留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进K-means聚类与分水岭的木材横截面管孔分割

程昱之 钟丽辉 何鑫 王远 李朝岚

程昱之, 钟丽辉, 何鑫, 等. 基于改进K-means聚类与分水岭的木材横截面管孔分割[J]. 浙江农林大学学报, 2022, 39(1): 173-179. DOI: 10.11833/j.issn.2095-0756.20210219
引用本文: 程昱之, 钟丽辉, 何鑫, 等. 基于改进K-means聚类与分水岭的木材横截面管孔分割[J]. 浙江农林大学学报, 2022, 39(1): 173-179. DOI: 10.11833/j.issn.2095-0756.20210219
PANShi-xiu, MEN Xiu-xiang, FENG Jin-chao, et al. A review of studies on habitat selection by small and solitary forest ruminants[J]. Journal of Zhejiang A&F University, 2007, 24(3): 357-362.
Citation: CHENG Yuzhi, ZHONG Lihui, HE Xin, et al. Segmentation of wood cross-section pores based on improved K-means clustering and watershed[J]. Journal of Zhejiang A&F University, 2022, 39(1): 173-179. DOI: 10.11833/j.issn.2095-0756.20210219

基于改进K-means聚类与分水岭的木材横截面管孔分割

DOI: 10.11833/j.issn.2095-0756.20210219
基金项目: 云南省农业基础研究联合专项(2018FG001-108)
详细信息
    作者简介: 程昱之(ORCID: 0000-0001-5036-1873),从事木材图像处理研究。E-mail: 2848514993@qq.com
    通信作者: 钟丽辉(ORCID: 0000-0001-9630-1622),从事木材图像处理研究。E-mail: zhongsimple@sina.com
  • 中图分类号: S781.1

Segmentation of wood cross-section pores based on improved K-means clustering and watershed

  • 摘要:   目的  管孔是木材识别方面的重要特征之一。针对管孔随机分布、大小不一导致管孔分割鲁棒性不高,木纤维、木射线以及轴向薄壁组织等噪声区域对管孔分割效果影响较大的问题,本研究提出了一种改进K-means聚类与分水岭的木材横截面管孔分割算法。  方法  采用改进K-means聚类对管孔区域进行粗分割,有效区分管孔区域与木纤维、木射线以及轴向薄壁组织等噪声区域。再对粗分割结果采用改进分水岭算法进行精分割,分割出的管孔与实际管孔基本吻合。  结果  平均每张木材横截面微观图像有97.1%的管孔被准确有效地分割出来。本研究提出的改进分割算法与其他算法相比,分割效果显著提升,在大小不一且随机分布的管孔分割过程中鲁棒性高,具有良好的分割性能。  结论  该算法有效解决了传统K-means聚类算法在图像分割时受噪声影响大和初始聚类中心随机性问题,为阔叶材管孔特征提取和定量分析奠定了坚实基础。图7表1参16
  • 铁路、公路等基础设施建设会破坏和占压地表植被,形成大量的裸露坡面,遇到降雨极易发生水土流失,甚至出现滑坡、泥石流等次生地质灾害。裸露坡面常常具有坡度陡、坡体稳定性低、水分条件差和土壤瘠薄等特征,是不利于植被生长的困难立地。客土喷播绿化是裸露坡面恢复植被最快速最有效的方式之一,喷播后灌溉养护对植被生长至关重要[1]。大量调查发现:客土喷播后普遍存在过度灌溉,产生坡面径流,造成水土流失和水资源浪费;同时喷播基质通气不畅也会影响植被生长。可见,确定适合植被生长且能保证灌溉时坡面不产流的客土喷播基质含水量已成为当前亟需解决的问题。目前,关于适宜含水量研究大多集中在林地土壤与林木之间,如夏江宝等[2]对贝壳堤岛旱柳Salix matsudana光合效率的土壤水分临界效应及其阈值进行了分级研究,景雄等[3]对毛竹Phyllostachys edulis实生苗土壤水分有效性及生产力进行了分级研究,张淑勇等[4]对黄刺玫Rosa xanthina叶片光合生理参数的土壤水分阈值响应及其生产力进行了分级研究等,客土喷播基质适宜含水量与植被生长的关系研究则较少。以往的研究大都只关注了植物某一个生长阶段的土壤水分适宜含水量阈值[2, 5-6],缺乏对不同季节植被生长与基质水分关系的研究。鉴于此,本研究以北方地区常用的喷播修复植物黑麦草Lolium perenne作为研究对象,利用种植盆模拟客土喷播绿化,通过控制不同客土喷播基质水分梯度,分析夏、秋季黑麦草光合特性日变化对不同喷播基质水分的响应规律,以叶片净光合速率(Pn)和水分利用效率(EWU)作为“产”“效”来评价黑麦草生产力和水分利用能力的依据,并进行季节间比较,建立夏、秋季黑麦草喷播基质适宜含水量阈值分级,以期为北京至张家口的公路、铁路等冬季奥林匹克运动会交通廊道以及自然条件相近地区的工程创面客土喷播恢复植被灌溉养护提供参考。

    研究区河北省张家口市涿鹿县为北京冬季奥林匹克运动会延庆赛区和张家口崇礼赛区廊道沿线,高速公路G6和G7之间,地理坐标为40°26′20″N,115°17′03″E。涿鹿县属温带半干旱大陆性季风气候,年均气温为9.1 ℃,极端最高气温为39.2 ℃,极端最低气温为−23.9 ℃,年均降水量为367 mm,年均蒸发量为1 600 mm,无霜期为169 d,年平均积温为2 100~3 400 ℃,风向以西北为主,平均风速2~3 m·s−1,土壤为沙壤质褐土。

    喷播基质材料为客土(取自河北省涿鹿县苗圃)、木纤维[长1~3 cm,中矿复地生态环境技术研究院(北京)有限公司]、保水剂(3005KCE,美国艾森公司)、黏合剂(A30,美国艾森公司)、稻壳和黑麦草种子(北京布莱特草业有限公司)。喷播基质层和种子层的材料配比见表1。黑麦草播种量为4 g·m−2

    表 1  基质层和种子层的材料配比
    Table 1  Material ratio of matrix layer and seed layer
    喷播层次客土/
    %
    木纤
    维/%
    稻壳/
    %
    复合肥/
    (g·m−3)
    保水剂/
    (g·m−3)
    黏合剂/
    (g·m−3)
    基质层(10 cm)701020300200150
    种子层(3 cm)6733
      说明:客土、木纤维和稻壳为体积比
    下载: 导出CSV 
    | 显示表格

    利用种植盆试验模拟客土喷播绿化,种植盆上口直径50 cm、盆底直径40 cm、高15 cm,底部打孔便于排水。使用恒睿牌HKP125型客土喷播机。2021年4月26日,根据表1的材料配比将基质层和种子层分上、下2层先后喷播到种植盆内,采用微喷灌雾化喷头对喷播基质灌溉养护,保持喷播基质充分湿润(每次灌溉以喷播基质表面不积水为准),保证种子出苗有充足的水分。

    2021年5月26日开始控制喷播基质含水量(为质量含水量,下同),用环刀法测得喷播基质的田间持水量为30.36%,容重为1.12 g·cm−3。喷播基质含水量设置5个水分梯度,分别为30.36%、25.81%、21.25%、16.70%和12.14%,即喷播基质相对含水量(CRW)为100%、85%、70%、55%和40%,每个水分梯度设置3个重复。每天16:00用TDR350土壤水分速测仪(美国Spectrum公司)测定CRW(通过容重换算为质量含水量),每盆测定重复3次取平均值,并根据公式计算耗水量:ww=m/m。其中:w为设计质量含水量(%);w为实测质量含水量(%),根据TDR350实测值和容重换算;m为每盆黑麦草耗水量(g);m为每盆喷播基质干质量(g),可由基质体积和容重计算得出。使用微喷灌雾化喷头对喷播基质补充水分,为避免降水影响,试验在透明通风遮雨大棚内进行。

    于夏季(2021年8月5日,即控水2个月后)、秋季(2021年10月11日,即控水4个月后)选择连续3 d晴朗无云的天气,使用Li-6400XT便携式光合作用测定仪(标准叶室,Li-COR)测定黑麦草叶片Pn (μmol·m−2·s−1)、蒸腾速率Tr (mmol·m−2·s−1)、气孔导度Gs (mol·m−2·s−1)、胞间二氧化碳(CO2)摩尔浓度Ci (μmol·mol−1)等生理参数以及大气CO2摩尔浓度Ca (μmol·mol−1)、光合有效辐射PAR (μmol·m−2·s−1)、气温Ta (℃)和相对湿度Rh (%)等环境因子,并根据公式EWU=Pn/Tr计算水分利用效率、Ls=1−Ci/Ca计算气孔限制值。测定时间为8:00—16:00,隔2 h测1次,每个种植盆选取3株生长健康、长势一致的黑麦草,每株选取3片叶,每片叶记录3次读数,取平均值。

    运用Excel 2016整理光合参数与基质相对含水量数据;SPSS 22.0进行差异显著性检验LSD;Origin 2018进行作图和多项式拟合建立回归模型,使用F检验对回归模型进行显著性检验。

    图1可知:夏、秋季PAR的日变化为单峰曲线,均为先升高后下降,峰值均出现在12:00,夏季峰值为(1 393.71±110.04) μmol·m−2·s−1,秋季为(786.73±88.74) μmol·m−2·s−1。夏季PAR日均值(999.75±459.61) μmol·m−2·s−1大于秋季(504.07±274.09) μmol·m−2·s−1。夏、秋季Ca日变化为“V”型曲线,8:00—12:00下降,之后上升。秋季Ca日均值(421.15±17.65) μmol·mol−1大于夏季(411.54 ±10.76) μmol·mol−1,两者相差较小,仅为2.30%。

    图 1  夏、秋季光合有效辐射(PAR)和大气CO2摩尔浓度(Ca)的日变化
    Figure 1  Diurnal variation of photosynthetically active radiation (PAR) and atmospheric CO2 concentration (Ca) in summer and autumn

    图2可知:夏、秋季Ta的日变化与PAR相似,也为单峰曲线,在12:00达最大值。夏季Ta最大为(42.88±1.46) ℃,秋季为(28.41±1.06) ℃。夏季日均值(37.87±3.23) ℃大于秋季(26.21±2.03) ℃。夏、秋季Rh的日变化与Ta相反,12:00前下降,之后上升,夏、秋季Rh最低值分别为20.98%±1.65%和17.05%±1.47%。夏季Rh日均值(26.72%±5.56%)大于秋季(19.98%±2.70%)。

    图 2  夏、秋季气温(Ta)和相对湿度(Rh)的日变化的日变化     
    Figure 2  Diurnal variation of temperature (Ta) and relative humidity (Rh) in summer and autumn
    2.2.1   不同喷播基质含水量下黑麦草叶片净光合速率(Pn)的日变化

    夏、秋季黑麦草叶片Pn日变化对CRW有明显的阈值响应(图3)。当CRW为70%~85%时,Pn的变化呈双峰曲线,均出现光合“午休”现象,上午和下午各出现1个峰值,此水分范围内,Pn在全天各时段均最高。当CRW增加至100%时,Pn呈单峰曲线,峰值出现在12:00。当CRW降低到55%和40%时,Pn为单峰曲线,峰值均出现在8:00(但秋季CRW为55%时Pn峰值出现在10:00),Pn在全天各时段均处于较低水平,表明CRW低于55%会严重抑制植物的光合作用。由表2可知:Pn日均值对CRW也有明显的阈值响应。当CRW为85%时,夏季Pn日均值最大,达(11.17±3.08) μmol·m−2·s−1,与其他水分梯度有显著差异(P<0.05)。秋季的Pn日均值在CRW为70%时达最大,为(7.02±1.97) μmol·m−2·s−1,与其他水分梯度也有显著差异(P<0.05)。夏季Pn日均值均大于秋季,CRW为55%~100%时两季差异达到显著(P<0.05)。CRW为40%时,两季Pn日均值均较低,可见当CRW较低时植物光合作用将受到严重影响。综上所述,夏、秋两季维持黑麦草较高PnCRW为70%~85%,高于或低于此范围,Pn明显受到抑制。

    图 3  夏、秋季不同喷播基质含水量下黑麦草净光合速率(Pn)的日变化
    Figure 3  Diurnal variation of net photosynthetic rate (Pn) of L. perenne under different spraying substrate water content in summer and autumn
    表 2  夏、秋季不同喷播基质含水量下黑麦草光合生理参数的日均值变化
    Table 2  Change of daily mean of photosynthetic physiological parameters of L. perenne under different spraying substrate water content in summer and autumn
    CRW/%Pn/(μmol·m−2·s−1)Tr/(mmol·m−2·s−1)EWU/(mol·mol−1)
    夏季秋季夏季秋季夏季秋季
    1006.79±2.01 Abc4.30±0.95 Bb5.59±1.17 Aab2.75±0.16 Bab1.32±0.20 Bbc1.56±0.26 Acd
    8511.17±3.08 Aa6.07±1.24 Ba6.83±1.12 Aa3.13±0.40 Ba1.61±0.22 Ba1.92±0.22 Ab
    709.26±2.79 Aab7.02±1.97 Ba6.76±0.63 Aa2.92±0.59 Ba1.43±0.15 Bab2.37±0.25 Aa
    555.77±2.09 Ac3.77±1.03 Bb4.91±0.93 Ab2.35±0.30 Bbc1.20±0.12 Bbc1.63±0.20 Ac
    402.80±1.66 Ae2.74±0.78 Ab3.03±0.87 Ac2.16±0.28 Ac1.01±0.28 Ac1.28±0.16 Ad
      说明:同列不同小写字母、同行不同大写字母均表示差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格
    2.2.2   不同喷播基质含水量下黑麦草叶片蒸腾速率(Tr)的日变化

    夏、秋季黑麦草叶片Tr日变化规律与Pn基本相似(图4),当CRW为70%~85%时,黑麦草Tr的日变化呈双峰曲线。当CRW增加至100%时,Tr呈现单峰曲线,夏、秋季峰值均出现在14:00,但日均值却低于CRW为70%~85%时。表明基质水分充足可有效延缓Tr“午休”,但会降低Tr。当CRW≤55%时,Tr呈单峰曲线,峰值出现在8:00或10:00,全天各时段均处于较低的水平。结合表2可知:当CRW≥55%时,夏季Tr日均值显著高于秋季(P<0.05)),可见不同季节气候环境对植物Tr影响较大。当CRW为40%时,Tr日均值显著低于其他水分梯度(P<0.05),表明水分胁迫严重限制Tr。综上所述,CRW过高或过低均会降低黑麦草Tr,当CRW为70%~85%时,黑麦草会保持较高的Tr,保障植物正常生理活动。

    图 4  夏、秋季不同喷播基质含水量下黑麦草蒸腾速率(Tr)的日变化
    Figure 4  Diurnal variation of transpiration rate (Tr) of L. perenne under different spraying substrate water content in summer and autumn
    2.2.3   不同喷播基质含水量下黑麦草叶片水分利用效率(EWU)的日变化

    EWU日变化对基质含水量有明显的阈值响应(图5)。CRW为70%~85%时,EWU为双峰曲线(但秋季CRW=85%时为单峰曲线),全天各时段EWU均高于其他水分梯度。当CRW增加至100%时,EWU表现为单峰曲线,峰值出现在12:00。CRW为40%~55%时,EWU峰值出现在8:00或10:00,之后不断降低。结合表2可知:当CRW≥55%时,秋季EWU日均值显著高于夏季(P<0.05),CRW为40%时秋季EWU日均值高于夏季,但不差异显著。CRW为40%和100%时,EWU日均值均显著低于其他水分梯度(P<0.05),表明CRW过高或过低都会降低EWU。综上所述,夏、秋季维持黑麦草同时具有较高PnEWUCRW为70%~85%,在这个水分范围内,Tr也保持较高水平,有利于植物的光合作用。

    图 5  夏、秋季不同喷播基质含水量下黑麦草水分利用效率(EWU)的日变化
    Figure 5  Diurnal variation of water use efficiency (EWU) of L. perenne under different spraying substrate water content in summer and autumn
    2.2.4   不同喷播基质含水量下黑麦草叶片气孔导度(Gs)、胞间CO2摩尔浓度(Ci)和气孔限制值(Ls)的日变化

    夏、秋季黑麦草GsCRW具有明显的阈值响应(图6),当CRW为70%~85%时,Gs呈现双峰曲线。当CRW=100%时,Gs为单峰曲线,峰值出现在12:00。当CRW为40%~55%时,全天Gs峰值出现在8:00,之后一直降低,维持在较低水平。CiLsCRW的阈值响应表现不同的变化规律(图7图8),上午和下午表现也不同。CRW为70%~100%时,Pn下降,GsCi明显下降,Ls明显升高,表明Pn下降原因是气孔限制。CRW=55%时,上午Pn下降,GsCi明显下降,Ls升高,但下午Pn下降,GsLs下降,Ci反而升高,可见限制黑麦草Pn的原因上午和下午不同,上午以气孔限制为主,气孔关闭导致CO2供应不足,下午以非气孔限制为主,水分胁迫导致植物叶片光合结构受损,Pn下降。当CRW=40%时,Ci从8:00开始上升且一直处于较高水平,而Ls全天都较低,表明水分胁迫严重损坏了植物叶片光合结构,降低了光合作用有关酶的活性,从而降低了Pn。由图9可知:夏、秋季不同CRW范围内PnGs的正比关系不同,当CRW>55%时,随着Gs增大,Pn线性增大,PnGs为线性正比关系;当CRW≤55%时,PnGs为非线性关系。因此,当CRW=55%时,黑麦草不仅发生了Pn限制机制的转变,其PnGs之间的关系也发生转变。综上所述,在CRW=55%时出现上午、下午CiLs变化相反的情况,表明此基质含水量是黑麦草叶片Pn下降由气孔限制为主转变为非气孔限制为主的临界点。

    图 6  夏、秋季不同喷播基质含水量下黑麦草气孔导度(Gs)的日变化
    Figure 6  Diurnal variation of stomatal conductance (Gs) of L. perenne under different water content of spraying substrate in summer and autumn
    图 7  夏、秋季不同喷播基质含水量下黑麦草胞间CO2摩尔浓度(Ci)的日变化
    Figure 7  Diurnal variation of intercellular CO2 concentration (Ci) of L. perenne under different water content of spraying substrate in summer and autumn
    图 8  夏、秋季不同喷播基质含水量下黑麦草气孔限制值(Ls)的日变化
    Figure 8  Diurnal variation of stomatal limit value (Ls) of L. perenne under different spraying substrate water content in summer and autumn
    图 9  夏、秋季黑麦草净光合速率(Pn)和气孔导度(Gs)的关系
    Figure 9  Relationship between net photosynthetic rate (Pn) and stomatal conductance (Gs) of L. perenne in summer and autumn

    为进一步确定黑麦草喷播基质相对含水量(CRW)分级临界值,对黑麦草PnTr、EWUGs的日均值与CRW构建回归模型(表3)。由PnCRW的回归模型知:夏、秋季Pn达最大值的CRW分别为78.17%、76.02%,其对应的最大Pn分别为9.68和 6.33 μmol·m−2·s−1。令Pn=0,求出夏、秋季水合补偿点的CRW分别为35.02%、30.83%(CRW大于100%的点均已舍去)。根据回归模型的积分式[2]求出CRW为40%~100%时黑麦草夏季Pn平均值为7.77 μmol·m−2·s−1,对应的CRW分别为58.98%和97.36%。同理可求出黑麦草秋季Pn平均值为5.29 μmol·m−2·s−1,对应的CRW分别为57.71%和94.33%。由此可以确定黑麦草夏、秋季Pn达到中等以上水平的CRW分别为58.98%~97.36%、57.71%~94.33%。

    表 3  夏、秋季黑麦草光合参数与喷播基质相对含水量的回归模型
    Table 3  Regression model between photosynthetic parameters of L. perenne and relative water content of spraying substrate in summer and autumn
    参数季节回归模型决定系数FP
    Pn夏季y=−22.092 7+0.813 0x−0.005 2x20.8878.989.12×10−11
    秋季y=−11.584 0+0.471 3x−0.003 1x20.8145.601.49×10−8
    Tr夏季y=−9.497 1+0.398 7x−0.002 5x20.94595.830.000
    秋季y=−0.574 0+0.083 8x−0.000 5x20.8339.085.74×10−8
    EWU夏季y=−0.844 9+0.061 0x−0.000 4x20.8031.053.93×10−7
    秋季y=−2.344 8+0.122 2x−0.000 83x20.7635.291.37×10−7
    Gs夏季y=−0.354 2+0.013 5x−0.000 086x20.7839.974.73×10−8
    秋季y=−0.319 7+0.012 2x−0.000 077x20.8353.943.30×10−9
      说明:y表示各参数,x表示喷播基质相对含水量(CRW)
    下载: 导出CSV 
    | 显示表格

    根据EWUCRW的回归模型,求出夏、秋季EWU达最大值的CRW分别为76.25%、73.61%,对应的最大值分别为1.48和 2.15 μmol·mmol−1。令EWU=0,求出夏、秋季的对应的CRW分别为15.41%、22.68%(CRW大于100%的点均已舍去)。根据回归模型的积分式求出CRW为40%~100%时黑麦草夏季EWU的平均值为1.35 μmol·mmol−1,对应的CRW分别为58.17%和94.33%。同理可求出黑麦草秋季EWU的平均值为1.89 μmol·mmol−1,对应的CRW分别为55.81%和91.42%。由此确定黑麦草夏、秋季EWU达到中等以上水平的CRW分别为58.17%~94.33%、55.81%~91.42%。

    PnEWU取最大值点、平均值点、最低值点和Pn下降气孔限制转折点的喷播基质CRW临界值,作为黑麦草喷播基质适宜含水量阈值分级临界点,建立喷播基质适宜含水量的阈值分级(表4)。此分级标准将PnEWU作为“产”“效”来评价黑麦草生产力和水分利用能力的依据,建立了黑麦草喷播基质适宜含水量阈值分级。以Pn=0时的水合补偿点作为临界点,低于此临界点划为“无产无效水”范围。Pn下降原因由气孔限制为主转为非气孔限制为主对应的CRW称为“Pn气孔限制转折点”。PnEWU取最大值时的CRW确定为“高产高效水”临界值点。依据PnEWUCRW的回归模型积分式求解二者的平均值来确定PnEWU达到中等以上水平的临界点,在此范围内称为“中产”“中效”,此范围外称为“低产”“低效”。为更清晰地展示5种阈值分级类型,借助坐标轴对其划分参数和数值进行展示(图10)。

    表 4  基于光合特性的黑麦草喷播基质适宜含水量阈值分级
    Table 4  Threshold gradient of suitable water content of L. perenne spraying substrate based on photosynthetic characteristics
    季节临界值指标临界点对应的CRW/%基质适宜含水量阈值分级类型基质适宜含水量阈值/%
    夏季 Pn=0 35.02 无产无效水 <35.02
    Pn(sl→nsl) 55.00 低产低效水 35.02~55.00,97.36~100.00
    Pn取平均值(Pn-ave) 58.98~97.36 中产中效水 78.17~97.36
    Pn取最大值(Pn-max) 78.17 中产高效水 55.00~76.25
    EWU取最大值(EWU-max) 76.25 高产高效水 76.25~78.17
    EWU取平均值(EWU-ave) 58.17~94.33
    秋季 Pn=0 30.83 无产无效水 <30.83
    Pn(sl→nsl) 55.00 低产低效水 30.83~55.00,94.33~100.00
    Pn取平均值(Pn-ave) 57.71~94.33 中产中效水 76.02~94.33
    Pn取最大值(Pn-max) 76.02 中产高效水 55.00~73.61
    EWU取最大值(EWU-max) 73.61 高产高效水 73.61~76.02
    EWU取平均值(EWU-ave) 55.81~91.42
      说明:Pn=0为水合补偿点,Pn(sl→nsl)Pn气孔限制转折点
    下载: 导出CSV 
    | 显示表格
    图 10  夏、秋季黑麦草喷播基质适宜含水量阈值分级坐标轴图示
    Figure 10  Coordinate graphic figures of spraying substrate suitable water content threshold gradient of L. perenne in summer and autumn

    夏、秋季黑麦草光合生理参数(PnTrEWUGsCiLs)日变化对喷播基质含水量的阈值响应规律与黄刺玫[5]、文冠果Xanthoceras sorbifolia[6]、连翘Forsythia suspensa[7]、山杏Prunus sibirica[8]、羊草Leymus chinensis和紫花苜蓿Medicago sativa[9]等对土壤水分阈值响应的规律一致,即CRW过高或过低均会抑制植物光合作用。CRW为70%~85%时,夏、秋季PnTr日变化均呈现双峰曲线,在12:00表现出“光合午休”现象。主要原因是中午气温最高,高温影响植物光合酶的活性,降低Pn;空气相对湿度低,叶片表面饱和水汽压差增大,叶片气孔保卫细胞失水过多,导致部分气孔关闭,降低TrPn[10]CRW为100%时,夏、秋季Pn日变化均呈现单峰曲线,峰值出现在12:00,但Pn日均值并不高。表明水分充足可以延缓植物光合午休,但CRW过高,喷播基质孔隙较小,不利于根系呼吸,影响根系吸收营养元素,造成光合叶绿素含量降低,从而降低Pn[11]CRW为100%时,夏、秋季Tr日变化的峰值延迟到14:00。已有研究表明:当水分充足时光照强度是影响Tr的主要因子,光合辐射可以促进叶片气孔开放,从而增强Tr[12-13]CRW为40%~55%时,夏、秋季PnTr均处于较低水平,原因是严重水分胁迫下植物为减少体内水分散失增加了气孔阻力[4],导致PnTr降低。研究表明:适度的干旱胁迫能有效提高植物的水分利用效率[14-15],与本研究观点一致,即CRW为70%~85%时黑麦草EWU达最大值,并非在CRW最高的时候。秋季EWU显著高于夏季,主要原因是秋季Tr的降低幅度比Pn的降低幅度要更大,这与许多学者[16-18]的研究结果一致。

    夏、秋季黑麦草Gs日变化与Pn的变化规律基本相似,但通过对PnGs的关系拟合可知:PnGsCRW≤55%时两者为非线性关系,CRW>55%时为线性正比关系,这与郎莹等[19]的研究结果一致。轻度水分胁迫下,叶片气孔部分关闭,Gs下降,进入叶片CO2减少,因此Ci降低,Ls升高,但是当CRW为55%时,下午时段Gs下降,Ci升高,表明水分胁迫可能破坏了叶片的光合结构,导致叶片吸收CO2、光合作用能力下降。这也进一步说明,在CRW为55%时,黑麦草Pn下降原因已经由气孔限制为主转变为非气孔限制为主。已有研究表明:当植物光合作用受到非气孔限制时,水分胁迫可能开始损坏光合结构[20-21],叶绿体受损并且不可逆[22],当CRW进一步降低,植物叶子变黄甚至脱落[21]。因此,CRW=55%被认为是黑麦草喷播基质适宜含水量阈值分级的临界点。

    采用PnEWU作为土壤水分的“产”“效”指标可评价土壤水分有效性和适宜含水量范围[2-3, 5, 7, 23],主要方法有3类:第1类为聚类分析法[4, 24],即通过试验获取多个水分梯度下的PnEWU进行聚类分析,得到不同的水分分级临界点。由于获取的水分梯度随机性较大,该方法缺乏足够代表性。第2类为极限值法,即通过获取PnEWUCRW的定量关系,找出PnEWU的最低值、最大值点和气孔限制转折点,以此来划分水分分级临界点。但此法并未对中等水平的“产”“效”进行划分[26]。第3类为回归方程拟合法,即通过建立植物PnEWUCRW的回归模型,计算Pn的水合补偿点、PnEWU最低值点、最大值点和平均值点对应的土壤水分,并以此作为土壤水分有效性阈值分级临界点。该方法对土壤水分分级比较完整[2-3, 21]。本研究结合第2类和第3类方法,即采用回归方程拟合法计算临界值点再结合Pn气孔限制转折点来确定喷播基质适宜含水量阈值分级标准。在拟合时采用了PnEWU的日平均值与CRW,相比只测上午光合数据[2, 4, 6, 21]的研究更具有代表性。本研究确定的“无产无效水”“低产低效水”“中产中效水”“中产高效水”和“高产高效水”5种喷播基质适宜含水量阈值分级类型,可以根据不同的工程绿化养护要求和黑麦草不同生长阶段对水分的需求来选择利用。例如,在裸露边坡等困难立地最突出的特征是干旱和缺水,坡面工程绿化以防治水土流失和提高水分利用效率为目标,而不是充分供水达到最高产量 [24-25]。因此既满足边坡植被修复要求,又不因灌溉量过大而造成坡面水土流失、影响植物生长和浪费水资源等问题,可以保持喷播基质含水量在“中产高效水”(55.00%≤CRW≤76.25%和55.00%≤CRW≤73.61%)的范围,以此为标准进行灌溉。

    夏、秋季黑麦草净光合速率水合补偿点的喷播基质相对含水量分别为35.02%和30.83%,即实际质量含水量分别为10.63%和9.36%,喷播基质含水量低于此值光合作用无效。夏、秋季黑麦草净光合速率下降由气孔限制转变为非气孔限制的喷播基质相对含水量均为55%,即实际质量含水量为16.70%,喷播基质含水量低于此值将对黑麦草叶片光合结构造成不可逆性损坏,建议灌溉养护时保持基质含水量不能低于此水分范围。客土喷播绿化以快速恢复植被为目标时可以保持喷播基质含水量在“高产高效水”范围,以此为标准进行灌溉,夏、秋季分别为76.25%≤CRW≤78.17%和73.61%≤CRW≤76.02%,即实际质量含水量分别为23.15%~23.73%和22.35%~23.08%。客土喷播绿化以提高水分利用效率并恢复基本植被(即恢复到当地自然植被盖度为准)为目标时,可以保持喷播基质含水量在“中产高效水”范围,以此为标准进行灌溉,夏、秋季分别为55.00%≤CRW≤76.25%和55.00%≤CRW≤73.61%,即实际质量含水量分别为16.70%~23.15%和16.70%~22.35%。

  • 图  1  改进K-means与分水岭算法流程

    Figure  1  Improved K-means and watershed algorithm flow

    图  2  木材横截面原图

    Figure  2  Original cross-section of wood

    图  3  红脉槭颜色直方图

    Figure  3  Color histogram of A. rufinerve

    图  4  管孔粗分割结果

    Figure  4  Rough segmentation results of pores

    图  5  颜色编码结果

    Figure  5  Color coding results

    图  6  管孔精分割结果

    Figure  6  Fine segmentation results of pores

    图  7  各算法分割效果

    Figure  7  Segmentation effect diagram of each algorithm

    表  1  各算法分割效果对比

    Table  1.   Comparison of segmentation effects of various algorithms

    算法管孔
    漏分
    木射线
    误分
    轴向薄壁
    组织误分
    木纤维
    误分
    阈值分割
    分水岭
    K-means聚类与阈值分割
    本研究算法
    下载: 导出CSV
  • [1] 黄鹏桂, 赵璠, 李晓平, 等. 基于计算机的木材特征提取和分类识别技术研究综述[J]. 世界林业研究, 2020, 33(1): 44 − 48.

    HUANG Penggui, ZHAO Fan, LI Xiaoping, et al. Review of computer-based wood feature extraction and identification [J]. World For Res, 2020, 33(1): 44 − 48.
    [2] ESPINOSA L F, HERRERA R J, POLANCOTAPIA C. Segmentation of anatomical elements in wood microscopic images using artificial vision techniques [J]. Maderas Cienc Technol, 2015, 17: 106 − 108.
    [3] 黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2020, 66(6): 519 − 531.

    HUANG Peng, ZHENG Qi, LIANG Chao. Overview of image segmentation methods [J]. J Wuhan Univ Nat Sci Ed, 2020, 66(6): 519 − 531.
    [4] 韩刘杨, 田兴玲, 周海宾, 等. 饱水清代木材的构造腐朽程度及加固处理对其颜色的影响[J]. 西南林业大学学报(自然科学), 2020, 40(1): 132 − 138.

    HAN Liuyang, TIAN Xingling, ZHOU Haibin, et al. The Influences of the anatomical structure and deterioration state of wood from a Qing Dynasty shipwreck on wood color after the consolidation treatment [J]. J Southwest For Univ Nat Sci, 2020, 40(1): 132 − 138.
    [5] 杨建飞, 宁莉萍, 杨了, 等. 黑壳楠生长量及木材解剖特征的径向变异[J]. 南京林业大学学报(自然科学版), 2018, 42(1): 181 − 187.

    YANG Jianfei, NING Liping, YANG Liao, et al. Variation in radial increment of Lindera megaphylla and its wood anatomical characteristics [J]. J Nanjing For Univ Nat Sci Ed, 2018, 42(1): 181 − 187.
    [6] 中国林业科学研究院木材工业研究所. 一种木材识别方法及系统: CN201810830841.3[P]. 2019-01-03.

    Research Institute of Wood Industry, Chinese Academy of Forestry. A Wood Identification Method and System: CN201810830841.3[P]. 2019-01-03.
    [7] 于海鹏, 刘一星, 崔永志, 等. 基于二值形态学的木材横切面显微构造特征测量[J]. 材料科学与工艺, 2008, 16(1): 107 − 111.

    YU Haipeng, LIU Yixing, CUI Yongzhi, et al. Measurement of wood microstructural parameters on transverse section by binary morphology [J]. Mater Sci Technol, 2008, 16(1): 107 − 111.
    [8] 计智伟, 汪杭军, 何涛, 等. 基于改进区域生长的木材导管形态特征提取方法[J]. 北京林业大学学报, 2011, 33(3): 64 − 69.

    JI Zhiwei, WANG Hangjun, HE Tao, et al. A morphological feature extraction method of wood pores based on an improved growing region algorithm [J]. J Beijing For Univ, 2011, 33(3): 64 − 69.
    [9] 张广群, 汪杭军. 基于多目标遗传算法的管孔组合特征识别[J]. 林业科学, 2012, 48(4): 87 − 92.

    ZHANG Guangqun, WANG Hangjun. Multi-objective genetic based pore combination recognition [J]. Sci Silv Sin, 2012, 48(4): 87 − 92.
    [10] 汪杭军. 基于纹理的木材图像识别方法研究[D]. 合肥: 中国科学技术大学, 2013.

    WANG Hangjun. The Study of Recognition Methods of Texture-based Wood Images[D]. Hefei: University of Science and Technology of China, 2013.
    [11] 祁亨年, 陈丰农, 方陆明, 等. 一种基于形态学的木材导管图像分割方法[J]. 北京林业大学学报, 2008, 30(4): 12 − 16.

    QI Hengnian, CHEN Fengnong, FANG Luming, et al. A method for wood pore image segmentation based on mathematical morphology [J]. J Beijing For Univ, 2008, 30(4): 12 − 16.
    [12] SHEN Pan, KUDO M. Segmentation of pores in wood microscopic images based on mathematical morphology with a variable structuring element [J]. Comput Electron Agric, 2010, 75(2): 250 − 260.
    [13] 何拓, 高瑞清, 焦立超, 等. 世界木材标本馆现状与发展建议[J]. 木材工业, 2020, 34(3): 40 − 43, 55.

    HE Tuo, GAO Ruiqing, JIAO Lichao, et al. Present status of global leading xylaria and suggestions for xylaria development in China [J]. Chin J Wood Sci Technol, 2020, 34(3): 40 − 43, 55.
    [14] 李玉功. K-means聚类算法的改进及其在彩色图像分割中的应用[D]. 合肥: 安徽大学, 2018.

    LI Yugong. Improvement of K-means Clustering Algorithm and Its Application in Color Image Segmentation[D]. Hefei: Anhui University, 2018.
    [15] 卢印举, 段明义, 李祖照, 等. 一种改进的路面裂缝图像分割方法[J]. 科学技术与工程, 2020, 20(26): 10815 − 10821.

    LU Yinju, DUAN Mingyi, LI Zuzhao, et al. An improved road crack image segmentation method [J]. Sci Technol Eng, 2020, 20(26): 10815 − 10821.
    [16] 李平. 4种槭属植物形态解剖学研究[D]. 长春: 吉林农业大学, 2011.

    LI Ping. Morphological and Anatomical Studies on Fours Species of Acer L. [D]. Changchun: Jilin Agricultural University, 2011.
  • [1] 杨凡, 杨博凯, 李荣荣.  基于图像分割和深度学习的人造板表面缺陷检测 . 浙江农林大学学报, 2024, 41(1): 176-182. doi: 10.11833/j.issn.2095-0756.20230280
    [2] 栾景然, 冯国红, 朱玉杰.  基于连续投影算法-遗传算法-BP神经网络的可见/近红外光谱木材识别 . 浙江农林大学学报, 2022, 39(3): 671-678. doi: 10.11833/j.issn.2095-0756.20210377
    [3] 柳懿祥, 汪杭军, 徐铁平.  1种基于全局对比度的害虫收集方法 . 浙江农林大学学报, 2021, 38(2): 369-376. doi: 10.11833/j.issn.2095-0756.20200318
    [4] 兰洁, 肖中琪, 李吉玫, 张毓涛.  天山雪岭云杉生物量分配格局及异速生长模型 . 浙江农林大学学报, 2020, 37(3): 416-423. doi: 10.11833/j.issn.2095-0756.20190384
    [5] 明浩, 苏喜友.  利用特征分割和病斑增强的杨树叶部病害识别 . 浙江农林大学学报, 2020, 37(6): 1159-1166. doi: 10.11833/j.issn.2095-0756.20190752
    [6] 张广群, 李英杰, 汪杭军.  基于词袋模型的林业业务图像分类 . 浙江农林大学学报, 2017, 34(5): 791-797. doi: 10.11833/j.issn.2095-0756.2017.05.004
    [7] 白雪冰, 许景涛, 郭景秋, 陈凯.  基于局部二值拟合模型的板材表面节子与虫眼的图像分割 . 浙江农林大学学报, 2016, 33(2): 306-314. doi: 10.11833/j.issn.2095-0756.2016.02.017
    [8] 姚飞, 叶康, 周坚华.  植物叶图像特征分析和分类检索 . 浙江农林大学学报, 2015, 32(3): 426-433. doi: 10.11833/j.issn.2095-0756.2015.03.015
    [9] 姜广宇, 徐爱俊, 黄小银, 邵建龙.  带约束条件的森林防火最优路径算法 . 浙江农林大学学报, 2013, 30(1): 76-82. doi: 10.11833/j.issn.2095-0756.2013.01.011
    [10] 冯雪, 吴达胜, 骆文建.  森林防火多出救点应急调度算法 . 浙江农林大学学报, 2013, 30(2): 257-262. doi: 10.11833/j.issn.2095-0756.2013.02.016
    [11] 张广群, 吴伟志, 汪杭军.  基于加速鲁棒特征的木材显微图像自动配准方法 . 浙江农林大学学报, 2012, 29(4): 600-605. doi: 10.11833/j.issn.2095-0756.2012.04.018
    [12] 郝红, 徐常青, 张新平.  基于非负矩阵分解的航拍图像信息提取 . 浙江农林大学学报, 2012, 29(1): 72-77. doi: 10.11833/j.issn.2095-0756.2012.01.013
    [13] 夏国华, 刘传荷.  高岭景天:中国景天属一新记录种 . 浙江农林大学学报, 2011, 28(2): 254-255. doi: 10.11833/j.issn.2095-0756.2011.02.013
    [14] 陈建珍, 何超, 岳彩荣.  基于FLAASH模块的高级陆地成像仪图像的大气校正 . 浙江农林大学学报, 2011, 28(4): 590-596. doi: 10.11833/j.issn.2095-0756.2011.04.011
    [15] 方益明, 郑红平, 冯海林.  基于傅里叶变换和独立成分分析的木材显微图像特征提取与识别 . 浙江农林大学学报, 2010, 27(6): 826-830. doi: 10.11833/j.issn.2095-0756.2010.06.004
    [16] 刘羿, 佘光辉, 刘安兴, 张国江.  林业自然地理的模糊聚类区划 . 浙江农林大学学报, 2008, 25(4): 422-426.
    [17] 王彬, 王辉, 杨君珑, 孙栋元.  子午岭次生油松林主要乔木树种的更新特点 . 浙江农林大学学报, 2007, 24(5): 559-563.
    [18] 王锐萍, 刘强, 彭少麟, 林开豪, 文艳, 薛宁.  尖峰岭不同树种枯落物分解过程中微生物动态 . 浙江农林大学学报, 2006, 23(3): 255-258.
    [19] 管宇.  方程求实根的四分试位算法 . 浙江农林大学学报, 2001, 18(2): 184-187.
    [20] 张君析, 林绍生.  应用气候生态聚类指导脐橙引种 . 浙江农林大学学报, 1996, 13(1): 41-47.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210219

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/1/173

图(7) / 表(1)
计量
  • 文章访问数:  768
  • HTML全文浏览量:  204
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-07-27
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-02-14

基于改进K-means聚类与分水岭的木材横截面管孔分割

doi: 10.11833/j.issn.2095-0756.20210219
    基金项目:  云南省农业基础研究联合专项(2018FG001-108)
    作者简介:

    程昱之(ORCID: 0000-0001-5036-1873),从事木材图像处理研究。E-mail: 2848514993@qq.com

    通信作者: 钟丽辉(ORCID: 0000-0001-9630-1622),从事木材图像处理研究。E-mail: zhongsimple@sina.com
  • 中图分类号: S781.1

摘要:   目的  管孔是木材识别方面的重要特征之一。针对管孔随机分布、大小不一导致管孔分割鲁棒性不高,木纤维、木射线以及轴向薄壁组织等噪声区域对管孔分割效果影响较大的问题,本研究提出了一种改进K-means聚类与分水岭的木材横截面管孔分割算法。  方法  采用改进K-means聚类对管孔区域进行粗分割,有效区分管孔区域与木纤维、木射线以及轴向薄壁组织等噪声区域。再对粗分割结果采用改进分水岭算法进行精分割,分割出的管孔与实际管孔基本吻合。  结果  平均每张木材横截面微观图像有97.1%的管孔被准确有效地分割出来。本研究提出的改进分割算法与其他算法相比,分割效果显著提升,在大小不一且随机分布的管孔分割过程中鲁棒性高,具有良好的分割性能。  结论  该算法有效解决了传统K-means聚类算法在图像分割时受噪声影响大和初始聚类中心随机性问题,为阔叶材管孔特征提取和定量分析奠定了坚实基础。图7表1参16

English Abstract

程昱之, 钟丽辉, 何鑫, 等. 基于改进K-means聚类与分水岭的木材横截面管孔分割[J]. 浙江农林大学学报, 2022, 39(1): 173-179. DOI: 10.11833/j.issn.2095-0756.20210219
引用本文: 程昱之, 钟丽辉, 何鑫, 等. 基于改进K-means聚类与分水岭的木材横截面管孔分割[J]. 浙江农林大学学报, 2022, 39(1): 173-179. DOI: 10.11833/j.issn.2095-0756.20210219
PANShi-xiu, MEN Xiu-xiang, FENG Jin-chao, et al. A review of studies on habitat selection by small and solitary forest ruminants[J]. Journal of Zhejiang A&F University, 2007, 24(3): 357-362.
Citation: CHENG Yuzhi, ZHONG Lihui, HE Xin, et al. Segmentation of wood cross-section pores based on improved K-means clustering and watershed[J]. Journal of Zhejiang A&F University, 2022, 39(1): 173-179. DOI: 10.11833/j.issn.2095-0756.20210219
  • 阔叶材横截面微观图像由管孔、木射线、生长轮、木纤维和轴向薄壁组织构成,其中管孔是木材研究最重要的特征之一[1-3]。管孔不仅是分析考古木材样品的构造特征与保护状态的研究要素[3],也是研究某一地区若干年内木材生长量和环境气候变化相关性的依据[4]。管孔的分割是微观木材图像中提取管孔特征量和进行木材树种自动识别的关键步骤[56],因此,微观木材图像中的管孔分割有重要的研究意义。近些年来应用于管孔分割的算法主要有数学形态学、区域生长、目标遗传和水平集等[7-9]。张广群等[9]首先运用多目标遗传算法成功地分割出图像中的大部分管孔,但会出现复管孔或管孔团的漏分,同时部分轴向薄壁组织会连同其附近的管孔一起被分割出来。汪杭军[10]运用局部水平集算法,以局部灰度分布的均值作为统计信息,加强了管孔区域和背景区域的对比度,该算法虽然克服了漏分问题,但出现了噪声的误分割,一部分噪声为一些轮廓较大的木射线组织,另一部分为形状大小与管孔相似的木纤维组织。祁亨年等[11]运用改变结构元素和形态尺度的数学形态学算法对管孔进行分割,该算法克服了木射线和木纤维组织等噪声的影响,但出现了图像边缘细节丢失,如较小的管孔被当作噪声去除或是较大的管孔部分组织缺失。SHEN等[12]通过检测闭合区域的平均面积得出最适合的结构元素,并运用形态学算法对管孔进行分割,但还是会出现小孔漏分,大孔误分的情况。由于木材横截面微观图像中管孔数量众多、形态各异且随机分布,木纤维和轴向薄壁组织横截面也呈现一个个相对较小的孔洞,从而对管孔进行分割较为困难。综上所述,微观木材图像中管孔的分割依然是目前的研究热点和难点。本研究提出了一种改进K-means聚类与分水岭的木材横截面管孔分割算法,旨在解决管孔漏分、误分和噪声去除的问题并快速分割出管孔区域。

    • 日本森林数据库(https://db.ffpri.go.jp/WoodDB/JWDB/home.php)。该数据库成立于1928年,现有木材标本29 000余号,隶属270科2 050属8 500种;切片标本约90 000号[13]。本研究用到的木材树种为大红叶枫Acer amoenum(15帧图像)、尖齿槭A. argutum(5帧)、细柄槭A. capillipes(4帧)、茶条槭A. ginnala(1帧)、桑叶槭A. morifolium(3帧)、毛果槭A. nikoense(3帧)、日本槭A. nipponicum(5帧)、赛波德槭A. sicboldianum(24帧)、花楷槭A. ukurunduense(6帧)、红脉槭A. rufinerve(25帧)、薄叶槭A. tenuifolium(3帧)和褐枝猕猴桃Actinidia rufa(7帧)。

    • 传统的K-means聚类算法以距离作为相似性的评价指标,基本思想是按照距离将样本聚成不同的簇,两点距离越近,相似度就越大,以得到紧凑且独立的簇作为聚类目标[14-15]。传统的K-means聚类算法将样本映射到RGB颜色特征空间,构造新的映射关系,能够打破聚类只能是球状的限制,但聚类中心的选择会较大程度上影响分类效果,尤其是当聚类中心的选取全部位于管孔以外时,管孔区域会被整体归为噪声。此外,由于初始聚类中心的随机生成,可能会导致分类结果不一致或将木纤维或轴向薄壁组织被整体分割出来。基于此,针对以上问题进行算法改进,实现聚类中心的自适应选取。在RGB色彩空间下提取彩色木材微观图像的三通道分量。结合木材横截面原图,能够看出生长轮和木射线区域颜色较深,颜色值较小,所以其对应颜色值较小的峰值附近区域;管孔区域颜色较浅,颜色值较大,所以其对应颜色值较大的峰值附近区域;轴向薄壁组织和木纤维区域颜色较为平均,颜色值介于前两者之间,所以其对应两峰之间的波谷附近区域。分别取3个分量的均值组成第1个中心点,代表颜色直方图波谷附近区域,该点作为轴向薄壁组织和木纤维区域的簇类中心;遍历三通道分量,对于大于各自均值的所有颜色值取中值作为第2个中心点,由于该点对应颜色值较大,所以该点作为管孔的簇类中心;小于各自均值的所有颜色值取中值作为第3个中心点,由于该点对应颜色值较小,所以作为生长轮和木射线区域的簇类中心,分别代表颜色直方图两峰峰值附近区域。设通道分量为$ {M}_{j} $$ {M}_{j}\in (r,\;g,\;b) $Xn处的颜色值为In$ 0 < I $≤255。计算每个通道分量的均值$ \overline{M}_{j} $,均值两侧的中值为M1M2,Meidan表示取目标数组的中值函数。

      $$ {\overline{M}}_{j}=\frac{1}{n}\sum _{{n}}^{1}{I}_{n}; $$ (1)
      $$ {M_1} = {\rm{Meidan}}\left( {0,\;{{\overline M}_j}} \right); $$ (2)
      $$ {M_2} = {\rm{Meidan}}\left( {{{\overline M}_j},\;255} \right)\text{。} $$ (3)

      根据图像中各组织部分对应的颜色峰值或波谷得出这一组织部分的中心点,再以这3个点作为初始聚类中心点,运用K-means算法实现管孔的粗分割。

    • 虽然K-means聚类算法能够将木材微观图像中的管孔区域和背景区域区分开,但两者的颜色梯度差异较小,这可能会导致分水岭变换的过度分割。为了增加管孔区域和背景区域的颜色梯度差异,使分水岭变换在梯度运算判断极大值点时更加准确,更加有效地实现管孔的精分割,按照聚类的结果将木材微观图像进行3类颜色编码。第1类轴向薄壁组织细胞壁和木纤维区域进行红色编码,第2类管孔区域进行绿色编码,第3类生长轮和木射线区域进行蓝色编码。最后,通过形态学操作和分水岭变换实现管孔的精分割。

    • 为实现木材横截面微观图像的管孔分割,具体步骤如下(图1):①提取木材横截面微观图像的RGB分量并绘制颜色直方图;②根据木材微观图像中的3类目标区域,即轴向薄壁组织和木纤维、管孔、生长轮和木射线,确定聚类初始中心点;③根据像素点与聚类中心点之间的欧式距离求出新的簇类中心并判断中心点是否改变,若不一致则继续迭代,一致则进行下一步;④对划分出的3类区域进行颜色编码;⑤最后通过形态学操作去除面积较小的噪声,运用分水岭算法分割出管孔。

      图  1  改进K-means与分水岭算法流程

      Figure 1.  Improved K-means and watershed algorithm flow

    • 以大红叶枫横截面原图(997×1 418)为例,将本研究算法和现有算法(阈值分割、分水岭、K-means聚类与阈值分割)的分割效果进行对比分析,并以平均管孔有效分割率(F)作为算法分割性能的评价指标进行评价。

      $$ {P}_{i}=\frac{{T}_{i}}{{N}_{i}} ; $$ (4)
      $$ F=\frac{1}{n}\sum\limits_{i=1}^{n}{P}_{i}\text{。} $$ (5)

      式(4)~(5)中,Ti表示每张图像的管孔实际分割总数,Ni表示每张图像中的管孔总数,Pi表示每张图像的管孔有效分割率,重复次数n的取值为101,$ i\in n $F表示平均管孔有效分割率。

    • 随机选择3种木材微观横截面原图(图2)。在RGB色彩空间下提取彩色木材微观图像的三通道分量(图3)。可以看出3个分量均有2个峰和1个波谷组成,其中2个峰分别代表管孔区域和生长轮、木射线区域,波谷代表轴向薄壁组织和木纤维区域。

      图  2  木材横截面原图

      Figure 2.  Original cross-section of wood

      图  3  红脉槭颜色直方图

      Figure 3.  Color histogram of A. rufinerve

      按照颜色直方图得到初始聚类中心点。尖齿槭颜色值为(130.0, 144.0, 169.0),(20.0, 22.0, 49.0),(68.0, 78.4, 104.8);红脉槭颜色值为(84.6, 89.2, 110.4),(167.0, 184.0, 193.0),(32.0, 28.0, 56.0);赛波德槭颜色值为(181.0, 173.0, 207.0),(64.0, 40.0, 110.0),(113.0, 99.4, 154.9)。运用改进K-means聚类算法划分簇类(图4)。

      图  4  管孔粗分割结果

      Figure 4.  Rough segmentation results of pores

      为了增加管孔区域和背景区域两者的颜色梯度差异,对聚类粗分割结果进行色彩编码(图5),第1类对轴向薄壁组织细胞壁和木射线区域进行红色编码,颜色值为(202, 12, 22);第2类对管孔区域进行绿色编码,颜色值为(53, 106, 195);第3类对生长轮以及木射线区域归进行蓝色编码,颜色值为(29, 209, 107)。

      图  5  颜色编码结果

      Figure 5.  Color coding results

      经过灰度转换、开闭运算等图像形态学处理后,消除了绝大部分的木射线、木纤维和轴向薄壁组织等面积较小的噪声。此外运用分水岭变换对已分类的木材微观图像进行目标分割,即管孔分割(图6),将管孔快速准确地分割。从最终的分割结果来看,除了极个别的细小管孔未被检测到之外,其余管孔均被完整地分割,分割出的轮廓也与实际轮廓基本吻合。

      图  6  管孔精分割结果

      Figure 6.  Fine segmentation results of pores

    • 图7所示:阈值分割算法每张木材横截面微观图像平均有88.1%的管孔被准确有效地分割出来;分水岭算法每张木材横截面微观图像平均有91.4%的管孔被准确有效地分割出来,但存在噪声误分的问题;K-means聚类与阈值分割算法先运用K-means聚类算法将木材图像分为3类,再采用阈值分割和canny算子做管孔精分割,结果每张木材横截面微观图像平均有96.3%的管孔被准确有效地分割出来,但部分木射线和轴向薄壁组织也被分割出来,且存在轮廓不饱满的问题;本研究算法为改进K-means聚类与分水岭算法,结果每张木材横截面微观图像平均有97.1%的管孔被准确有效地分割出来,分割出的管孔与实际管孔基本吻合。

      图  7  各算法分割效果

      Figure 7.  Segmentation effect diagram of each algorithm

      为验证本研究算法分割管孔的准确性,对12类树种的横截面微观图像在各算法下的分割结果进行了比较(表1),能够看出阈值分割不存在管孔误分,但因面积较小而漏分的管孔较多;分水岭算法不仅存在管孔漏分且会误分割出木射线、木纤维以及轴向薄壁组织;K-means聚类与阈值分割存在木射线和轴向薄壁组织的误分割;本研究算法基本不存在管孔的漏分和误分问题。

      表 1  各算法分割效果对比

      Table 1.  Comparison of segmentation effects of various algorithms

      算法管孔
      漏分
      木射线
      误分
      轴向薄壁
      组织误分
      木纤维
      误分
      阈值分割
      分水岭
      K-means聚类与阈值分割
      本研究算法
    • 本研究改进的K-means聚类与分水岭的管孔分割算法,解决了初始中心点的随机性,并能有效地区分管孔区域与木纤维、木射线以及轴向薄壁组织等噪声区域,对管孔分割更为准确。本研究算法采用取图像颜色直方图对应的峰值确定初始聚类中心点和色彩编码的方式,充分将管孔与绝大部分噪声区域区分开,更适合于木材横截面微观图像分割任务。通过形态学处理和分水岭算法,对管孔进行精分割,将两者结合从而得到更为准确的分割结果。与其他分割算法相比,本研究算法分割效果显著提升,在大小不一且随机分布的管孔分割过程中鲁棒性高,有效避免了管孔漏分问题,具有良好的分割性能。

参考文献 (16)

目录

/

返回文章
返回