±1.6 a 12.5±0.5 a 200 30.8±0.9 c 8.2±0.3 b 7.6±0.2 b 说明:同列不同小写字母表示差异显著(P<0.05) -
将通过筛选的潮霉素抗性幼胚置于体式显微镜下进行蓝光激发(490 nm)。结果发现:潮霉素抗性幼胚培养物中,白光视野下,胚胎选择期(第8~10周)幼胚培养物呈现乳白色至淡黄色,蓝光视野下呈现明亮的绿色荧光,各胚龄间GFP荧光阳性率无显著性差异,为75.5%~78.3%;优势胚完全发育期(第11周)GFP荧光阳性率较低,为53.0%,且幼胚不同部位的荧光表达量不一致,其中相对成熟的部位荧光表达量较低,生长旺盛单位荧光表达量较高,呈现明亮的绿色;对照幼胚培养物在白光下呈现乳白色至淡黄色,蓝光视野中无荧光激发,呈现黑色(图2)。
-
为进一步排除GFP绿色荧光假阳性,本研究选取具有潮霉素抗性且GFP强荧光信号表达的香榧幼胚培养物提取DNA并进行PCR扩增,并以同时接种未转化的幼胚为对照。香榧GFP荧光阳性幼胚培养物提取DNA进行PCR检测结果表明(图3):75%的携带潮霉素抗性且GFP荧光阳性香榧幼胚培养物可扩增出目的条带,长度约750 bp,符合预期大小(泳道3~8),而对照幼胚培养物相应无条带(泳道1~2),表明GFP基因已成功转入香榧幼胚。
-
在木本植物遗传转化中,常用的受体材料一般有花序、叶片、体细胞胚、胚性愈伤组织、合子胚、下胚轴、原生质体、茎尖及花粉等[19]。目前,林木遗传转化研究多以胚性愈伤组织、合子胚和体细胞胚为受体材料[20]。
有研究表明:同一外植体的不同部位对农杆菌转化效率也不同[21],胡杨Populus euphratica在遗传转化时使用叶片的转化率高达80%,而茎段转化率只有20%[22]。受体材料的生长发育阶段对遗传转化效率具有重要影响[23]。处于旺盛分裂期的林木细胞或组织是农杆菌转化成功的基础。一般来说,发育早期的组织细胞分裂能力较强[24]。方宏筠等[25]在研究黑核桃Juglans nigra体胚遗传转化时发现:球形胚、鱼雷胚等有较高的转化效率,而发育晚期的子叶胚很难诱导出抗性体细胞胚状体,这可能与其分裂能力低有关。DAI等[26]选用葡萄Vitis vinifera胚胎发育过程中的3个阶段(胚性愈伤组织、原胚团、体胚)为遗传转化的受体材料,结果显示:仅原胚团样品得到了32个转基因株系。选择幼胚作为外植体,易产生胚性愈伤组织,且分化和再生能力较强,缩短了再生所需时间,提高了遗传转化效率[27]。香榧胚性愈伤组织结构特殊,胚性细胞团结构疏松脆弱,在农杆菌侵染过程中极易受到不可逆的损害,大大影响了后续发育的活力。因此,本研究以种子突破种鳞后第8~11周的香榧幼胚为农杆菌介导的遗传转化受体材料,发现处于胚胎选择期的香榧幼胚遗传转化能力较强,GFP荧光阳性率高于优势胚完全发育期,与该时期幼胚具有较强的胚性感受态有关[17]。
-
菌液侵染是农杆菌介导的遗传转化的第1步,涉及诸多影响因子,包括农杆菌菌液浓度、侵染时间等。一般来讲,菌液浓度过高,脱菌时抗生素不能抑制农杆菌生长,而且易使外植体产生过敏反应;当菌液浓度较低时,外植体表面的菌液不足以侵染植物组织细胞[28]。刘晓晨[15]在研究核桃体胚转化条件时发现:在侵染时间相同情况下,阳性率随着侵染液浓度提高呈上升趋势,但污染率也随之提高;仝铸等[29]在建立柠檬Citrus limon遗传转化体系时发现:菌液D(600)为0.6时胚轴再生率达到最高,D(600)高于0.6胚轴再生率随之下降。因此,选择合适的菌液吸光度是高效转化体系的关键。本研究中,农杆菌D(600)为0.5时香榧幼胚转化效率最高。
农杆菌侵染时间的长短也因植物材料不同而异,适宜的时间可以确保农杆菌对植物细胞充分稳定的吸附,时间过短不能完成农杆菌有效侵染,导致转化效率过低甚至转化失败,而过长的侵染时间容易导致材料过度污染甚至死亡。杜丽等[30]研究樟树Cinnamomum camphora胚性愈伤组织遗传转化时发现:转化效率在侵染时间超过40 min后呈下降趋势。糜瑶琦[31]在研究美国山核桃Carya illinoinensis遗传转化条件时发现:侵染15 min时β-葡萄糖苷酸酶(GUS)表达率最高,达61.52%,超过15 min后呈下降趋势。在本研究的香榧幼胚转化中,最佳侵染时间为10 min,且不同农杆菌菌液吸光度和侵染时间处理下,污染率、成活率、愈伤组织诱导率以及体胚发生率均具显著性差异。
农杆菌介导遗传转化的另一个重要环节为脱菌培养。筛选出适合的抑菌抗生素对于农杆菌介导的遗传转化至关重要[32]。林木遗传转化中常用的抑菌剂有头孢霉素和羧苄青霉素等[33]。黄建[34]研究枣Ziziphus jujuba遗传转化时发现,低浓度的羧苄青霉素促进叶片外植体形成愈伤组织,而浓度过高有抑制作用。MONDAL等[35]在研究茶Camellia sinensis遗传转化中发现:头孢霉素和羧苄青霉素协同使用,可有效抑制农杆菌的活性。坚果树种对农杆菌脱菌抗生素非常敏感,在加有抗生素压力的抑菌培养基上生长能力较差。优化核桃体胚遗传转化条件时,使用250 mg·L−1羧苄青霉素时体胚转化率最高,达28.0%,随后体胚转化率逐渐下降[36]。在本次香榧幼胚的转化中,300 mg·L−1羧苄青霉素为最佳脱菌质量浓度。
目前,坚果类树种的遗传转化仍存在较多问题需要进一步探究和解决。坚果树种转化方法单一是限制其遗传转化体系建立的一个重要因素[19]。此外,坚果类树种体胚再生频率低、重复性差的自身特性是影响转化效率的主要原因,甚至有些坚果树种难以建立再生体系,致使转化无法进行。这一特性是导致坚果类树种遗传转化研究和应用滞后的主要原因[37]。本研究在受体材料选择、农杆菌侵染时间、侵染浓度、抗生素质量浓度等方面进行了初步研究,成功获得了香榧转化幼胚培养物。研究结果可为香榧重要基因遗传转化和功能验证打下良好基础,同时也为香榧种质创新提供重要技术平台。
Agrobacterium tumefaciens-mediated genetic transformation system of Torreya grandis ‘Merrillii’ immature embryos
-
摘要:
目的 以香榧Torreya grandis ‘Merrillii’幼胚为受体材料,开展农杆菌Agrobacterium tumefaciens介导的遗传转化研究,揭示影响香榧遗传转化的关键因素,以建立农杆菌介导的香榧幼胚遗传转化体系。 方法 以香榧种子突破种鳞后第8周至第11周的幼胚作为转基因受体材料,比较受体胚龄、农杆菌菌液浓度、侵染时间、抗生素质量浓度对遗传转化效率的影响,并采用潮霉素、绿色荧光蛋白GFP表达及GFP基因聚合酶链式反应对遗传转化香榧幼胚培养物进行阳性筛选。 结果 随着胚龄的增加,香榧幼胚抗逆性增强,污染率降低,成活率提高,第10周和第11周幼胚成活率分别为52.1%和52.3%。农杆菌菌液浓度和侵染时间均对香榧幼胚的污染率、成活率、愈伤组织诱导率以及体胚发生率具有显著影响(P<0.05)。菌液吸光度[D(600)]为0.5时,香榧幼胚愈伤组织诱导率和体胚发生率最高,分别为17.9%和17.3%;侵染时间为10 min时,愈伤组织诱导率和体胚发生率为最高,分别达17.5%和17.1%。羧苄青霉素对于受体材料的农杆菌脱除具有显著影响(P<0.05),当羧苄青霉素质量浓度为300 mg·L−1时,成活率、愈伤组织诱导率和体胚发生率均最高,分别为60.5%、15.8%和17.5%。潮霉素对于香榧幼胚培养物的阳性筛选具有良好的效果,当潮霉素质量浓度为100 mg·L−1时,成活率为30.5%。 结论 不同胚龄香榧幼胚遗传转化效果不同,突破种鳞后第10周香榧幼胚遗传转化效果良好;当农杆菌菌液D(600)为0.5,侵染时间为10 min时,转化效果最佳;300 mg·L−1为羧苄青霉素脱除农杆菌的最佳质量浓度;100 mg·L−1是潮霉素阳性香榧幼胚筛选的最佳质量浓度。图3表5参37 -
关键词:
- 香榧 /
- 幼胚 /
- 农杆菌介导的遗传转化 /
- 羧苄青霉素 /
- 潮霉素
Abstract:Objective The purpose is to explore genetic transformation mediated by Agrobacterium tumefaciens using Torreya grandis ‘Merrillii’ immature embryos as receptors, so as to reveal key factors affecting its genetic transformation and establish A. tumefaciens mediated transformation system of T. grandis ‘Merrillii’ embryos. Method The immature embryos of T. grandis ‘Merrillii’ seeds of 8 to 11 weeks after breaking through seed scales were used as transgenic acceptors. The effects of embryo age, A. tumefaciens concentration, infection time and antibiotic concentration on genetic transformation efficiency were compared. Hygromycin, GFP fluorescent expression and GFP gene polymerase chain reaction were used for positive screening and selection of immature embryo culture. Result The stress resistance increased, the contamination rate decreased and the survival rate increased with the increase of embryo age. The survival rates of 10-week and 11-week young embryos were 52.1% and 52.3%, respectively. The contamination rate, survival rate, callus induction rate and somatic embryogenesis rate of young embryos were significantly affected by the concentration of A. tumefaciens and infection time (P<0.05). When the liquid optical density [D(600)] was 0.5, the callus induction rate and somatic embryogenesis rate of young embryos were the highest, which were 17.9% and 17.3% respectively. When the infection time was 10 minutes, the callus induction rate and somatic embryogenesis rate were the highest, reaching 17.5% and 17.1% respectively. Carbenicillin had a significant effect on the removal of A. tumefaciens (P<0.05). When the concentration was 300 mg·L−1, the survival rate, callus induction rate and somatic embryogenesis rate were the highest, which were 60.5%, 15.8% and 17.5% respectively. The concentration of hygromycin in different treatments had a good effect on the positive screening of young embryo culture. The survival rate was 30.5% when the concentration of hygromycin was 100 mg·L−1. Conlusion Immature embryos at the 10th week after the breakthrough of scale, 0.5 [D(600)], 10 minutes duration, 300 mg·L−1 carbenicillin, and 100 mg·L−1 hygromycin were the optimum conditions for genetic transformation of T. grandis ‘Merrillii’. [Ch, 3 fig. 5 tab. 37 ref.] -
流式细胞术是指利用流式细胞仪对悬浮细胞或微粒等进行分析的现代分析技术,该技术可对一些特异的细胞和染色体等进行分析和分选,还可对动植物基因组大小及倍性水平等进行测定和分析[1-3]。在分析植物基因组大小过程中,与传统的福尔根染色技术相比,流式细胞术具有速度快、准确性高等优点。因此,目前流式细胞术在植物基因组大小研究中发挥了重要的作用,约265种菊科Asteraceae植物、157种莎草科Cyperaceae植物及191种毛茛属Ranunculus植物的基因组大小已通过流式细胞仪被测定[2, 4-7],大量植物的C值(指单倍体细胞核的DNA含量)数据库已建立[8]。基因组大小信息可为植物系统分类、基因组测序及重测序等研究提供参考,因此,提高植物基因组大小测量精度至关重要[9-10]。竹类植物是重要的森林资源,全世界约119属1 482种,在中国分布的约37属500余种,变种变型100余种[11-13]。在竹类植物基因组学研究中,目前仅有毛竹Phyllostachys edulis、莪莉竹Olyra latifolia、芸香竹Raddia guianensis及瓜多竹Guadua angustifolia等竹种完成了全基因组测序工作,在整个竹类植物中所占比例还不足0.2%[10, 14-15]。另外,在竹类植物基因组大小研究中,目前约200个竹种的基因组大小通过流式细胞仪被测定,但由于不同研究者所用实验内参、仪器类型及实验方法不同,部分竹种在测量结果间存在一定差异[16-19]。流式样品制作主要分为细胞核提取和染色2个步骤,因不同植物细胞内含物及代谢物成分不同,所用细胞核提取液在组成上存在较大差异。研究者们往往会重点关注细胞核提取液,而忽略染色时间对实验结果的影响。因此,为了进一步提高竹类植物基因组大小测定结果的精度,本研究分析了样品采集部位及染色时间对竹类植物基因组大小测定结果的影响,并在此基础上揭示了12个竹种的基因组大小,以期为竹类植物系统分类及基因组测序等提供参考。
1. 材料与方法
1.1 材料
以已测序的水稻Oryza sativa为参照。12个竹种清单及采样信息见表1。流式细胞仪分析的植物材料要求是新鲜幼嫩的组织部位,不能进行冷冻和干燥等处理。竹类植物叶片和笋均可满足实验要求,而且方便采集,特别是竹笋更适合长时间保存。唐竹Sinobambusa tootsik、茶竿竹Pseudosasa amabilis var. amabilis、孝顺竹Bambusa multiplex及黄皮刚竹Phyllostachys sulphurea等4个竹种同时以叶片和笋为材料,花叶唐竹Sinobambusa tootisik f. albo-striata、黄皮绿筋竹Phyllostachys sulphurea、平安竹Pseudosasa japonica var. tsutsumiana、柳叶细竹Thyrsostachy ssiamensis、花叶赤竹Sasaella glabra f. albo-striata、美丽箬竹Indocalamus decorus、曙筋矢竹Pseudosasa japonica f. akebono及红秆寒竹Chimonobambusa mamorea f. variegata等8个竹种主要是从国内外一些竹种园收集而来。这些竹种数量有限,目前尚无笋,因此,这8个竹种均以叶片为材料。
表 1 12个竹种的采样信息Table 1 Description of the geographical distribution of 12 bamboo species竹种 材料来源 经纬度 竹种 材料来源 经纬度 孝顺竹 浙江农林大学翠竹园 30°09′14″N, 119°26′00″E 茶竿竹 浙江农林大学翠竹园 30°09′14″N, 119°26′00″E 柳叶细竹 浙江农林大学智能温室 30°09′14″N, 119°26′00″E 平安竹 浙江农林大学翠竹园 30°09′14″N, 119°26′00″E 黄皮刚竹 浙江农林大学翠竹园 30°09′14″N, 119°26′00″E 曙筋矢竹 浙江农林大学智能温室 30°09′14″N, 119°26′00″E 黄皮绿筋竹 浙江农林大学翠竹园 30°09′14″N, 119°26′00″E 花叶赤竹 浙江农林大学智能温室 30°09′14″N, 119°26′00″E 唐竹 浙江农林大学翠竹园 30°09′14″N, 119°26′00″E 美丽箬竹 浙江农林大学智能温室 30°09′14″N, 119°26′00″E 花叶唐竹 浙江农林大学翠竹园 30°09′14″N, 119°26′00″E 红秆寒竹 浙江农林大学智能温室 30°09′14″N, 119°26′00″E 1.2 方法
1.2.1 流式细胞仪样品制备
对于竹类植物叶片样品,选取顶端尚未展开的心叶或紧邻心叶已完全展开的嫩叶;对于竹笋样品,选择新鲜无病虫害的嫩笋,实验过程中剥去笋壳。用双面刀片切取一段面积约1 cm2或厚度约1.0 mm的叶片,面积约0.25 cm2的嫩笋置于干净的培养皿中,然后向培养皿中加入500 μL细胞核提取液(cystain UV precise P Nuclei Extraction Buffer,PARTEC,编号5003)润湿样品,用锋利的双面刀片迅速将样品剁碎,将培养皿倾斜静置1~2 min,使细胞核提取充分,之后向培养皿中加入2 mL DAPI (4,6-diamidino-2-phenylindole)染色液(cystain UV precise P stain Buffer,PARTEC,编号5003)对细胞核进行染色,然后用30目的滤头将样品过滤到进样管中,准备上机测样。
1.2.2 流式细胞仪样品测定
根据前期多次预实验结果,设置样品染色时间为1、3、5、7、9、12、18、24和30 min共9个梯度,利用流式细胞仪(Partec CyFlow ploidy Analyser)对样品进行测定。为了确保测量结果的准确性,每次实验先以水稻为参照,分析已测序毛竹的基因组大小,在此基础上再对其他竹种基因组大小进行测量和分析。为了减少误差,每个竹种设置3个不同重复,变异系数控制在5%以内。
1.2.3 不同竹种的DNA含量分析
登录C值数据库网站(http://www.rbgkew.org.uk/cval/homepage.html),查出水稻二倍体基因组对应的DNA含量2C为1.0 pg,并推算待测竹种的2C值:待测竹种2C 值 (pg)=(待测竹种峰值/水稻峰值)×水稻2C 值(1.0 pg),水稻单倍体基因组大小为466 Mb[20]。据此可以推算出相应竹种基因组对应的碱基数。
2. 结果与分析
2.1 竹类植物叶片和笋基因组大小测量结果分析
利用流式细胞仪测定植物基因组大小过程中,样品峰形状是判断实验结果是否可靠的重要依据。样品处理过程中细胞核提取质量越好,相应的细胞碎片及杂质越少,杂峰就会越少,样品峰往往表现得尖而细,测量误差也较小,实验结果较为可靠;反之,样品处理过程中产生的细胞碎片越多,对应的杂峰也会随之增多,进而影响甚至改变样品峰形状,实验结果往往不可靠。从图1可以看出:孝顺竹、唐竹、茶竿竹及黄皮刚竹等4个竹种叶片和笋所呈现的峰在形状上均尖而细,碎片背景也非常少。另外,同一竹种的叶片和笋对应的峰形和峰值也十分相似,如孝顺竹的叶片和笋均表现出双峰,其中左侧较高的峰为2C细胞所对应的峰,右侧较低的峰为4C细胞所对应的峰,且相同类型细胞对应的荧光强度值也几乎一致(图1A1~A2)。除此之外,唐竹、茶竿竹和黄皮刚竹等3个竹种与孝顺竹情况相似,叶片和笋的测量结果也十分接近(图1B1~B2,图1C1~C2,图1D1~D2)。
理论上,荧光强度值达到最大,说明此时细胞核染色最充分,获得的基因组大小与其真实值也最接近。为了更科学地对竹类植物叶片和笋对应的基因组大小进行比较分析,分别以黄皮刚竹、茶竿竹、孝顺竹及唐竹4个竹种叶片和笋的最大荧光强度值为依据,计算出4个竹种叶片和笋对应的基因组大小。结果表明:4个竹种叶片和笋对应的基因组大小并非完全吻合,唐竹、茶竿竹、孝顺竹及黄皮刚竹叶片对应的2C值分别为(5.03±2.33)、(4.82±0.54)、(2.64±0.50)和(3.76±1.51) pg,而笋对应的2C值分别为(4.99±1.56)、(5.02±1.99)、(2.72±0.59)和(3.86±2.31) pg,其中茶竿竹、孝顺竹及黄皮刚竹叶片2C值略小于笋对应的2C值,差值分别为0.20、0.10和0.08 pg,而唐竹叶片2C值比其笋略大0.04 pg (表2)。虽然4个竹种叶片和笋所获基因组大小并不完全吻合,但是差值非常小,在误差允许范围内。因此,对竹类植物而言其叶片和笋均可作为其基因组大小研究的材料。
表 2 4个不同竹种叶片和笋的基因组大小Table 2 Genome size of leaves and shoots from 4 bamboo species物种 材料部位 2C值±标准差/pg 基因组大小±
标准差/Mb水稻 叶片 1.00±0.00 860.00±0.00 唐竹 叶片 5.03±2.33 4 325.80±2.33 笋 4.99±1.56 4 291.40±1.56 茶竿竹 叶片 4.82±0.54 4 145.20±0.54 笋 5.02±1.99 4 317.20±1.99 孝顺竹 叶片 2.64±0.54 2 270.40±0.54 笋 2.72±0.59 2 339.20±0.59 黄皮刚竹 叶片 3.76±1.51 3 233.60±1.51 笋 3.86±2.31 3 319.60±2.31 2.2 染色时间对竹类植物基因组大小测定结果的影响
表3表明:12个竹种在一定时间内达到最大荧光强度值后,随着染色时间延长,荧光强度值均有不同程度的减少,当染色时间延长到30 min时,大部分竹种的荧光强度值基本减少到最小。首先,同一竹种的叶片和笋的染色时长及荧光强度变化也不完全相同。以唐竹为例,叶片染色1 min荧光强度即达到最大,之后随着染色时间延长,荧光强度值不断减少,当染色时间延长到30 min时,荧光强度值减少到最小,约减少6.23%,而唐竹笋最大荧光强度则出现在3 min,之后随着染色时间延长,荧光强度不断减少,染色30 min时,其荧光强度减少到119.75±1.40,约减少2.67%(表3和表4)。其次,12个竹种荧光强度在0~30 min也存在较大变化,变异范围为2.67%~12.93%,除唐竹笋、茶竿竹叶和笋、孝顺竹叶及柳叶细竹叶等荧光强度变化小于5%外,其余竹种荧光强度变化值均大于5%,有些竹种荧光强度变化值甚至超过10%,如孝顺竹笋、平安竹叶、花叶赤竹叶及美丽箬竹叶等,荧光强度变化值分别为11.02%、12.93%、12.88%及12.33%等(表4)。表明细胞核染色时间对竹类植物基因组大小测定结果存在一定影响。
表 3 12个竹种不同染色时间下对应的荧光峰值Table 3 Mean value under different dyeing time of 12 bamboo species物种 部位 不同染色时间对应的荧光强度峰值 1 3 5 7 9 12 18 24 30 min 水稻 叶 24.67±0.38 24.42±0.48 24.2±0.52 24.16±0.42 24.07±0.36 23.94±0.38 23.8±0.34 23.47±0.27 23.15±0.24 唐竹 叶 123.98±2.33 123.32±2.68 122.24±3.14 121.48±3.27 120.81±2.72 119.83±2.84 118.59±3.08 117.32±2.55 116.25±2.19 笋 121.85±1.51 123.04±1.56 122.77±1.23 122.11±1.51 121.86±0.78 120.82±0.35 120.67±0.09 119.75±1.40 119.87±0.60 茶竿竹 叶 118.13±1.24 118.81±0.59 118.97±0.54 118.52±1.03 117.99±0.92 116.27±1.73 115.82±2.62 115.75±2.24 115.31±2.43 笋 123.39±1.90 123.67±2.00 123.75±2.00 123.18±2.09 122.57±1.57 121.37±1.87 119.56±2.31 118.80±1.68 118.85±1.24 孝顺竹 叶 64.07±0.44 65.20±0.54 64.92±0.59 64.63±0.22 64.88±0.44 64.54±0.83 63.85±0.83 63.70±0.86 63.35±0.74 笋 67.22±0.59 66.90±1.15 65.60±1.97 64.72±2.07 63.71±2.90 62.85±3.17 64.79±1.64 60.61±5.90 59.81±6.10 黄皮刚竹 叶 91.20±1.83 92.27±1.60 92.50±1.52 92.70±1.36 92.54±1.36 91.98±1.91 90.64±2.27 90.11±1.93 87.70±1.09 笋 95.21±1.83 95.35±2.31 94.46±3.32 92.72±3.22 92.09±2.81 91.10±2.28 89.01±2.74 88.30±2.03 87.66±1.87 黄皮绿筋竹 叶 95.84±1.19 96.37±0.95 95.66±1.22 95.74±1.23 95.10±1.53 94.68±1.85 93.47±1.81 92.32±2.25 91.27±3.96 平安竹 叶 134.17±0.93 133.44±0.57 132.43±1.18 131.34±1.49 130.17±1.63 129.10±1.93 125.12±4.50 122.36±6.36 116.82±8.22 花叶唐竹 叶 126.61±1.96 125.97±1.71 125.58±2.88 124.25±2.10 123.76±1.86 122.98±2.18 120.92±2.30 118.80±3.17 117.99±2.33 花叶赤竹 叶 132.17±1.58 131.67±1.67 131.36±1.46 129.64±2.47 127.77±3.32 124.73±3.37 122.08±3.05 118.56±3.82 115.14±3.52 曙筋矢竹 叶 141.29±1.85 141.20±1.47 140.06±2.06 139.30±2.20 138.50±1.63 137.64±1.84 135.40±2.90 133.01±2.20 129.62±3.47 美丽箬竹 叶 133.08±1.14 132.59±2.03 130.98±3.10 130.03±2.85 127.63±2.80 125.61±3.61 121.71±4.26 119.82±5.21 116.67±6.85 柳叶细竹 叶 65.67±1.47 65.88±0.83 66.25±1.01 66.23±0.68 66.09±0.40 66.14±0.42 66.39±0.83 65.12±1.47 63.30±0.96 红秆寒竹 叶 132.82±0.97 132.29±1.73 131.62±1.88 131.36±2.02 130.12±2.22 130.10±2.21 127.39±3.91 126.18±3.35 123.87±3.58 表 4 12个竹种荧光强度变化Table 4 Fluorescence intensity change of 12 bamboos竹种 材料部位 最大荧光强度 最小荧光强度 荧光强度减少值 变化比例/% 唐竹 叶 123.98±2.33 116.25±2.19 7.73 6.23 笋 123.04±1.56 119.75±1.40 3.29 2.67 茶竿竹 叶 118.97±0.54 115.31±2.43 3.65 3.07 笋 123.75±2.00 118.80±1.68 4.95 4.00 孝顺竹 叶 65.20±0.54 63.35±0.74 1.85 2.84 笋 67.22±0.59 59.81±6.10 7.41 11.02 黄皮刚竹 叶 92.70±1.36 87.70±1.09 5.00 5.39 笋 95.35±2.31 87.66±1.87 7.69 8.07 黄皮绿筋竹 叶 96.37±0.95 91.27±3.96 5.10 5.30 平安竹 叶 134.17±0.93 116.82±8.22 17.35 12.93 花叶唐竹 叶 126.61±1.96 117.99±2.33 8.62 6.81 花叶赤竹 叶 132.17±1.58 115.14±3.52 17.03 12.88 曙筋矢竹 叶 141.29±1.85 129.62±3.47 11.67 8.26 美丽箬竹 叶 133.08±1.14 116.67±6.85 16.41 12.33 柳叶细竹 叶 66.39±0.83 63.30±0.96 2.95 4.45 红秆寒竹 叶 132.82±0.97 123.87±3.58 8.95 6.74 另外,不同竹种甚至同一竹种不同组织部位对染色时间反应也不完全相同。以叶片材料为例,唐竹、花叶唐竹、平安竹、曙筋矢竹、美丽箬竹、花叶赤竹及红秆寒竹染色1 min即达到最大荧光强度,染色时间延长到3 min时,荧光强度略有衰减,但减少不明显(表3);孝顺竹和黄皮绿筋竹最大荧光强度出现在3 min,但与1、5 min对应的荧光强度相差不明显(表3);茶竿竹和柳叶细竹最大荧光强度出现在5 min,其中茶竿竹最大荧光强度与其3 min时的荧光强度最接近,而柳叶细竹最大荧光强度与其7 min时的荧光强度最接近,只有黄皮刚竹最大荧光强度出现在7 min,但与5、9 min对应的峰值十分接近(表3)。以笋为材料时,荧光强度随染色体时间变化情况与叶片相似,其中孝顺竹的笋最大荧光强度出现在1 min,唐竹和黄皮刚竹2个竹种笋的最大荧光强度出现在3 min,茶竿竹最大荧光强度出现在5 min (表3)。唐竹、茶竿竹、孝顺竹和黄皮刚竹4个竹种同时以叶片和笋为材料,但是叶片和笋对应的荧光曲线图也不完全相同,例如黄皮刚竹笋的最大荧光强度出现在3 min,叶片最大荧光强度却出现在7 min (表3)。综上所述,无论是叶片还是竹笋,当染色时间延长到3 min时,75%的竹种已达到最大荧光强度值,延长到5 min时,已有91.67%的竹种达到最大荧光强度值。因此,为确保竹类植物基因组大小测定结果的准确性,竹类植物染色时间最好控制在7 min以内,以3~5 min最佳。
2.3 12个不同属种竹种的基因组大小分析
表5表明:孝顺竹和柳叶细竹对应的基因组大小分别为(2.64±0.54)和(2.69±1.01) pg,明显小于其他10个竹种;其次为刚竹属Phyllostachys的黄皮刚竹和黄皮绿筋竹,对应的2C值分别为(3.76±1.51)和(3.91±0.95) pg,明显小于其他一些竹属的竹种;再次为唐竹属Sinobambusa的唐竹和花叶唐竹,对应的基因组大小分别为(5.03±2.33)和(5.13±1.96) pg。赤竹属Sasaella的花叶赤竹、箬竹属Indocalamus的美丽箬竹及寒竹属Chimonobambusa的红秆寒竹3个竹种基因组大小比较相近,对应的基因组大小分别为(5.36±1.58)、(5.39±1.14)和(5.38±0.97) pg。茶竿竹、平安竹和曙筋矢竹在分类上虽然为同一属,但彼此间差异较大,这3个竹种的基因组大小分别为(4.82±0.54)、(5.44±0.93)和(5.73±1.85) pg。
表 5 12个不同竹种的基因组大小Table 5 Genome size of 12 different bamboo species物种 2C值±标准差/pg 基因组大小±标准差/Mb 物种 2C值±标准差/pg 基因组大小±标准差/Mb 水稻 1.00±0.00 860.00±0.00 茶竿竹 4.82±0.54 4 145.20±0.54 孝顺竹 2.64±0.54 2 270.40±0.54 平安竹 5.44±0.93 4 678.40±0.93 柳叶细竹 2.69±1.01 2 313.40±1.01 曙筋矢竹 5.73±1.85 4 927.80±1.85 黄皮刚竹 3.76±1.51 3 233.60±1.51 花叶赤竹 5.36±1.58 4 609.60±1.58 黄皮绿筋竹 3.91±0.95 3 362.60±0.95 美丽箬竹 5.39±1.14 4 635.40±1.14 唐竹 5.03±2.33 4 325.80±2.33 红秆寒竹 5.38±0.97 4 626.80±0.97 花叶唐竹 5.13±1.96 4 411.80±1.96 说明:以12个竹种叶片对应的最大荧光强度值为依据,对其基因组大小进行了计算 3. 讨论
KUMAR等[18]研究表明:分布在新加坡的孝顺竹基因组大小为(3.11±0.02) pg,而ZHOU等[19]研究表明:分布在中国的孝顺竹基因组大小为(2.78±0.02) pg。本研究中孝顺竹叶片和笋对应的基因组大小分别为(2.64±0.54)和(2.72±0.59) pg,与ZHOU等[19]研究结果较为接近,与KUMAR等[18]研究结果存在一定差异。流式细胞仪测定植物基因组大小过程中,细胞核提取液种类、染色液浓度、染色液类型及染色时间等均会对基因组大小测定结果产生一定影响[21-23]。KUMAR等[18]以烟草Nicotiana tabacum为对照,采用碘化丙啶(PI)荧光染料对细胞核进行染色,为了去除烟草等植物细胞中一些特殊的内含物,细胞核提取液中加入了一定量的聚乙烯吡咯烷酮(PVP)。如果PVP浓度过大,在一定程度上会影响细胞核与荧光染料的结合,进而影响细胞核染色效果[24]。本研究与ZHOU等[19]的实验方法相似,均以水稻为对照,用DAPI对细胞核进行染色,这可能是本研究结果与ZHOU等[19]较为接近而与KUMAR等[18]有差异的主要原因。另外,本研究中红秆寒竹和茶竿竹对应的基因组大小分别为(5.38±0.97)和(4.82±0.54) pg,比ZHOU等[19]研究的2个竹种的基因组略大。这种差异可能是由于染色时间不同而造成的。本研究表明:染色时间对竹类植物基因组大小测定结果存在一定影响,且不同竹种对染色时间要求并不完全相同,大部分竹种的细胞核可以被快速染色,如红秆寒竹、美丽箬竹及曙筋矢竹等1 min即可达到最大荧光值;还有少量竹种染色较慢,如茶竿竹和黄皮刚竹等需5~7 min才可达到最大荧光值。ZHOU等[19]对竹类植物基因组大小进行分析过程中,所有竹种均采用相同的染色时间,这可能是造成这种差异的主要原因。
利用流式细胞仪分析植物基因组大小过程时,一般需要选择基因组大小已知的物种做对照,然后根据流式细胞仪测量结果对待测物种基因组大小进行估算[24-25]。对照物种选择一般需遵循以下几个原则:①对照物种已测序,且基因组大小与待测物种基因组大小间存在显著差异,以便区分对照峰和样品峰;②对照样品与待测样具有一定的生物学相似性;③对照材料方便采集且易大量获取。目前,虽然毛竹、莪莉竹、芸香竹及瓜多竹等已完成测序[10, 14-15],但其中大部分竹种主要分布在南方热带地区,这些竹种在经过长时间、长距离运输后,部分材料萎蔫或者细胞核结构改变已达不到实验要求。为了检测不同对照对竹类植物基因组大小测定结果是否存在影响,本研究尝试同时利用水稻和毛竹为参照,对孝顺竹、柳叶竹、黄皮刚竹、黄皮绿筋竹、唐竹及曙筋矢竹等竹种基因组大小进行比较分析,表明2种参照所获基因组大小十分接近,但由于毛竹基因组大小与待测竹种黄皮刚竹、黄皮绿筋竹、茶竿竹及唐竹等竹种的基因组相差较小,因此测量过程中对照毛竹的峰和待测竹种的峰间存在较大区域的重叠和干扰。水稻与竹类植物同属禾本科Poaceae,其种子通过催芽2~3周即可获得大量嫩苗,另外水稻与竹类植物基因组大小相差约3~6倍,测量过程中对照峰和样品峰区分非常明显,彼此间干扰较少。因此,对竹类植物而言水稻是非常理想的参照物。
竹类植物主要分为草本竹种和木本竹种2个基本类型。根据分布区域,木本竹种又分为温带木本竹种和热带木本竹种2个类型[11,26]。温带木本竹种染色体数目比较稳定,基本上为2n=48(2n代表体细胞染色体数,即是单倍体的2倍),热带木本竹种染色体数目表现比较复杂,主要有2n=64,2n=70±2,2n=96,2n=104等多种类型[19, 27-29]。本研究所分析的12个木本竹种中,孝顺竹和柳叶细竹为热带木本竹种,黄皮刚竹、黄皮绿筋竹、唐竹、花叶唐竹、茶竿竹、平安竹、曙筋矢竹、花叶赤竹、美丽箬竹及红秆寒竹均为温带木本竹种。本研究表明:12个木本竹种基因组大小与染色体数目并不呈正相关,虽然孝顺竹和柳叶细竹2个竹种染色体数目多于另外10个温带木本竹种,但基因组大小却明显小于温带木本竹种,这与一些温带竹种和热带竹种研究的情况类似[16, 18-19, 25]。部分竹种测序结果表明:竹类植物是异源多倍体植物,基因组主要分为A、B、C和D等4个不同的亚基因组,长期进化过程中C基因组竹种分别与B和D基因组竹种杂交形成染色体组类型分别为BBCC和CCDD的异源四倍体竹种(2n=48),之后A基因组竹种又与基因组类型为BBCC的异源四倍体竹种杂交形成染色体组类型为AABBCC的异源六倍体竹种(2n=72)[14]。本研究中:黄皮刚竹、黄皮绿筋竹、唐竹、花叶唐竹、茶竿竹、平安竹、曙筋矢竹、花叶赤竹、美丽箬竹及红秆寒竹等温带竹种虽然染色体数目相同,但基因组大小却存在较大差异,2C值为3.76~5.73 pg,相差近1.52倍。这些竹种中,刚竹属的黄皮刚竹和黄皮绿筋竹对应的基因组大小分别为(3.76±1.51)和(3.91±0.95) pg,明显小于其他竹属中的一些竹种。另外,唐竹属、矢竹属、赤竹属、箬竹属及寒竹属中的一些竹种在基因组大小上差异不大,特别是花叶刺竹、美丽箬竹及红秆寒竹3个竹种基因组大小十分接近。因此,根据12个不同竹种的基因组大小测定结果推测,赤竹属、箬竹属及寒竹属等属竹种在染色体组组成类型上可能相同或相近,与刚竹属竹种在染色体组类型上存在较大差异。
-
表 1 香榧幼胚胚龄对遗传转化的影响
Table 1. Different growth stages of embryos on the transformation efficiency in T. grandis ‘Merrillii’
采样时
间/周污染率/
%成活率/
%愈伤组织
诱导率/%体胚发生
率/%8 22.3±0.3 a 35.6±1.3 b 18.1±0.6 a 0.0±0.0 c 9 21.5±0.5 a 40.9±2.3 b 20.1±1.6 a 0.0±0.0 c 10 18.8±0.3 b 52.1±2.0 a 17.9±0.3 b 17.3±1.2 a 11 18.7±0.6 b 52.3±1.3 a 10.7±0.7 b 5.6±0.5 b 说明:同列不同小写字母表示差异显著(P<0.05) 表 2 农杆菌菌液浓度对香榧幼胚遗传转化的影响
Table 2. Different concentrations of bacteria on the impact of transformation in T. grandis ‘Merrillii’
D(600) 污染率/
%成活率/
%愈伤组织
诱导率/%体胚发生
率/%0.3 42.0±0.8 d 62.1±1.4 a 15.2±1.0 a 6.9±0.9 b 0.5 48.2±0.6 c 58.7±3.8 a 17.9±1.5 a 17.3±0.3 a 0.8 63.1±3.3 b 36.6±0.8 b 8.9±0.5 b 4.9±0.3 c 1.0 71.5±1.4 a 14.1±0.2 c 0.0±0.0 c 0.0±0.0 d 说明:同列不同小写字母表示差异显著(P<0.05) 表 3 农杆菌菌液不同侵染时间对香榧幼胚遗传转化的影响
Table 3. Effect of different infection times on transformation in T. grandis ‘Merrillii’
侵染时间/
min污染率/
%成活率/
%愈伤组织
诱导率/%体胚发生
率/%5 35.2±0.4 e 72.1±2.3 a 16.2±0.6 b 15.3±0.3 b 10 45.1±0.7 d 65.3±0.6 b 17.5±0.3 a 17.1±1.0 a 15 49.3±1.4 c 60.5±1.4 c 10.8±0.3 c 3.5±0.4 c 20 72.5±0.5 b 42.8±1.1 d 0.0±0.0 d 0.0±0.0 d 30 100.0±3.7 a 0.0±0.0 e 0.0±0.0 d 0.0±0.0 d 说明:同列不同小写字母表示差异显著(P<0.05) 表 4 羧苄青霉素质量浓度对香榧幼胚农杆菌脱除的影响
Table 4. Effects of carboxypenicillin concentration on the removal of Agrobacterium tumebii from T. grandis ‘Merrillii’ embryos
羧苄青霉素/
(mg·L−1)污染率/
%成活率/
%愈伤组织
诱导率/%体胚发生
率/%100 82.2±1.0 a 22.1±0.8 c 6.7±0.2 c 00.0±0.0 c 200 64.9±1.9 b 45.3±2.3 b 7.3±0.1 b 7.1±0.4 b 300 17.3±2.0 c 60.5±1.4 a 15.8±0.3 a 17.5±1.5 a 400 12.1±0.3 d 42.8±1.2 b 0.0±0.0 d 0.0±0.0 c 500 0.0±0.0 e 10.1±0.4 d 0.0±0.0 d 0.0±0.0 c 说明:同列不同小写字母表示差异显著(P<0.05) 表 5 潮霉素质量浓度对香榧幼胚培养物潮霉素阳性筛选的影响
Table 5. Effect of hygromycin concentration on positive screening of T. grandis ‘Merrillii’ embryo culture
潮霉素/
(mg·L−1)成活率/
%愈伤组织
诱导率/%体胚发生
率/%50 62.1±0.7 a 14.7±0.5 a 12.8±0.3 a 80 45.3±1.7 b 14.3±0.7 a 13.1±0.1 a 100 30.5±1.2 c 15.2±1.6 a 12.5±0.5 a 200 30.8±0.9 c 8.2±0.3 b 7.6±0.2 b 说明:同列不同小写字母表示差异显著(P<0.05) -
[1] 黎章矩, 戴文圣. 中国香榧[M]. 北京: 科学出版社, 2007. LI Zhangju, DAI Wensheng. Torreya grandis ‘Merrillii’ of China[M]. Beijing: Science Press, 2007. [2] JIAN Shugang, SHI Suhua, ZHONG Yang, et al. Genetic diversity among south China Heritiera littoralis detected by inter-simple sequence repeats (ISSR) analysis [J]. J Genet Mol Biol, 2002, 13(4): 272 − 276. [3] ROOKE L, LINDSEY K. Potato transformation [J]. Method Mol Biol, 1998, 81(4): 353 − 358. [4] PARONS T J, SINKAR V P, STETTLER F, et al. Transformation of poplar by Agrobacterium tumefaciens [J]. Bio/Tech-nology, 1986, 4: 533 − 536. [5] HIGGINES E S, HULME J S, SHIELDS R. Early events in transformation of potato by Agrobacterium tumefaciens [J]. Plant Sci, 1992, 82(1): 109 − 118. [6] JAMES D J, PASSEY A J, BARBARA D J, et al. Genetic transformation of apple (Malus pumila Mill) using a disarmed ti-binary vector [J]. Plant Cell Rep, 1989, 7(8): 658 − 661. [7] MOURGUES F, CHEVREAU E, LAMBERT C, et al. EfficientAgrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus comnunis L.) [J]. Plant Cell Rep, 1996, 16(3/4): 245 − 249. [8] ZHANG Qixiang, WALAWAGE S L, TRICOLI D M, et al. A red fluorescent protein (DsRED) from Discosoma sp. as a reporter for gene expression in walnut somatic embryos [J]. Plant Cell Rep, 2015, 34: 861 − 869. [9] 郗荣庭, 张毅萍. 中国核桃[M]. 北京: 中国林业出版社, 1992: 1 − 5. XI Rongting, ZHANG Yiping. China Walnut [M]. Beijing: China Forestry Press, 1992: 1 − 5. [10] MORGILLO S, HILL A M, COATES A M. The effects of nut consumption on vascular function [J/OL]. Nutrients, 2019, 11(1): 116[2021-03-25]. doi: 10.3390/nu11010116. [11] SAVAGE G P. Chemical composition of walnuts (Juglans regia L.) grown in New Zealand [J]. Plant Food Hum Nutr, 2001, 56(1): 75 − 82. [12] MCGRANHAN G H, LESLIE C A, URATSU S L, et al. Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants [J]. Bio/Technology, 1988, 6: 800 − 804. [13] MARTINEZ P J, CREPEAU M W, PUIU D, et al. The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols [J]. Plant J, 2016, 87: 507 − 532. [14] ZHANG Junpei, ZHANG Wenting, JI Feiyang, et al. A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication [J]. Plant Biotechnol J, 2020, 18(9): 1848 − 1850. [15] 刘晓晨. 核桃遗传转化体系及嫁接砧穗间基因转导探究[D]. 杭州: 浙江农林大学, 2017. LIU Xiaochen. The Establishment of Genetic Transformation in Walnut (Juglans regia L.) and the Study on Gene Transduction between Grafts[D]. Hangzhou: Zhejiang A&F University, 2017. [16] ESCOBAR M A, JAEIN P, POLITO V S, et al. Using GFP as a scorable marker in walnut somatic embryo transformation [J]. Ann Bot, 2000, 85(6): 831 − 835. [17] 龚丽, 胡恒康, 胡渊渊, 等. 香榧幼胚发育与胚性感受态之间的相关性[J]. 浙江农林大学学报, 2018, 35(5): 861 − 867. GONG Li, HU Hengkang, HU Yuanyuan, et al. Immature embryo development and embryogenic frequency in Torreya grandis ‘Merrillii’ [J]. J Zhejiang A&F Univ, 2018, 35(5): 861 − 867. [18] 张佳琦, 胡恒康, 徐川梅, 等. 核桃JrGA2ox基因的克隆、亚细胞定位及功能验证[J]. 林业科学, 2019, 55(2): 50 − 60. ZHANG Jiaqi, HU Hengkang, XU Chuanmei, et al. Cloning, subcellular localization and dunction verification of gibberellin 2-oxidase gene in walnut (Juglans regia) [J]. Sci Silv Sin, 2019, 55(2): 50 − 60. [19] 王瑶, 林木兰, 沈锡辉, 等. 农杆菌介导的木本植物遗传转化[J]. 生物技术通报, 1999, 15(6): 23 − 27. WANG Yao, LIN Mulan, SHEN Xihui, et al. Xylophyta genetic transformation byAgrobacterium [J]. Biotechnol Inf, 1999, 15(6): 23 − 27. [20] 宋跃, 甄成, 张含国, 等. 长白落叶松胚性愈伤组织诱导及体细胞胚胎发生[J]. 林业科学, 2016, 52(10): 45 − 54. SONG Yue, ZHEN Cheng, ZHANG Hanguo, et al. Embryogenic callus induction and somatic embryogenesis from immature zygotic embryos of Larix olgensis [J]. Sci Silv Sin, 2016, 52(10): 45 − 54. [21] CONFALONIERI M, BALESTRAZZI A, BISOFFI S. Genetic transformation ofPopulus nigra by Agrobacterium tumefaciens [J]. Plant Cell Rep, 1994, 13(5): 256 − 261. [22] 范源伟, 刘挨枝, 王华芳. 胡杨转基因体系的建立[J]. 植物学报, 2009, 44(6): 728 − 734. FAN Yuanwei, LIU Aizhi, WANG Huafang. Transformation of Populus euphratica [J]. Chin Bull Bot, 2009, 44(6): 728 − 734. [23] MARITINEZ-TRUJILLO M M, CABRERA-PONCE J L, HERRERA-ESTRELLA L. Improvement of rice transformation using bombardment of scutellum-derived calli [J]. Plant Mol Biol Rep, 2003, 21(4): 429 − 437. [24] MCGRANAHAN G H, LESLIE C A, DANDEREKAR A M. Transformation of pecan and regeneration of transgenic plants [J]. Plant Cell Rep, 1993, 12(11): 634 − 638. [25] 方宏筠, 王关林. 黑核桃体细胞胚状体发生及其基因转化系统的建立[J]. 园艺学报, 2000, 27(6): 406 − 411. FANG Hongyun, WANG Guanlin. Somatic embryogenesis of Juglans nigria L. and establishment of gene transformation system of walnut [J]. Acta Hortic Sin, 2000, 27(6): 406 − 411. [26] DAI Lingmin, ZHOU Qi, LI Ruimin, et al. Establishment of a picloram-induced somatic embryogenesis system inVitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species [J]. Plant Cell Tissue Organ Cult, 2015, 121(2): 397 − 412. [27] 王世玉. 高频再生的玉米成熟胚遗传转化受体系统的建立[D]. 武汉: 华中农业大学, 2007. WANG Shiyu. Establishment of High-frequency Regeneration Ability Transgenic Acceptor System from Mature Embryos of Maize (Zea Mays L.)[D]. Wuhan: Central China Agricultural University, 2007. [28] 张福丽, 陈龙, 李成伟. 农杆菌介导的植物转基因影响因素[J]. 生物技术通报, 2012(7): 14 − 19. ZHANG Fuli, CHEN Long, LI Chengwei. Factors influencing Agrobacterium-mediated plant genetic transformation [J]. Biotechnol Bull, 2012(7): 14 − 19. [29] 仝铸, 何利刚, 吴黎明, 等. 柠檬遗传转化体系的建立及优化[J]. 湖北农业科学, 2014, 53(9): 2100 − 2102, 2106. TONG Zhu, HE Ligang, WU Liming, et al. Establishment and optimization of genetic transformation system of lemon[ Citrus limon (L.) Burm. f. ] [J]. Hubei Agric Sci, 2014, 53(9): 2100 − 2102, 2106. [30] 杜丽, 庞振凌, 周索, 等. 香樟胚性愈伤组织遗传转化体系建立[J]. 林业科学, 2008, 44(4): 54 − 59. DU Li, PANG Zhenling, ZHOU Suo, et al. Establishment of Agrobacterium-mediated transformation system of embryogenic calli ofCinnamomum camphora [J]. Sci Silv Sin, 2008, 44(4): 54 − 59. [31] 糜瑶琦. 薄壳山核桃遗传转化体系的构建[D]. 杭州: 浙江农林大学, 2017. MI Yaoqi. Construction of Pecan Genetic Transformation System[D]. Hangzhou: Zhejiang A&F University, 2017. [32] 何光源. 植物基因工程[M]. 北京: 清华大学出版社, 2007. HE Guangyuan. Plant Gene Engineering[M]. Beijing: Tsinghua University Press, 2007. [33] LIN J J, ASSAD G N, KUO J. Plant hormone effect of antibiotics on the transformation efficiency of plant tissues byAgrobacterium tumefaciens cells [J]. Plant Sci, 1995, 109(2): 171 − 177. [34] 黄建. 农杆菌介导S6PDH基因转化枣树的研究[D]. 杨凌: 西北农林科技大学, 2006. HUANG Jian. Study on Agrobacterium-mediated Transformation of Zyziphus jujube with S6PDH Gene[D]. Yangling: Northwest A&F University, 2006. [35] MONDAL T, BHATTACHARYA A, AHUJA P S, et al. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained byAgrobacterium-medliated transformation of somatic embryos [J]. Plant Cell Rep, 2001, 20(8): 712 − 720. [36] 王庆鹏. 农杆菌介导的核桃体细胞胚转基因研究[D]. 泰安: 山东农业大学, 2020. WANG Qingpeng. Agrobacterium-mediated Genetic Transformation of Walnut (Juglans regia L.)[D]. Tai’an: Shandong Agricultural University, 2020. [37] 张勇, 张守攻, 齐力旺, 等. 杨树——林木基因组学研究的模式物种[J]. 植物学通报, 2006, 23(3): 286 − 293. ZHANG Yong, ZHANG Shougong, QI Liwang, et al. Poplar as a model for forest tree in genome research [J]. Chin Bull Bot, 2006, 23(3): 286 − 293. 期刊类型引用(0)
其他类型引用(2)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210196