留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烟草NtPLR1基因克隆与表达分析

李冰冰 刘国峰 魏书 黄龙全 张剑韵

金则新, 蔡辉华. 浙江天台山常绿阔叶林不同演替阶段优势种群动态[J]. 浙江农林大学学报, 2005, 22(3): 272-276.
引用本文: 李冰冰, 刘国峰, 魏书, 等. 烟草NtPLR1基因克隆与表达分析[J]. 浙江农林大学学报, 2017, 34(4): 581-588. DOI: 10.11833/j.issn.2095-0756.2017.04.003
JIN Ze-xin, CAI Hui-hua. Dynamic characteristics of the dominant populations in different succession stages of evergreen broad-leaved forest on Tiantai Mountain in Zhejiang Province[J]. Journal of Zhejiang A&F University, 2005, 22(3): 272-276.
Citation: LI Bingbing, LIU Guofeng, WEI Shu, et al. Cloning and expression analysis of the tobacco NtPLR1 gene[J]. Journal of Zhejiang A&F University, 2017, 34(4): 581-588. DOI: 10.11833/j.issn.2095-0756.2017.04.003

烟草NtPLR1基因克隆与表达分析

DOI: 10.11833/j.issn.2095-0756.2017.04.003
基金项目: 

安徽省教育厅自然科学基金重点资助项目 KJ2010A116

国家自然科学基金面上项目 31670297

详细信息
    作者简介: 李冰冰, 从事维生素B6代谢转换研究。E-mail:lbb126@126.com
    通信作者: 张剑韵, 教授, 博士, 从事维生素B6代谢和生物多样性研究。E-mail:jianyun218@aliyun.com
  • 中图分类号: S572;S718.3

Cloning and expression analysis of the tobacco NtPLR1 gene

  • 摘要: 维生素B6(VB6)在植物体内参与多种生化反应,对植物生长至关重要,吡哆醛还原酶(PLR)是VB6代谢转换的作用酶,催化吡哆醛(PL)生成吡哆醇(PN),对维持细胞内VB6的动态平衡发挥重要作用,而PLR在植物中鲜有报道。以拟南芥Arabidopsis thaliana吡哆醛还原酶氨基酸序列AtPLR1为模板,在公用数据库通过同源比对获得数条烟草Nicotiana tabacum NtPLR1基因的片段,结合互补脱氧核糖核酸(cDNA)的末端快速扩增-聚合酶链式反应(RACE-PCR)技术获得了烟草吡哆醛还原酶NtPLR1基因。该基因全长1 370 bp,编码369个氨基酸残基,预测其编码蛋白的分子量为41 kDa,理论等电点为9.42。氨基酸多序列比对结果表明:NtPLR1与其他物种的PLR1相似性较高。实时荧光定量PCR(qRT-PCR)分析结果表明:外源吡哆醛PL处理时,NtPLR1表达先升高后降低,在4 d达到顶峰。相应地,高效液相色谱分析结果表明:烟草叶片中PL含量随时间逐渐降低而吡哆醇PN含量逐渐升高,表明NtPLR1可像酵母PLR一样,催化PL形成PN。此外,定量分析结果表明:NtPLR1在烟草根、茎和叶片中均有表达,其中在叶片中表达显著高于其他部位(P < 0.05)。在紫外线、氧化和盐害胁迫下,NtPLR1的表达与对照相比均显著上调(P < 0.05),表明NtPLR1对这3种逆境有响应,可能参与烟草的抗逆过程。将NtPLR1连入原核表达载体pET32a,并进行诱导表达,成功表达出目的蛋白。报道的烟草NtPLR1基因功能为进一步探明植物PLR基因的功能和调控机制以及VB6的生物合成提供了重要参考。
  • 杉木Cunninghamia lanceolata为中国南方林区重要的速生用材树种,因生长快、产量高、材质优、适应性较强、经济效益好而成为山区的主要造林树种。目前,中国南方各省区杉木人工林基地面积已达800万hm2,20世纪80年代和90年代中期以前营造的杉木人工林大部分已到采伐林龄,现在造林的立地多为杉木或马尾松Pinus massoniana林采伐迹地,特别是在杉木采伐迹地上再营造杉木纯林时,由于林地土壤肥力下降,对杉木林的生长有一定影响[1-6]。杉木遗传改良已进行了几十年,从1代良种到现在的3代良种,林木生长量已得到显著提高[7-9]。目前造林地普遍为二茬杉木林地,这给杉木的遗传改良及新品种选育提出了较高的要求,要求选择出生长快、材质优,且对立地适应性强的品种。本研究以杉木2代种子园中选出的部分优良家系为材料[8],在杉木林和马尾松林采伐迹地上进行杉木家系造林试验,研究杉木家系在不同立地上幼林的生长适应性,旨在研究杉木家系与立地的互作效应,同时选出适应性较强的杉木品系,为生产和育种提供优良材料。

    试验点1为浙江省杭州市余杭区长乐林场西山林区(余杭点,E1),30°15′N,119°58′E,海拔为100 m,年平均气温为15.8 ℃,年均降水量为1 478.0 mm,年均日照时数为1 782.9 h,无霜期为221 d,四季分明,属北亚热带季风气候。林地为马尾松纯林采伐迹地,土壤为红壤,土层厚度80 cm以上,坡向西南,坡度15°左右,0~30 cm土层土壤理化性质为pH 4.73,有机质25.26 g·kg-1,全氮1.26 g·kg-1,全磷0.34 g·kg-1,碱解氮86.25 mg·kg-1,速效磷1.22 mg·kg-1,速效钾72.23 mg·kg-1,肥力中等。试验点2为浙江省衢州市开化县林场城关分场岙滩(开化点,E2),29°25′N,118°25′E,海拔为230 m,年均气温为16.4 ℃,年均降水量为1 814.0 mm,日照时数为1 712.5 h,无霜期为252 d,属北亚热带湿润季风气候,四季分明。林地为杉木纯林采伐迹地,土壤为红黄壤,土层厚80 cm以上,坡向东南,坡度约25°,对0~30 cm土层进行了土壤取样(分下坡、中坡、上坡混合而成)分析,土壤理化性质为pH 4.83,有机质22.07 g·kg-1,全氮1.12 g·kg-1,全磷0.29 g·kg-1,碱解氮76.45 mg·kg-1,速效磷1.12 mg·kg-1,速效钾65.42 mg·kg-1,肥力中等偏下。

    试验材料来自浙江省龙泉市林科院杉木2代种子园中自由授粉家系,2011年秋采种,2012年春在开化县进行大田育苗,2013年3月在开化和余杭两地进行试验林营造。试验材料为杉木2代种子园中选出的21个较优良家系,对照(ck)为浙江杉木2代种子园混种。试验采用随机区组设计,余杭点为4株单行小区,8次重复,林地为马尾松林采伐迹地。整地方式为挖机全垦后(深30 cm以上,并挖出伐兜)直接定点造林,造林密度为2 m × 2 m。开化点为6株单行小区,8次重复,林地为杉木林采伐迹地,经炼山后挖大穴(40 cm × 40 cm × 40 cm),造林密度为2 m × 2 m。

    2015年12月对两地试验林进行每木调查,调查因子为树高、胸径。采用小区平均值进行性状方差分析,方差分析模型为Yijkl=u+Li+B(L)j(i)+Pk+LPik+B(L)Pj(i)k+eijkl。其中:Yijkl为多点试验第i地点内第j区组第k家系第l小区平均值;u为群体平均效应;Li为第i地点效应;B(L)j(i)为第i地点内第j区组效应;Pk为第k家系效应;LPik为第k家系和第i地点互作效应;B(L)Pj(i)k为第i地点内第j区组和第k家系的互作效应;eijkl为机误。

    树高和胸径2个生长性状在两地的速生性、稳定性及适应性分析的计算方法如下:①速生性参数的计算方法为:各家系的树高(或胸径)值为各家系树高(或胸径)两地的平均值,各家系的树高(或胸径)效应值为各家系的树高(或胸径)两地平均值减去两地家系树高(或胸径)的总平均值。②稳定性参数的计算方法为:各家系的树高(或胸径)方差为各家系树高(或胸径)两地重复间的方差,各家系的树高(或胸径)变异度为各家系的树高(或胸径)的方差开平方除以各家系的树高(或胸径)平均值。③适应性参数的计算方法为:各家系的树高(或胸径)的回归系数为各家系树高(或胸径)平均值与环境指数(各地点的树高或胸径总平均值)进行回归分析计算的b值。各家系树高和胸径2个生长性状在两地的速生性、稳定性及适应性综合分析及评价是以各家系树高(或胸径)在两地的平均值的高低(或效应值的大小)为基础,结合其稳定性中的变异度和适应性中的回归系数(b值)进行综合分析。

    采用DPS软件[10]对性状进行方差分析和家系的稳定性分析。

    两地杉木家系3年生时树高、胸径经同质检验后,试验点误差均方均不显著,可进行两地联合方差分析。从表 1表 2可以看出:试验地点间和试验地点内区组间在树高和胸径上均表现出极显著差异,而在家系间只有树高表现出极显著差异水平,胸径则未达显著差异;在家系×试验点互作间,胸径达到差异显著水平,树高则未达差异显著水平。表明不同立地条件(或坡位)对杉木家系的生长影响明显,树高在家系间表现出显著差异,但树高在家系与地点间没有显著的交互效应,而胸径的交互效应显著,即不同家系的胸径生长在不同环境条件下的表现存在显著差异,而树高生长则不显著。

    表  1  两地3年生杉木家系树高、胸径联合方差分析结果
    Table  1.  Combined ANOVA results of tree height, diameter at breast height (DBH) of 3-year-old Chinese fir families in 2 sites
    变异来源 自由度 树高 胸径
    均方 F 均方 F
    地点 1 68.279 2 549.98** 351.920 0 596.15**
    地点内区组 14 0.670 7 5.40** 3.132 0 5.30**
    家系 21 0.285 3 2.30** 0.831 8 1.41
    家系×地点 21 0.183 3 1.48 1.057 6 1.97*
    机误 294 0.1241 0.590 3
      说明:按完全随机区组模型设计分析。**表示差异极显著,*表示差异显著
    下载: 导出CSV 
    | 显示表格
    表  2  两地3年生杉木家系树高、胸径平均值
    Table  2.  Average values of tree height, diameter at breast height(DBH) of 3-year-old Chinese fir families in 2 sites
    家系号 余杭 开化
    树高/m 胸径/cm 树高/m 胸径/cm
    A76 3.24 4.51 2.34 2.45
    B49 3.09 4.11 2.26 2.30
    B10 3.39 4.48 2.68 2.65
    C25 3.29 4.71 2.11 2.00
    A20 3.26 4.74 2.15 1.88
    A09 3.21 4.28 2.57 2.51
    B148 3.29 4.35 2.52 2.70
    B121 3.26 4.24 2.52 2.74
    B13 3.30 4.75 2.48 2.34
    B01 3.08 4.19 2.38 2.43
    C44 3.38 4.78 2.22 2.08
    B42 3.10 4.15 2.31 2.33
    A77 2.78 3.30 2.22 2.20
    B56 3.10 3.81 2.25 2.33
    C28 3.24 4.46 2.08 1.91
    B105 3.33 4.51 2.45 2.41
    B111 3.41 4.50 2.16 1.98
    B164 3.07 4.03 2.23 2.08
    B163 2.88 3.61 2.33 2.36
    B11 3.15 3.95 2.20 2.25
    L15 3.61 5.09 2.37 2.30
    对照(ck) 3.24 4.36 2.47 2.70
    平均值 3.21 4.31 2.33 2.31
    变幅 2.78~3.61 3.30~5.09 2.11~2.68 1.88~2.74
    变异系数/% 5.59 9.60 6.93 11.03
    下载: 导出CSV 
    | 显示表格

    表 3中可知:两地间树高和胸径的试验总平均值差异较大,余杭点(树高为3.21 m,胸径为4.31 cm)明显大于开化点(树高为2.33 m,胸径为2.31 cm),余杭点平均树高和平均胸径分别比开化点高出37.77%和86.58%。表明虽然参试家系相同,但在不同地点树高和胸径生长量表现出明显的差异,这可能与两地立地条件的不同有较大关系(两地气候条件近似),余杭点造林前茬为马尾松林,且坡度较小,立地条件为中等,而开化点造林前茬为杉木纯林,对林地肥力消耗较大,使土壤肥力明显下降,立地条件则为中等偏下。同一地点内不同区组也因处于不同坡位,使树高和胸径生长量差异明显,一般山坡下部土层较厚,水肥条件相对较好,因此杉木生长快,而在同一山坡中上部,则因土层相对较薄,水肥条件相对较差,因此杉木生长慢。余杭点以第7区、第1区组生长相对较好,开化点则是第1区,第3区和第5区组生长相对较好。表明立地条件对杉木的生长有明显影响,特别是在杉木采伐迹地上再营造杉木林时,林分生长量有明显下降。

    表  3  两地不同区组间3年生杉木树高、胸径平均值
    Table  3.  Average values of tree height, diameter at breast height (DBH) of 3-year-old Chinese fir families among different blocks in 2 sites
    区组 余杭点 区组 开化点
    树高/m 胸径/cm 树高/m 胸径/cm
    7 3.47 A 4.90 A 1 2.56 A 2.80 A
    1 3.40 A 4.88 A 3 2.49 A 2.59 AB
    8 3.30 AB 4.42 AB 5 2.46 AB 2.60 AB
    2 3.22 AB 4.19 AB 4 2.42 AB 2.53 AB
    3 3.15AB 3.87 B 6 2.28 AB 2.18 AB
    4 3.10AB 3.97 B 7 2.22 AB 2.09 AB
    5 3.03 B 4.13 AB 2 2.17 B 1.94 B
    6 3.01 B 4.15 AB 8 2.04 B 1.79 B
    平均值 3.21 4.31 平均值 2.33 2.31
    下载: 导出CSV 
    | 显示表格

    由于杉木家系树高性状在两地点间差异明显,以及胸径在家系与试验点间有明显的交互效应,有必要对各家系两生长性状进行稳定性分析。从两地3年生杉木家系树高、胸径的速生性、稳定性及适应性综合分析(表 4表 5)可以看出,在两地树高生长性状表现很好和好的家系有8个,它们是B10,L15,B148,B121,A09,B13,B105和ck,在两地胸径生长性状表现很好和好的家系有9个,它们是L15,B10,B13,ck,B148,B121,A76,B105和A09,综合树高和胸径2个生长性状,在两地均表现好的家系为7个(除浙江杉木2代种子园混种ck外),它们是B10,L15,B148,B121,A09,B13和B105,可在这两地及相似地区推广应用。

    表  4  3年生杉木家系树高速生性、稳定性及适应性分析
    Table  4.  Fast growth, stability and adaptability analysis of tree height of 3-year-old Chinese fir families
    家系号 速生性参数 稳定性参数 适应地区及评价
    树高/m 效应 方差 变异度 回归系数 地点 评价
    B10 3.03 0.262 0.015 4.040 0.803 2 E1, E2 很好
    L15 2.99 0.220 0.065 8.549 1.410 6 E1, E2 很好
    B148 2.90 0.132 0.006 2.760 0.871 3 E1, E2
    B121 2.89 0.121 0.010 3.443 0.840 1 E1, E2
    A09 2.89 0.118 0.028 5.741 0.733 7 E1, E2
    B13 2.89 0.116 0.002 1.368 0.936 6 E1, E2
    B105 2.89 0.114 0 0.052 0.997 6 E1, E2
    ck 2.85 0.080 0.006 2.718 0.875 6 E1, E2
    C44 2.80 0.023 0.039 7.062 1.316 9 E1, E2 较好
    A76 2.79 0.018 0 0.359 1.016 1 E1, E2 较好
    B111 2.79 0.016 0.068 9.364 1.419 1 E1, E2 较好
    B01 2.73 -0.045 0.017 4.787 0.790 4 E1, E2 较好
    A20 2.71 -0.066 0.027 6.121 1.265 8 E1, E2 一般
    B42 2.71 -0.066 0.004 2.375 0.896 9 E1, E2 一般
    C25 2.70 -0.071 0.043 7.669 1.332 5 E1, E2 一般
    B49 2.68 -0.096 0.002 1.509 0.935 2 E1, E2 一般
    B11 2.675 -0.097 0.002 1.828 1.078 5 E1, E2 一般
    B56 2.67 -0.097 0 0.783 0.966 4 E1, E2 一般
    C28 2.66 -0.112 0.038 7.323 1.312 6 E1, E2 一般
    B164 2.65 -0.125 0.001 1.325 0.943 7 E1, E2 一般
    B163 2.60 -0.171 0.055 9.030 0.623 0 E1, E2 一般
    A77 2.50 -0.276 0.052 9.126 0.634 3 E1, E2 较差
      说明:E1为余杭点,E2为开化点
    下载: 导出CSV 
    | 显示表格
    表  5  3年生杉木家系胸径速生性、稳定性及适应性分析
    Table  5.  The fast growth, stability and adaptability analysis of diameter at breast height(DBH) of 3-year-old Chinese fir families
    家系 速生性参数 稳定性参数 适应地区综合评价
    胸径/cm 效应 方差 变异度 回归系数 地点 评价
    L15 3.69 0.380 0.310 15.080 1.393 9 E1
    B10 3.56 0.249 0.015 3.469 0.912 6 E1, E2 很好
    B13 3.54 0.230 0.085 8.235 1.206 4 E1, E2
    ck 3.53 0.218 0.057 6.754 0.831 3 E1, E2
    B148 3.53 0.211 0.061 7.016 0.825 1 E1, E2
    B121 3.49 0.176 0.127 10.227 0.747 6 E1, E2
    A76 3.48 0.168 0.002 1.274 1.0314 E1, E2
    B105 3.46 0.149 0.005 2.047 1.050 1 E1, E2
    C44 3.43 0.111 0.245 14.457 1.350 2 E1 较好
    A09 3.39 0.080 0.028 4.944 0.881 4 E1, E2
    C25 3.36 0.043 0.254 15.016 1.356 4 E1 一般
    A20 3.31 -0.008 0.372 18.451 1.431 4 E1 一般
    B01 3.31 -0.008 0.028 5.074 0.881 4 E1, E2 较好
    B42 3.24 -0.076 0.015 3.817 0.912 6 E1, E2 较好
    B111 3.24 -0.076 0.138 11.472 1.262 6 E1, E2 较好
    B49 3.21 -0.108 0.018 4.130 0.906 4 E1, E2 较好
    C28 3.19 -0.126 0.151 12.206 1.275 1 E1, E2 较好
    B11 3.10 -0.214 0.045 6.838 0.850 1 E1, E2 一般
    B56 3.07 -0.245 0.131 11.804 0.743 8 E1, E2 一般
    B164 3.05 -0.264 0.001 1.154 0.975 1 E1, E2 一般
    B163 2.99 -0.326 0.281 17.746 0.625 1 E2 较差
    A77 2.75 -0.564 0.405 23.136 0.550 1 E2 不好
      说明:E1为余杭点,E2为开化点
    下载: 导出CSV 
    | 显示表格

    影响林木生长的因素除不同气候条件外还有立地条件。杉木作为中国南方林区主要用材树种,对立地条件有一定的要求,一般要求选择中等以上立地造林(Ⅰ和Ⅱ类地,立地指数要求在14以上),才能获得较好的丰产效果。现在大多数林区营造杉木林多为杉木二茬林,林地土壤肥力有所下降,在这样的背景下进行杉木新品种选育,除要研究杉木生长和材质性状外,杉木品种的适应性研究也较为重要。

    从本试验结果看,不同立地条件下杉木家系幼林生长差异较大,特别是在杉木林采伐迹地上再营造杉木林时,与马尾松林采伐迹地相比,树高和胸径生长量下降明显,3年生时平均树高和平均胸径余杭点比开化点分别高出37.77%和86.58%;同一地点不同坡位上,杉木家系的生长差异也很明显,表明杉木对立地的反应较为敏感。杉木连栽会使后林地土壤肥力下降明显[1-6],但同时也有研究证明,在杉木采伐迹地上营造杉阔混交林能提高林地土壤肥力,促进杉木的生长[11-13]

    林木品系(基因型)与环境存在明显互作效应[14-15]。本研究中胸径与地点间也存在显著的互作效应,说明环境显著影响着杉木胸径生长性状的表现。同时树高生长性状在家系间有显著差异,综合两地杉木家系树高和胸径速生性、稳定性和适应性分析评价,选择出7个在幼林期生长表现较好的杉木家系,可在两地及相似地区进行推广造林。

  • 图  1  琼脂糖凝胶电泳结果

    Figure  1  Agorase gel electrophoresis results

    图  2  NtPLR1基因开放阅读框及预测氨基酸序列

    Figure  2  ORF of NtPLR1 gene and the corresponding amino acid sequence

    图  3  几个已知物种的PLR多序列比对

    由上而下依次为烟草(NtPLR1),拟南芥Arabidopsis thaliana(NP_200170.2),栗酒裂殖酵母Schizosaccharomyces pombe(NP_594584),酿酒酵母Saccharomyces cerevisiae(FC550039.1)

    Figure  3  Multiple protein sequence alignment of several known PLR enzymes

    图  4  NtPLR1表达的组织特异性及对不同胁迫处理的响应

    Figure  4  QPCR analysis of spatial expression of NtPLR1 and its response to different stress treatments

    图  5  NtPLR1对外源PL处理的响应分析

    Figure  5  QPCR analysis of the response of NtPLR1 to exogenous PL

    图  6  HPLC分析VB6标准品(A)及对照烟草叶片提取液(B)

    Figure  6  HPLC analysis for VB6 authentic standards (A) and extracts from control tobacco leaves (B)

    图  7  HPLC分析外源PL处理组烟草叶片提取液

    Figure  7  HPLC analysis of extracts from exogenous PL treated tobacco leaves

    图  8  NtPLR1在表达菌株BL21(DE3)Rosetta中的表达

    Figure  8  Prokaryotic expression of NtPLR1 in BL21(DE3) Rosetta

    表  1  NtPLR1基因克隆与表达分析所用引物信息

    Table  1.   Primers used in NtPLR1 gene cloning and expression analysis

    用途 引物名称 引物序列(5'→3')
    3'-RACE 3RACE-1 TGCAAATTATGCACCTCTGCAGGAACG
    3RACE-2 TGCAGTTGGGGTGAGCAACTATGGACC
    3RACE-3 TGCGCTCAGCCCAGGTACAATTTTCAT
    目的片段扩增NtPLR1 NtPLR-F1 ATGGCTCTCTCACTCCCAGCTTCAAAATC
    NtPLR-R1 CTTTGTCTGAAATACGTTTTGGATC
    原核表达 NtPLR-F2 GGATCCATGGCTCTCTCACTCCCAGCTTCAAAATC
    NtPLR-R2 GTCGACCTTTGTCTGAAATACGTTTTGGATC
    qRT-PCR NtPLR-F3 TGGCAAAAGGTAAAGATGGG
    NtPLR-R3 GTTGATGCCATTCTCCACCG
    说明:下划线分别表示BamH1和Sal1。
    下载: 导出CSV
  • [1] RAIL L C, NIKBIN M S. Vitamin B6 and immune competence[J]. Nutr Rev, 1993, 51(8): 217-225.
    [2] HUANG Shuohao, ZENG Haibin, ZHANG Jianyun, et al. Interconversions of different forms of vitamin B6 in tobacco plants[J]. Phytochemistry, 2011, 72(17): 2124-2129.
    [3] MORINO Y, SAKAMOTO Y. Enzymatic studies on pyridoxine metabolism (Ⅳ) a pyridoxine dehydrogenase from baker's yeast[J]. J Biochem, 1960, 48: 733-744.
    [4] HOLZER H, SCHNEIDER S. Purification and characterization of a TPN-dependent pyridoxol dehydrogenase from brewers yeast[J]. Biochim Biophys Acta, 1961, 48(2): 71-76.
    [5] OLLILAINEN V. HPLC analysis of vitamin B6 in foods[J]. Agric Food Sci Finland, 1999, 8(6): 515-619.
    [6] HERRERO S, GONZALEZ E, GILLIKIN J W, et al. Identification and characterization of a pyridoxal reductase involved in the vitamin B6 salvage pathway in Arabidopsis[J]. Plant Mol Biol, 2011, 76(1/2): 157-169.
    [7] 蒋守花, 张剑韵, 黄龙全.采用高效液相色谱技术分析茶树体内维生素B6[J].茶叶科学, 2010, 30(2): 79-82.

    JIANG Shouhua, ZHANG Jianyun, HUANG Longquan. Analysis of VB6 derivatives in tea plant with high performance liquid chromatography[J]. J Tea Sci, 2010, 30(2): 79-82.
    [8] 张剑韵, 黄龙全, 早川享志, 等.采用高效液相色谱技术分析生物体内维生素B6[J].高等学校化学学报, 2004, 25(4): 638-640.

    ZHANG Jianyun, HUANG Longquan, HAYAKAWA T, et al. Analysis of VB6 derivatives in biological samples with high performance liquid chromatography[J]. Chem J Chin Univ, 2004, 25(4): 638-640.
    [9] 曾海彬, 张剑韵, 黄龙全.采用高效液相色谱技术分析烟草体内的维生素B6化合物[J].广西植物, 2011, 31(5): 695-698.

    ZENG Haibin, ZHANG Jianyun, HUANG Longquan. Analysis of vitamin B6 vitamers in tobacco plants by high performance liquid chromatography[J]. Guihaia, 2011, 31(5): 695-698.
    [10] GUIRARD B M, SNELL E E. Physical and kinetic properties of a pyridoxal reductase purified from baker's yeast[J]. Biofactors, 1988, 1(2): 187-192.
    [11] NAKANO M, MORITA T, YAMAMOTO T, et al. Purification, molecular cloning, and catalytic activity of Schizosaccharomyces pombe pyridoxal reductase a possible additional family in the aldo-keto reductase superfamily[J]. J Biol Chem, 1999, 274(33): 23185-23190.
    [12] LYON J B, BAIN J A, WILLIAMS H L. The distribution of vitamin B6 in the tissues of two inbred strains of mice fed complete and vitamin B6-deficient rations[J]. J Biol Chem, 1962, 237(6): 1989-1991.
    [13] MOONEY S, HELLMANN H. Vitamin B6: killing two birds with one stone?[J]. Phytochemistry, 2010, 71(5/6): 495-501.
    [14] TAO Yi, FERRER J L, LJUNG K, et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants[J]. Cell, 2008, 133(1): 164-176.
    [15] VAVILIN D V, VERMAAS W F J. Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria[J]. Physiol Plantarum, 2002, 115(1): 9-24.
    [16] BILSKI P, LI M Y, EHRENSHAFT M, et al. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants[J]. Photochem Photobiol, 2000, 71(2): 129-134.
    [17] SHI Huazhong, XIONG Liming, STEVENSON B, et al. The Arobidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance[J]. Plant Cell, 2002, 14(3): 575-588.
    [18] CHEN Hao, XIONG Liming. Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses[J]. Plant J, 2005, 44(3): 396-408.
    [19] ZHANG Yafen, JIN Xiaoyi, OUYANG Zhigang, et al. Vitamin B6 contributes to disease resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis thaliana[J]. J Plant Physiol, 2015, 175(1): 21-25.
    [20] 黄龙全, 张剑韵.植物维生素B6从头合成与代谢转换研究进展[J].西北植物学报, 2015, 35(10): 2124-2131.

    HUANG Longquan, ZHANG Jianyun. Review on the de novo synthesis and metabolic conversions of vitamin B6 in plants[J]. Acta Bot Boreal-Occident Sin, 2015, 35(10): 2124-2131.
    [21] YU Shunwu, LUO Lijun. Expression analysis of a novel pyridoxal kinase messenger RNA splice variant, PKL, in oil rape suffering abiotic stress and phytohormones[J]. Acta Biochim Biophys Sin, 2008, 40(12): 1005-1014.
    [22] SANG Yuying, BARBOSA J M, WU Hongzhuan, et al. Identification of a pyridoxine (pyridoxamine) 5'-phosphate oxidase from Arabidopsis thaliana[J]. FEBS Letters, 2007, 581(3): 344-348.
    [23] EHRENSHAFT M, BILSKI P, LI M Y, et al. A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis[J]. Proc Nat Acad Sci USA, 1999, 96(16): 9374-9378.
    [24] MITTENHUBER G. Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways[J]. J Mol Microbiol Biotechnol, 2001, 3(1): 1-20.
    [25] HUANG Shuohao, ZHANG Jianyun, TAO Zhen, et al. Enzymatic conversion from pyridoxal to pyridoxine caused by microorganisms within tobacco phyllosphere[J]. Plant Physiol Biochem, 2014, 85: 9-13.
  • [1] 应宇鑫, 陈俊宇, 姚玲窕, 许张婷, 俞振明, 开国银.  掌叶覆盆子RcF3H基因克隆及表达分析 . 浙江农林大学学报, 2024, 41(6): 1180-1188. doi: 10.11833/j.issn.2095-0756.20240326
    [2] 刘一灵, 刘奇源, 董帅, 张民, 罗燕, 李振华.  基于转录组和蛋白组数据联合分析浅光休眠烟草种子暗萌发的分子网络 . 浙江农林大学学报, 2023, 40(2): 237-243. doi: 10.11833/j.issn.2095-0756.20220515
    [3] 尚林雪, 王群, 张国哲, 赵雨, 顾翠花.  紫薇LiCMB1基因的克隆及表达特性分析 . 浙江农林大学学报, 2023, 40(2): 330-337. doi: 10.11833/j.issn.2095-0756.20220333
    [4] 兰智鑫, 侯丹, 吴蔼民, 林新春.  毛竹PeCIGRs基因的克隆及表达分析 . 浙江农林大学学报, 2023, 40(5): 982-990. doi: 10.11833/j.issn.2095-0756.20220761
    [5] 孟超敏, 耿翡翡, 卿桂霞, 张富厚, 李雪林, 刘逢举.  陆地棉低磷胁迫应答基因GhGDPD1的克隆与表达分析 . 浙江农林大学学报, 2023, 40(4): 723-730. doi: 10.11833/j.issn.2095-0756.20220624
    [6] 卓娟, 侯丹, 林新春.  毛竹PhebHLH6基因克隆及表达分析 . 浙江农林大学学报, 2023, 40(4): 731-737. doi: 10.11833/j.issn.2095-0756.20220553
    [7] 孟超敏, 耿翡翡, 卿桂霞, 周佳敏, 张富厚, 刘逢举.  陆地棉磷高效基因GhMGD3的克隆与表达分析 . 浙江农林大学学报, 2022, 39(6): 1203-1211. doi: 10.11833/j.issn.2095-0756.20220145
    [8] 庞天虹, 钱婕妤, 付建新, 顾翠花, 张超.  桂花己糖激酶基因家族成员的序列及表达分析 . 浙江农林大学学报, 2021, 38(2): 225-234. doi: 10.11833/j.issn.2095-0756.20200370
    [9] 王楠楠, 董彬, 杨丽媛, 赵宏波.  梅花2个PmWRKY2基因克隆及在逆境胁迫下的表达模式 . 浙江农林大学学报, 2021, 38(4): 812-819. doi: 10.11833/j.issn.2095-0756.20200706
    [10] 杨锦, 靳鹏, 刘芃, 羊健, 王洋, 戴良英, 陈剑平.  表达中国小麦花叶病毒(CWMV)外壳蛋白基因增强烟草对CWMV的抗病性 . 浙江农林大学学报, 2020, 37(2): 291-295. doi: 10.11833/j.issn.2095-0756.2020.02.013
    [11] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [12] 武丹阳, 杨洋, 李慧玉.  3个白桦BpBEE基因的克隆与表达分析 . 浙江农林大学学报, 2017, 34(1): 137-144. doi: 10.11833/j.issn.2095-0756.2017.01.019
    [13] 侯传明, 郑雅文, 王正加, 徐英武.  山核桃MADS-like基因的克隆与分析 . 浙江农林大学学报, 2015, 32(1): 33-39. doi: 10.11833/j.issn.2095-0756.2015.01.005
    [14] 赵传慧, 周厚君, 童再康, 林二培, 黄华宏, 牛明月.  光皮桦成花相关MADS-box基因BlMADS1的克隆与表达 . 浙江农林大学学报, 2015, 32(2): 221-228. doi: 10.11833/j.issn.2095-0756.2015.02.008
    [15] 赵婷, 韩小娇, 刘明英, 乔桂荣, 蒋晶, 姜彦成, 卓仁英.  东南景天耐镉相关基因SaFer的克隆与功能初步分析 . 浙江农林大学学报, 2015, 32(1): 25-32. doi: 10.11833/j.issn.2095-0756.2015.01.004
    [16] 王超莉, 张智俊, 屈亚平, 王蕾.  毛竹丙酮酸磷酸双激酶调节蛋白基因克隆、原核表达及纯化 . 浙江农林大学学报, 2015, 32(5): 749-755. doi: 10.11833/j.issn.2095-0756.2015.05.014
    [17] 庞景, 童再康, 黄华宏, 林二培, 刘琼瑶.  杉木纤维素合成酶基因CesA的克隆及表达分析 . 浙江农林大学学报, 2015, 32(1): 40-46. doi: 10.11833/j.issn.2095-0756.2015.01.006
    [18] 沈辰, 裘佳妮, 黄坚钦.  山核桃COP1 E3连接酶的全长克隆及表达分析 . 浙江农林大学学报, 2014, 31(6): 831-837. doi: 10.11833/j.issn.2095-0756.2014.06.002
    [19] 宋敏国, 袁进强, 杨仙玉, 张姝芳, 诸葛慧, 徐跃.  日本蟾蜍皮肤胸腺素α原cDNA的克隆及序列分析 . 浙江农林大学学报, 2013, 30(3): 401-405. doi: 10.11833/j.issn.2095-0756.2013.03.016
    [20] 杨希宏, 黄有军, 陈芳芳, 黄坚钦.  山核桃FLOWERING LOCUS C同源基因鉴定与表达分析 . 浙江农林大学学报, 2013, 30(1): 1-8. doi: 10.11833/j.issn.2095-0756.2013.01.001
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2017.04.003

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2017/4/581

图(8) / 表(1)
计量
  • 文章访问数:  3266
  • HTML全文浏览量:  919
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-30
  • 修回日期:  2016-10-27
  • 刊出日期:  2017-08-20

烟草NtPLR1基因克隆与表达分析

doi: 10.11833/j.issn.2095-0756.2017.04.003
    基金项目:

    安徽省教育厅自然科学基金重点资助项目 KJ2010A116

    国家自然科学基金面上项目 31670297

    作者简介:

    李冰冰, 从事维生素B6代谢转换研究。E-mail:lbb126@126.com

    通信作者: 张剑韵, 教授, 博士, 从事维生素B6代谢和生物多样性研究。E-mail:jianyun218@aliyun.com
  • 中图分类号: S572;S718.3

摘要: 维生素B6(VB6)在植物体内参与多种生化反应,对植物生长至关重要,吡哆醛还原酶(PLR)是VB6代谢转换的作用酶,催化吡哆醛(PL)生成吡哆醇(PN),对维持细胞内VB6的动态平衡发挥重要作用,而PLR在植物中鲜有报道。以拟南芥Arabidopsis thaliana吡哆醛还原酶氨基酸序列AtPLR1为模板,在公用数据库通过同源比对获得数条烟草Nicotiana tabacum NtPLR1基因的片段,结合互补脱氧核糖核酸(cDNA)的末端快速扩增-聚合酶链式反应(RACE-PCR)技术获得了烟草吡哆醛还原酶NtPLR1基因。该基因全长1 370 bp,编码369个氨基酸残基,预测其编码蛋白的分子量为41 kDa,理论等电点为9.42。氨基酸多序列比对结果表明:NtPLR1与其他物种的PLR1相似性较高。实时荧光定量PCR(qRT-PCR)分析结果表明:外源吡哆醛PL处理时,NtPLR1表达先升高后降低,在4 d达到顶峰。相应地,高效液相色谱分析结果表明:烟草叶片中PL含量随时间逐渐降低而吡哆醇PN含量逐渐升高,表明NtPLR1可像酵母PLR一样,催化PL形成PN。此外,定量分析结果表明:NtPLR1在烟草根、茎和叶片中均有表达,其中在叶片中表达显著高于其他部位(P < 0.05)。在紫外线、氧化和盐害胁迫下,NtPLR1的表达与对照相比均显著上调(P < 0.05),表明NtPLR1对这3种逆境有响应,可能参与烟草的抗逆过程。将NtPLR1连入原核表达载体pET32a,并进行诱导表达,成功表达出目的蛋白。报道的烟草NtPLR1基因功能为进一步探明植物PLR基因的功能和调控机制以及VB6的生物合成提供了重要参考。

English Abstract

金则新, 蔡辉华. 浙江天台山常绿阔叶林不同演替阶段优势种群动态[J]. 浙江农林大学学报, 2005, 22(3): 272-276.
引用本文: 李冰冰, 刘国峰, 魏书, 等. 烟草NtPLR1基因克隆与表达分析[J]. 浙江农林大学学报, 2017, 34(4): 581-588. DOI: 10.11833/j.issn.2095-0756.2017.04.003
JIN Ze-xin, CAI Hui-hua. Dynamic characteristics of the dominant populations in different succession stages of evergreen broad-leaved forest on Tiantai Mountain in Zhejiang Province[J]. Journal of Zhejiang A&F University, 2005, 22(3): 272-276.
Citation: LI Bingbing, LIU Guofeng, WEI Shu, et al. Cloning and expression analysis of the tobacco NtPLR1 gene[J]. Journal of Zhejiang A&F University, 2017, 34(4): 581-588. DOI: 10.11833/j.issn.2095-0756.2017.04.003
  • 维生素B6(VB6)是一类吡啶化合物的总称,包括吡哆醛(PL),吡哆醇(PN),吡哆胺(PM),磷酸吡哆醛(PLP),磷酸吡哆醇(PNP),磷酸吡哆胺(PMP)等,其中PLP是其主要活性形式,作为辅酶参与生物体内100多种生化反应,包括氨基酸代谢、抗生素合成、免疫调节等生理反应及氧化胁迫等抗逆反应[1]。细胞内VB6各组分的平衡是机体进行正常代谢的前提,因而VB6对植物的生长发育至关重要。研究[2]发现,自然界中VB6有从头合成(de novo synthetic pathway)和补救合成(salvage pathway)2种方式,补救合成途径使VB6异养型生物能够利用外源摄入的PN,PM和PL来合成机体代谢所需要的活化型PLP并维持细胞各型VB6浓度相对稳定。从头合成已被广泛研究,而补救合成途径的研究却相对缺乏。其中,吡哆醛还原酶(PLR)是VB6补救合成途径中的作用酶,最初在酵母中被发现,属于醛酮还原酶(aldo-keto reductase),在还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)存在的条件下催化PL转换成PN[3-4],从而可维持细胞内VB6动态平衡,对于生物体进行正常的生理活动具有重要意义。植物性食物中VB6主要以PN或其糖基化形态存在,并推测植物中可能有高效的PN生成机制[5]。迄今为止,植物中只有拟南芥Arabidopsis thaliana的AtPLR1基因得到分离鉴定,对酵母突变体进行互补实验表明AtPLR1像酵母PLR一样,可催化PL形成PN[6]。T-DNA插入的Atplr1突变体根系生长较野生型明显缓慢,氯化钠、甘露醇胁迫下Atplr1的生长受到抑制[6],推测PLR可能与植物抵抗盐害和渗透压胁迫有关。烟草Nicotiana tabacum是一种重要的模式植物及经济作物,对其PLR进行克隆和功能分析,有助于进一步明确植物体内VB6的补救合成途径,同时为烟草良种选育提供理论储备。本研究以AtPLR1为模板,经过对美国生物技术信息中心(NCBI)公共数据库(http://www.ncbi.nlm.nih.gov/)中的序列进行比对和拼接并结合cDNA末端快速扩增技术-聚合酶链式反应(RACE-PCR)得到了烟草NtPLR1基因的全长序列。以此为基础,分析了其生物功能和表达特性,结果NtPLR1可催化PL形成PN。NtPLR1在叶片中表达最高,与紫外线、氧化及氯化钠胁迫和外源PL处理有应答反应。

    • 烟草‘云烟85’Nicotiana tabacum‘Yunyan 85’种子和pET32a原核表达载体为实验室保存。pEASY-Blunt载体、菌株BL21(DE3)Rosetta和大肠埃希菌Escherichia coli DH5α购自TransGen公司。

    • 紫外线处理:在无菌操作台上用紫外线照射生长至旺长期的烟草,照射时间分别为2 h,4 h和8 h,取茎尖以下的第3片叶,液氮冷冻,备用。

      盐处理:用100.0 mmol·L-1的氯化钠溶液浇灌旺长期烟草,处理1 d,4 d和7 d后取样,取茎尖以下第2片叶。液氮冷冻,备用。

      氧化处理:浇灌亚硫酸氢钠-亚硫酸钠(NaHSO3-Na2SO3)混合物(10.0 mmol·L-1,以亚硫酸钠浓度计),处理1 d,4 d和7 d后取样,取茎尖以下第2片叶,液氮冷冻,备用。

      PL处理:将旺长期烟草根部洗净,置于添加100.0 mg·L-1 PL的水培液中,用锡纸将烟草根部及水培液遮住,茎叶接受正常光照。分别于培养的第2天、第4天和第8天采集茎尖以下第2片叶,液氮冷冻,备用。

      以上均设置重复3个·处理-1

    • 根据RNAiso Plus RNA提取试剂盒使用说明书(Takara),进行总RNA提取。提取的RNA用质量分数为1.0%琼脂糖凝胶电泳进行纯度与完整性检测。参照PrimeScript RT reagent Kit with gDNA Eraser反转录试剂盒(Takara)对质量合格的RNA进行反转录,置于-20 ℃备用。

    • 以拟南芥吡哆醛PLR的氨基酸序列(NP_200170.2)为模板,在烟草表达序列标签(EST)数据库里同源检索,根据得到的EST序列,设计引物3RACE-1,3RACE-2,3RACE-3(表 1)进行巢式PCR扩增目的基因3′端序列。扩增产物经切胶回收,连接pEASY-Blunt载体后,转化至大肠埃希菌DH5α感受态细胞,筛选阳性克隆子进行测序。3′端序列扩增产物测序结果验证后,使用DNAMAN软件将它与EST起始序列结合得到全长cDNA序列。随后设计全长克隆引物NtPLR-F1和NtPLR-R1(表 1),扩增NtPLR1序列。PCR反应程序为95 ℃预变性3.0 min;94 ℃变性30 s,60 ℃退火30 s,72 ℃延伸1.5 min,共28个循环;72 ℃延伸10.0 min。获得的NtPLR1序列在NCBI(http://www.ncbi.nlm.nih.gov/)数据库BLAST中进行序列比对。用ProtParam软件(http://web.expasy.org/protparam/)在线分析该蛋白的分子量和等电点;采用DNAMAN 7.0软件对基因编码的氨基酸序列进行比对分析。

      表 1  NtPLR1基因克隆与表达分析所用引物信息

      Table 1.  Primers used in NtPLR1 gene cloning and expression analysis

      用途 引物名称 引物序列(5'→3')
      3'-RACE 3RACE-1 TGCAAATTATGCACCTCTGCAGGAACG
      3RACE-2 TGCAGTTGGGGTGAGCAACTATGGACC
      3RACE-3 TGCGCTCAGCCCAGGTACAATTTTCAT
      目的片段扩增NtPLR1 NtPLR-F1 ATGGCTCTCTCACTCCCAGCTTCAAAATC
      NtPLR-R1 CTTTGTCTGAAATACGTTTTGGATC
      原核表达 NtPLR-F2 GGATCCATGGCTCTCTCACTCCCAGCTTCAAAATC
      NtPLR-R2 GTCGACCTTTGTCTGAAATACGTTTTGGATC
      qRT-PCR NtPLR-F3 TGGCAAAAGGTAAAGATGGG
      NtPLR-R3 GTTGATGCCATTCTCCACCG
      说明:下划线分别表示BamH1和Sal1。
    • 根据NtPLR1基因的cDNA序列,设计特异性定量引物(表 1),以18 S rRNA为内参基因,以根、茎、叶及紫外线、氧化、氯化钠处理下不同时间点取样叶片的cDNA为模板,进行荧光实时定量PCR(qRT-PCR)分析。qRT-PCR反应程序为95 ℃ 3.0 min,95 ℃ 10 s,55 ℃ 40 s,35个循环;溶解曲线:从65 ℃按0.5 ℃/循环增加到95 ℃。以2-ΔΔCt法计算相对表达量。

    • VB6检测参照张剑韵等[7-9]的方法,加以改进。VB6色谱分析所用色谱柱为H&E公司的XP ODS-A 5 μm 120 A(250.0 mm × 4.6 mm)。高效液相色谱仪为Waters 600,配备2475荧光检测仪。流动相A(分析用):体积分数为1%乙腈(CH3CN)-25.0 mmol·L-1磷酸二氢钾(KH2PO4)-25.0 mmol·L-1高氯酸钠(NaClO4),pH 2.5;流速为0.5 mL·min-1。进样量均为5.0 μL,荧光检测波长为395 nm,调整激发波长为290 nm。

    • 原核表达载体构建:根据载体pET32a多克隆位点信息,设计带有酶切位点(BamH1和Sal1)的原核表达引物(表 1),以云烟85 cDNA为模板扩增NtPLR1基因的cDNA片段。经琼脂糖凝胶电泳分离,回收目的条带后,连接pEASY-Blunt载体,转化至大肠埃希菌DH5α感受态细胞。挑取经PCR和测序验证的阳性菌落,扩大培养,使用质粒小抽试剂盒(TransGen2)提取质粒,即得到pEASY-NtPLR1载体。用限制性内切酶BamH1和Sal1双酶切pEASY-NtPLR1和pET32a质粒后进行T4连接,即得到pET32a-NtPLR1重组质粒。测序正确后,提取目的质粒并转化至BL21(DE3)Rosetta菌株,即得到融合表达菌。

      蛋白诱导表达:37 ℃培养融合表达菌至D(600)约为0.60,加入终浓度为1.0 mmol·L-1的异丙基硫代半乳糖苷(IPTG),并在18 ℃/37 ℃ 200 r·min-1诱导24 h。以含pET32a空质粒的BL21(DE3)Rosetta为对照。离心收获菌体,8 000 r·min-1离心10.0 min,弃上清,用PBS重悬。重复1次后进行超声波破碎。分别取上清和沉淀,加入上样缓冲液,沸水浴5.0 min,冷却至室温后,取20.0 μL进行SDS-PAGE(5%浓缩胶,10%分离胶)电泳检测。电泳后,经考马斯亮蓝染色、拍照,分析蛋白表达结果。

    • 以拟南芥吡哆醛PLR的氨基酸序列(NP_200170.2)为模板,在烟草EST数据库里同源检索到一条同源性(79%)序列(GenBank: HS082453.1)。以此EST序列为起点,进行延伸检索后得到4条候选EST序列,登录号分别为GenBank:FS425789,GenBank:FS385536.1,GenBank:FS432618,GenBank:FS431044.1。使用DNAMAN比对5条EST序列,发现它们来源于同一基因,拼接后得到1条长800 bp的起始序列。根据该序列设计3轮3′-RACE引物(表 1),进行巢式PCR扩增得到大小约为700 bp单一明亮条带(图 1中泳道1)。将该条带测序后和起始序列拼接得到全长cDNA序列。随后设计全长克隆引物(表 1),PCR扩增得到大小约1 500 bp的序列(图 1中泳道2)。测序正确后,将此全长序列命名为NtPLR1,其cDNA长度为1 370 bp,开放阅读框1 110 bp,5′非编码区(UTR)长55 bp,3′UTR长205 bp。编码369个氨基酸,起始密码子为ATG,终止密码子为TGA(图 2),具有Aldo-keto还原酶家族保守底物结合位点[6]图 2中下划线强调部分)。在线预测其编码蛋白的分子量为41 070.5 Da,理论等电点为9.42。氨基酸多序列比对结果显示,NtPLR1与AtPLR相似性为75%(图 3),与栗酒裂殖酵母Schizosaccharomyces pombe[10],酿酒酵母Saccharomyces cerevisiae[11]PLR的氨基酸相似性分别为24%和26%。

      图  1  琼脂糖凝胶电泳结果

      Figure 1.  Agorase gel electrophoresis results

      图  2  NtPLR1基因开放阅读框及预测氨基酸序列

      Figure 2.  ORF of NtPLR1 gene and the corresponding amino acid sequence

      图  3  几个已知物种的PLR多序列比对

      Figure 3.  Multiple protein sequence alignment of several known PLR enzymes

    • 分别提取烟草根、茎、叶的总RNA,D(260)/D(280)为1.9~2.0,表明RNA纯度较好,可进行后续实验。如图 4A所示:NtPLR1在根、茎和叶均有表达,在叶中表达最高,根、茎表达水平较低。对不同逆境胁迫下NtPLR1的表达分析发现:紫外线胁迫下,随时间延长,NtPLR1基因在烟草叶片中的表达量表现出先升高后下降的趋势,并在紫外线处理4 h时达到最大值(图 4B)。氧化及氯化钠(100.0 mmol·L-1)浇灌处理时,随胁迫时间的增加,NtPLR1基因在烟草叶片中的表达持续升高,7 d时表达最高(图 4C)。在以上逆境胁迫下,NtPLR1表达呈现不同程度的上调,这表明NtPLR1与紫外线、氧化、氯化钠胁迫有应答反应。

      图  4  NtPLR1表达的组织特异性及对不同胁迫处理的响应

      Figure 4.  QPCR analysis of spatial expression of NtPLR1 and its response to different stress treatments

    • 烟草水培液添加外源PL后,分别于培养的第2天、第4天、第8天取样,分析NtPLR1基因的表达水平和PL,PN含量。定量PCR分析结果表明:NtPLR1表达随处理时间延长呈现先上升后下降的趋势,在第4天表达量达到最高,第2天、第4天、第8天的NtPLR1表达量分别是对照的2.20,2.85和1.50倍(图 5)。

      图  5  NtPLR1对外源PL处理的响应分析

      Figure 5.  QPCR analysis of the response of NtPLR1 to exogenous PL

      VB6标准品高效液相色谱法(HPLC)检测结果如图 6A,峰型和区分度良好。对未处理的烟草叶片提取液分析发现,在PMP,PM,PLP,PL及PN的洗脱位置上均出现了相应的洗脱峰(图 6B),说明检测方法可行。据此,对PL处理组烟草叶片进行HPLC分析,结果表明:随时间延长,处理组烟草叶片中PL含量逐渐降低,PN含量增幅明显(图 7),同时,PMP,PM含量有小幅增长,表明烟草吸收外源PL后,主要将PL转化为PN。PL处理后NtPLR1的表达受到诱导,而在8 d时表达下降,结合PN,PMP和PM含量的逐渐增多可知,NtPLR1在烟草中催化PL形成PN。VB6各组分在烟草中动态转化,且各组分间存在反馈调节。

      图  6  HPLC分析VB6标准品(A)及对照烟草叶片提取液(B)

      Figure 6.  HPLC analysis for VB6 authentic standards (A) and extracts from control tobacco leaves (B)

      图  7  HPLC分析外源PL处理组烟草叶片提取液

      Figure 7.  HPLC analysis of extracts from exogenous PL treated tobacco leaves

    • 将重组质粒pET32a-NtPLR1转入BL21(DE3)Rosetta,分别在28 ℃和37 ℃条件下经异丙基硫代半乳糖苷(IPTG)诱导后,超声波破碎菌体,离心分离上清和沉淀。将上清和沉淀分别进行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)检测,结果显示:上清中无目的条带,而沉淀中在约53 kDa处出现明显蛋白条带,因pET32a的组氨酸标签(his-tag)约为12 kDa,故蛋白条带的大小与预期相符。仅沉淀中出现目的条带,表明NtPLR1在大肠埃希菌中以包涵体形式存在(图 8)。

      图  8  NtPLR1在表达菌株BL21(DE3)Rosetta中的表达

      Figure 8.  Prokaryotic expression of NtPLR1 in BL21(DE3) Rosetta

    • VB6在自然界中广泛地存在,主要以辅酶的形式参与生物体内多种物质代谢反应,是生物机体内很多重要酶系的辅酶[12]。植物体内,VB6参与淀粉、亚油酸等物质的合成[13],对于生长素、叶绿素以及乙烯的合成是不可或缺的[14-15]。近年来的研究还发现,VB6具有抗氧化作用,可猝灭超氧阴离子自由基及单线态氧[16];除此之外,在低温、渗透压、盐害、紫外及病菌等逆境中,VB6可以提高植株的抵抗力,发挥一定的抗逆作用[13, 17-20]

      VB6从头合成途径和补救合成途径普遍存在于植物和微生物中[21-24]。植物和微生物是VB6自养生物,动物自身无法从头合成VB6,只能从食物中获得VB6前体物质,通过补救合成途径满足机体对VB6的需求。VB6补救途径由多种酶参与,PLR是其中一种VB6补救合成酶,对于细胞进行正常生理活动具有重要意义。在研究拟南芥Atplr1时发现,Atplr1的VB6总水平下降,其中PL,PLP,PM和PMP水平显著下降,而PN和PNP无显著变化,推测在拟南芥内可能存在PLR的同工酶[6]。而HUANG等[25]的研究认为:烟草叶际PL—PN的转换可能受叶际微生物的影响较大。VB6对植物的生长发育、逆境适应及人和动物的营养具有重要意义,其从头合成途径已有较多的研究,而补救途径还有许多不明之处,有待深入研究。本研究从烟草中克隆得到烟草NtPLR1,并设置了不同的逆境胁迫条件对NtPLR1进行探究,结果表明:NtPLR1在叶中表达最高且受紫外线,氧化和氯化钠胁迫的诱导,推测NtPLR1参与烟草植株对紫外线、氧化和氯化钠胁迫的抗逆反应。外源添加PL后,NtPLR1表达量与对照相比显著上调,表明PL对NtPLR1有显著的诱导作用。此外,外源PL处理的前4 d NtPLR1的表达呈上升趋势,而在培养的第8天时NtPLR1的表达降低,相应的PL持续降低,而PN,PM和PMP等都有不同程度的升高,表明VB6各组分在烟草叶片中可相互转化并存在反馈调节。目前,本实验室正在进行NtPLR1重组蛋白的优化表达及体外酶活测定,以期为进一步探明烟草PLR基因功能及VB6补救合成过程奠定基础。

参考文献 (25)

目录

/

返回文章
返回