留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄曲霉毒素B1高灵敏定性定量免疫层析检测方法的建立

章先 王继璇 程高钏 李可 张晓峰 孙孟娇 程昌勇 宋厚辉

孙海燕, 王玉荣. 木材细胞壁超微构造的形成、表征及变化规律[J]. 浙江农林大学学报, 2019, 36(2): 386-393. DOI: 10.11833/j.issn.2095-0756.2019.02.021
引用本文: 章先, 王继璇, 程高钏, 等. 黄曲霉毒素B1高灵敏定性定量免疫层析检测方法的建立[J]. 浙江农林大学学报, 2022, 39(5): 1096-1103. DOI: 10.11833/j.issn.2095-0756.20210772
SUN Haiyan, WANG Yurong. Formation, characterization and change of ultrastructure in wood cell wall[J]. Journal of Zhejiang A&F University, 2019, 36(2): 386-393. DOI: 10.11833/j.issn.2095-0756.2019.02.021
Citation: ZHANG Xian, WANG Jixuan, CHENG Gaochuan, et al. A highly sensitive qualitative and quantitative immunochromatographic method for the detection of aflatoxin B1[J]. Journal of Zhejiang A&F University, 2022, 39(5): 1096-1103. DOI: 10.11833/j.issn.2095-0756.20210772

黄曲霉毒素B1高灵敏定性定量免疫层析检测方法的建立

DOI: 10.11833/j.issn.2095-0756.20210772
基金项目: 浙江省重点研发计划项目(2021C02058);国家自然科学基金资助项目(32002358);国家级大学生创新创业训练计划项目(202010341040)
详细信息
    作者简介: 章先(ORCID: 0000-0003-4903-3009),讲师,博士,从事病原生物学研究。E-mail: zhangxian073@163.com
    通信作者: 宋厚辉(ORCID: 0000-0001-6530-5794),教授,博士,从事病原生物学研究。E-mail: songhh@zafu.edu.cn
  • 中图分类号: S859.84

A highly sensitive qualitative and quantitative immunochromatographic method for the detection of aflatoxin B1

  • 摘要:   目的  真菌毒素可污染农产品和动物源性食品,其中黄曲霉毒素B1(AFB1)毒性强、危害大,建立AFB1快速、高灵敏和便捷的检测方法对于监测相关产品中AFB1污染水平,保障人和动物健康均具有重要意义。基于侧向层析技术原理,采用竞争模式,优化建立免疫层析检测方法,以实现AFB1的快速定性检测和定量分析。  方法  通过比较分析不同粒径金颗粒标记抗体效果,优化确定免疫层析各组分材料类型、相关缓冲液配方及最佳使用质量浓度,建立AFB1高灵敏定性定量免疫层析检测方法。  结果  优化建立的AFB1免疫层析检测法在实际样本中的定性和定量检测限分别为2.5和0.5 μg·kg−1,灵敏度高、特异性强,与其他常见真菌毒素无交叉反应,加标回收实验结果显示:该方法准确稳定,且对AFB1天然污染样本的定量检测结果与商品化试剂盒及LC-MS/MS一致性较好。  结论  本研究制备的免疫层析检测法可用于样本中AFB1污染的快速定性检测与定量分析,适合缺乏实验条件的基层检验检疫机构和农产品加工企业对大量样本进行快速筛查,样本检测结果疑似阳性再采用仪器法进行确认,可降低检测成本,提升检测效率,同时为建立其他病原微生物免疫层析检测方法提供参考。图9表2参26
  • 木材是一种多孔性、层次状、各向异性的非均质天然高分子复合材料,主要由纤维素、半纤维素和木质素3种高分子聚合物组成。木材的实体物质为其细胞壁,细胞壁中的纤维素通过分子链聚集成排列有序的微纤丝束,构成了细胞壁的基本骨架[1]。揭示木材细胞壁特别是其骨架的超微构造的形成及变化规律,对木材细胞壁的改性处理以及后续的遗传改良等具有重要的科学意义。木材细胞壁在超微水平上主要以纤维素微纤丝及结晶区的形式体现,木材科学中常用微纤丝角表征细胞次生壁S2层中微纤丝排列方向与细胞主轴方向的夹角,用结晶度和微晶形态表征结晶区和其基本组成结构的大小[1]。木材细胞壁超微构造即微纤丝和结晶区的研究是木材科学领域的研究热点之一[2]。近年来关于细胞壁超微构造形成的研究较多,如葡萄糖形成纤维素单链,继而形成微晶、微纤丝和结晶区等过程[3];射线技术、尖端显微镜以及光谱类仪器在木材超微结构表征中的应用[4],进一步揭示了微纤丝和结晶区的结构特征。研究发现微纤丝角和结晶度沿轴向和径向的变化规律不尽相同,对细胞形态的影响也不同[5-6],但对细胞壁微晶形态及变化特点方面的研究还不够深入;细胞壁超微构造会影响木材密度、干缩性和强度等物理力学性能[7-8],而探究微纤丝角、结晶度和微晶形态的形成及变化规律,是了解木材的基础性质的重要途径之一。以往对木材细胞壁超微构造的研究多集中于某一超微构造或某种表征方法方面,对不同种类木材及同种木材不同生长部位细胞壁纤维素微纤丝及结晶区的形成和变化及其表征方法未见系统报导。笔者详述了木材细胞壁微纤丝和结晶区的形成、表征方法、变化规律及其对细胞形态的影响,以期为今后木材的超微构造的深入研究和为基于细胞壁微纤丝和微晶结构特征来预测木材基础性质、早期良种选育以及材料的高效利用等方面提供详细的科学资料。

    微晶、微纤丝和结晶区均属于木材细胞壁的超微构造,是纤维素的结构组成部分。纤维素是植物细胞壁的主要组成成分,也是自然界中分布最广、含量最多的一种多糖,对高等植物细胞壁中天然纤维素结构和形成过程的研究发现,细胞壁超微构造的形成过程并非孤立,而是按照“微晶—微纤丝—结晶区”的顺序形成的。

    天然状态下,纤维素合成酶合成线性葡聚糖链的聚合度十分庞大(≥104),即上万葡萄糖残基通过β-1, 4-糖苷键相连形成无分支结构的纤维素单链(图 1A)[2-3]。由于含有大量羟基,新合成的相邻纤维素分子链间可产生大量分子间氢键,形成有序自组织聚集体;特别是相邻糖链间形成的氢键,可使纤维素分子形成稳定的片层结构(图 1B)[9];这些片层结构在范德华力和疏水力等次级键作用下自发有序地紧密堆积(图 1C)[10],即为天然结晶纤维素,其中有序结晶的程度可通过X射线粉末衍射法测定的结晶度来表征[11]。由图 1C可知:纤维素基元纤丝中的36根糖链聚集形成8个糖链片层,片层经氢键网络和范德华力作用堆积为空间结构呈现相对规则的六面体;理论模型横切面长约5.30 nm,宽3.20 nm,即常说的纤维素微晶[10]

    图  1  微晶、微纤丝及结晶区的形成
    Figure  1.  The form diagram of microcrystalline, microfibril and crystalline area
    A.纤维素单链;B.纤维素单链形成的片层结构;C.纤维素基元纤丝模型:D.纤维素微纤丝

    植物细胞壁微纤丝是在纤维素微晶的基础上形成的。受环境等因素影响,在合成过程中纤维素微晶结构沿着不同晶面聚集生长或沿着某一轴向扭转,形成大小不同、形状各异的微纤丝结构(图 1D)[12]。电子显微镜观测可知,微纤丝中晶胞数目不同,晶面聚集方向不一致[13],微纤丝间不能进一步紧密聚集,因而可认为微纤丝是细胞壁中的基本结构单元(图 1D)。定向排列的微纤丝几何结构发生螺旋状扭曲,造成微纤丝宽度改变的同时,也形成了纤维素结晶和非晶2种晶态[11],即为纤维素的结晶区和非结晶区。

    微纤丝角的表征方法随着仪器制造及分析水平的不断发展而发展。直接观测法是最原始的表征方法,适用于细胞壁局部区域微纤丝取向的精细表征,包括直接观测微纤丝倾角的偏振光显微镜法、碘结晶法、激光共聚焦显微镜法、纹孔法、原子力显微镜法以及电子显微镜法等。偏振光显微镜法是最早应用的直接观测法[14],垂直入射的完全偏振光通过试样后出现消光,此消光角即为木材微纤丝角[15]。原子力显微镜法则是通过表征细胞壁中微纤丝聚集体的排列来测定其倾角[16]

    间接法是基于木材光谱特征通过数学计算得到微纤丝角的X射线衍射法、近红外光谱预测法和拉曼光谱法线法等,适用于大量试样的平均微纤丝角的研究[4]。目前比较常用的是X射线衍射法[13-14]。X射线衍射法的微纤丝角计算方法中,Turley法是常用的一种方法,它是通过晶面衍射强度曲线最低2点画切线去除背景的方法计算微纤丝角[17-18]。共聚焦拉曼显微技术和偏振拉曼显微技术则是通过分析与纤维素取向密切相关的拉曼光谱峰来获得细胞壁的纤维素取向[19-20]

    应用直接观测法还是间接观测法应当依据测试要求和内容而定。

    随着尖端显微镜、射线类以及光谱类仪器不断地应用于木质纤维材料结构与性能表征中,木质纤维材料细胞壁纤维素结晶度、微晶形态等精细构造特征也不断地被揭示。检测方法主要分为原位检测和非原位检测两大类。

    原位检测技术不改变样品纤维素原本的位置和形态,常用表征方法如原子力显微镜技术和X射线法。原子力显微镜技术通过监测探针与试样表面的作用力来表征纤维素结晶区等大分子结构特征[21]。X射线法作原位检测时通常以1.0~1.5 mm厚的薄木片为样品,偶有4.0 mm厚的样品[18, 22],作非原位检测以80~100目的木粉压制成的薄片为样品[5, 7],根据衍射最强点的强度和位置,测出纤维素纤维晶体分子链中的晶区大小和结晶度等,能直接获得较为准确的结晶度值。其他非原位检测技术如核磁共振法,以木材硫酸盐浆为实验材料,通过区分纤维素无定形区和结晶区的信号得到结晶度值,其值与X衍射方法得到的结晶度值一致[23]。拉曼光谱法通过拉曼特征峰的相对强度来表征结晶度的大小[24],但因目前无法完全去除半纤维素、木质素等对结晶相关特征峰的干扰,该方法还没有直接应用到木质纤维材料细胞壁微晶形态表征中。

    树木木质部细胞次生壁在形成过程中,每一薄层的微纤丝沉积方向和排列密度都在不断发生变化,因此木材不同位置的微纤丝角不同[25]。微纤丝角决定材料微观和宏观的各项性能,直接关系到木材加工利用,被认为是影响木质纤维材料性质的重要指标。关于微纤丝角的株内变异规律目前有较多研究。

    3.1.1   径向变化规律

    研究认为,径向方向上同一年轮中早材的微纤丝角大于晚材;从髓心(幼龄材)到树皮(成熟材)平均微纤丝角逐渐减小,到一定年龄后趋于稳定。以长白落叶松Larix olgensis为例,从髓心到树皮微纤丝角在生长的前5 a急剧下降,第5年到第25年呈微小的波动变化,与银杏Ginkgo biloba,黑杨Populus nigra,垂枝桦Betula pendula等的微纤丝角变化规律一致[8, 25]。研究发现:云杉Picea aspoerata,垂枝桦和辐射松Pinus radiata等幼龄材的平均微纤丝角约为30°,幼龄材至成熟材变异幅度一般在10°左右,之后基本稳定[26-28]。目前认为:微纤丝角在径向产生这种变异的原因有2种。一种认为树木生长过程中,幼龄期细胞的直径增长快于长度生长,微纤丝轴向伸长受抑制,微纤丝角较大;进入成熟期后细胞长度生长快于直径生长,微纤丝在轴向得以延伸,微纤丝角较小[29]。另一种认为原生质流动方向及原生质体分生的纤维素含量越丰富,微纤丝的排列方向越接近细胞轴的方向;随树龄的增长,光合产物积累越多,分生细胞细胞壁的纤维素含量增多,微纤丝角越小[6]

    3.1.2   轴向变化规律

    木材轴向方向微纤丝角的变化规律表现为基部最大,从基部向上先减小后增加的变化趋势,但不同材种变化规律不尽相同。如刺楸Kalopanax septemlobus,油松Pinus tabulaeformis,毛白杨Populus tomentosa中最小的微纤丝角分别出现在1.3 m,3.3 m,5.3 m处;辐射松树高7.0 m以上、毛白杨高9.0 m以上时,微纤丝角趋于稳定,但在梢部的心材中微纤丝角有所增加[6, 30-31]。总体来说,微纤丝角轴向变异模式属于“大—小—大”的形式。目前关于微纤丝角产生轴向变异的原因尚缺乏明确的解释。

    纤维素的结晶区由纤维素大分子链有序排列形成,结晶区占纤维素整体的百分数即结晶度,可表征木材纤维素聚集态形成结晶的程度。木材纤维素结晶度在不同树种及同一树种不同部位均具有差异性。一般认为:针叶材的纤维素结晶度大于阔叶材。由表 1可知:多数针叶材的平均结晶度大于40%,而阔叶材一般为30%~40%[1, 7, 22, 32-40];但也有例外,如杨树Populus,泡桐Paulownia等低密度阔叶材的纤维素结晶度高于翠柏Calocedrus macrolepis,樟子松Pinus sylvestris var. mongolica等针叶材[7, 32-34]。结晶度的变化也与不同树种细胞生长发育阶段有关。通常认为随木质部细胞的不断发育,纤维素的结晶度会不断增加,且呈正相关。在径向方向的结晶度研究表明,随生长轮龄的增加,结晶度逐渐增大,至成熟后趋于稳定;并且在同一年轮内晚材的结晶度一般比早材的大[5, 36, 41]。目前,对沿树轴方向结晶度变化规律的研究不多,表现为自基部向上逐渐增加,到稍部有所减小[36]

    表  1  不同树种木材的结晶度
    Table  1.  Crystallinity of the woods in the different tree species
    针叶材 结晶度/% 参考文献 阔叶材 结晶度/% 参考文献
    湿地松Pinus elliottii 55 [36] 美国红橡Quercus spp. 36 [22]
    马尾松Pinus massoniana 54 [1] 美国樱桃木Prunus serotina 32 [22]
    挪威云杉Picea jezoensis > 40 [35] 美国黑胡桃Juglans nigra 38 [22]
    杉木Cunninghamia lanceolata 47 [38] 胡桃Juglans regia 39 [37]
    樟子松Pinus sylvestris > 40 [32] 小叶杨Populus simonii 35 [39]
    臭冷杉Abies nephrolepis > 40 [39] 水曲柳Fraxinus mandshurica < 40 [39]
    鱼鱗云杉Picea jezoensis > 40 [39] 白禅Betula platyphylla < 40 [40]
    翠柏Calocedrus macrolepis 40 [33] 胡桃楸Juglans mandshurica 35 [39]
    落叶松Larix gmelinii 54 [1] 春榆Ulmus davidiana 35 [39]
    红松Pinus koraiensis 30-36 [39] 杨树Populus spp. 55 [7]
    泡桐Paulownia fortunei 46 [34]
    下载: 导出CSV 
    | 显示表格

    天然纤维素中微小尺度的晶粒统称为微晶,常用微晶尺寸表征微晶的形态[42-43]。不同种类木材纤维素微晶的大小和形状并不均一,一般纤维素微晶宽3.00~5.00 nm,厚2.00~5.00 nm,长十至数百纳米,具体形态因树种而异[42]。对5种针叶材树种微晶尺寸的研究发现(表 2),这些针叶材树种的微晶宽度接近,为3.00~3.20 nm,但晶体长度则变化较大,为10.00~40.00 nm[43-46];对银杏幼龄材研究发现,微晶的宽度、长度和树龄相关性不大[43]。目前,关于木材微晶形态在成熟材和幼龄材中变化规律的研究较少。石江涛等[39]发现白桦Betula platyphlla和水曲柳Fraxinus mandschurica等木材早期组织中纤维素的晶型、晶胞或微晶大小与成熟材不同,但具体差别有待于进一步研究。

    表  2  5种针叶材的微晶尺寸
    Table  2.  Crystal size of the woods in five tree species
    针叶材 宽度/nm 长度/nm 参考文献
    银杏Ginkgo biloba 3.20 29.00 [43]
    挪威云杉Picea abies 3.20 40.00 [44]
    欧洲赤松pinus sylvestris 3.10 17.00 [45]
    西加云杉Picea sitchenrsis 3.00 - [46]
    杉木Cunninghamia lanceolata 3.10 10.00 [47]
    说明:“-”代表所引文献中未见该指标的相关结果
    下载: 导出CSV 
    | 显示表格

    微纤丝的排列方向与针叶材管胞的长度和阔叶材纤维的长度相关,微纤丝角是纤维素分子链取向的特征指标,与两者呈不同程度负相关。沿径向方向,生长的前9 a红松Pinus koraiensis的晚材管胞长度自髓心向外急剧增加,而微纤丝角逐渐减小,两者呈显著负相关(-0.965);此后长度增加减缓,微纤丝角也缓慢减小[47]。同一生长轮内两者也呈负相关关系,红松的微纤丝角与管胞长度的相关系数约为-0.70,湿地松Pinus elliottii,油松和翠柏在同一生长轮内管胞长度与微纤丝角的相关系数均为-0.90[34, 47],显示出0.01水平的显著负相关。由此可见,管胞长度与微纤丝角呈显著负相关,一定条件下可以通过管胞长度推测纤丝角度。

    阔叶材中微纤丝角与木纤维长度之间也呈负相关,但相关程度要比针叶材低。如尾巨桉Eucalyptus urophylla × E. grandis细胞壁S2层微纤丝角与纤维长度的相关系数为-0.44[48],欧美杨Populus×euramericana中两者的相关度为-0.39[49]。这可能是因为管胞、纤维长度的变异模式不同;也可能是因为针叶材结构单一,95%以上均是管胞,而阔叶树材中木纤维只占50%左右,组成比较复杂。

    纤维素结晶度是衡量木质纤维材料细胞壁结晶程度的一个重要指标,与木质纤维材料的生长特性、组织结构等有密切关系。一般来说,结晶度与管胞、纤维长度呈显著正相关。研究发现,翠柏的结晶度与早晚材管胞的长度和宽度相关系数在0.90以上[5];浙江桂Cinnamomum chekiange的结晶度与纤维长度和宽度的相关系数在0.95以上[41]。由此认为,利用木材结晶度可以很好地预测木材细胞形态。

    总的来说,目前研究多集中在揭示纤维素微晶形态方面,未深入到对其性能影响方面,因此未来需要加强微晶形态对木质纤维材料基础性能的影响研究。

    对木材细胞壁微纤丝和结晶区的形成过程、微纤丝角和结晶度表征方法及其变化特点进行综述发现,葡萄糖残基最初形成纤维素单链,继而在分子间氢键作用下形成稳定的片层结构,然后通过有序堆积方式形成纤维素微晶;微晶在不同晶面聚集成长,形成相互之间不能再紧密聚集的微纤丝结构,并通过微纤丝的扭曲构象形成纤维的结晶态和非结晶态。微纤丝角和结晶度均可以通过尖端显微镜、射线类以及光谱类仪器设备表征,常用X射线法,此外也用拉曼光谱法等进行表征。结果发现:木材细胞壁微纤丝角和结晶度变化特点在一定程度上表现出相反的变化规律,即径向方向从髓心到树皮微纤丝角逐渐减小,结晶度逐渐增大,最终均趋于稳定;轴向方向从基部向上微纤丝角先减小后增加,结晶度逐渐增加,到梢部有所减小。细胞壁微纤丝的排列和结晶区的大小与其细胞形态相关,微纤丝角越小,管胞和纤维细胞越长,两者呈负相关关系;结晶度越高,细胞越长,两者呈正相关关系。

    目前,针对细胞壁微纤丝的形成、倾角变化规律和表征方法等已有较为充分的研究,但关于微纤丝角取向形成机制和细胞壁各层厚度分化形成机理还没有明确的解释;对纤维素微晶形态的研究已兴起,但对从幼龄材到成熟材生长过程中晶型、晶胞及晶体尺寸等微晶形态的具体变化模式还未深入探究。因此,今后工作可以围绕以下几点展开:一是从分子层面探究微纤丝取向形成机理;二是加强对木材细胞壁各层厚度累积过程的研究;三是阐明晶型、晶胞及晶体尺寸等微晶形态在木材生长过程中的变化特点。

  • 图  1  黄曲霉毒素B1定性定量免疫层析检测法示意图

    Figure  1  Schematic diagram of the qualitative and quantitative immunochromatographic assay for the detection of aflatoxin B1

    图  2  免疫层析体系各组分组成结构示意图

    Figure  2  Sketch map of the immunochromatographic system

    图  3  AFB1完全抗原AFB1-BSA和AFB1-OVA的ELISA鉴定

    Figure  3  Absorbance of the AFB1 conjugates by indirect ELISA using their specific monoclonal antibodies

    图  4  目测法(A)和透射电镜(B)对金颗粒的鉴定

    Figure  4  Colloidal solution of 20 nm and 40 nm diameter gold nanoparticles by visualization by naked eye (A) and images from TEM (B)

    图  5  免疫层析法对黄曲霉毒素B1的定性检测限

    Figure  5  Detection limits of immunochromatographic assay for aflatoxin B1

    图  6  免疫层析法对黄曲霉毒素B1的抑制曲线(A)和定量标准曲线(B)

    Figure  6  Tri-parametric curve fitting of log concentration of aflatoxin B1 vs inhibition rate by immunochromatographic assay (A) and the calibration curve for quantification of aflatoxin B1 (B)

    图  7  定性定量免疫层析法对其他真菌毒素的交叉反应性

    Figure  7  Cross-reactivities of the qualitative and quantitative immunochromatographic assay for different mycotoxins

    图  8  免疫层析法对黄曲霉毒素B1加标样本的定性检测

    Figure  8  Qualitative detection of aflatoxin B1 spiked samples by immunochromatography

    图  9  免疫层析法与LC-MS/MS定量结果相关性分析

    Figure  9  Correlation of results obtained by immunochromatography assay and LC-MS/MS for AFB1 detection in natural samples

    表  1  免疫层析法对黄曲霉毒素B1加标样本的定量检测

    Table  1.   Quantitative detection of aflatoxin B1 spiked samples by immunochromatography assay

    AFB1加标质量
    分数/(μg·kg−1)
    批内批间
    回收
    率/%
    变异系
    数/%
    回收
    率/%
    变异系
    数/%
    1.089.62 ± 5.315.9395.72 ± 8.038.39
    2.596.47 ± 6.356.58103.56 ± 7.547.28
    5.095.16 ± 4.294.5193.25 ± 9.069.72
    10.0110.43 ± 6.155.57107.59 ± 8.567.96
      说明:数据为平均值±标准差,n=3
    下载: 导出CSV

    表  2  免疫层析法、商品化试剂盒和LC/MS/MS对天然样本中黄曲霉毒素B1的定量检测结果

    Table  2.   Quantitative detection of AFB1 in natural samples by the developed immunochromatography assay, commercial ELISA kit and LC-MS/MS

    样本编号AFB1/(μg·kg−1)样本编号AFB1/(μg·kg−1)
    免疫层析检测法LC/MS/MS商品化试剂免疫层析检测法LC/MS/MS商品化试剂
    15.11 ± 0.324.79 ± 0.295.65 ± 0.3781.83 ± 0.142.15 ± 0.272.71 ± 0.19
    23.17 ± 0.252.52 ± 0.162.08 ± 0.1892.09 ± 0.172.86 ± 0.253.57 ± 0.26
    31.06 ± 0.111.34 ± 0.142.33 ± 0.32108.65 ± 0.357.21 ± 0.628.94 ± 0.19
    46.63 ± 0.475.83 ± 0.435.36 ± 0.57114.63 ± 0.295.93 ± 0.384.38 ± 0.23
    52.69 ± 0.223.15 ± 0.292.25 ± 0.26125.27 ± 0.416.07 ± 0.575.66 ± 0.35
    61.82 ± 0.132.57 ± 0.153.35 ± 0.18133.28 ± 0.372.19 ± 0.183.95 ± 0.31
    77.16 ± 0.516.03 ± 0.317.82 ± 0.23
      说明:数据为平均值±标准差
    下载: 导出CSV
  • [1] NIERMANS K, MEYER A M, HOEK-VAN DEN HIL E F, et al. A systematic literature review on the effects of mycotoxin exposure on insects and on mycotoxin accumulation and biotransformation [J]. Mycotoxin Res, 2021, 37(4): 279 − 295.
    [2] LI Min, FINK-GREMMELS J, LI Dagang, et al. An overview of aflatoxin B1 biotransformation and aflatoxin M1 secretion in lactating dairy cows [J]. Anim Nutr, 2021, 7(1): 42 − 48.
    [3] UMAYA S R, VIJAYALAKSHMI Y C, SEJIAN V. Exploration of plant products and phytochemicals against aflatoxin toxicity in broiler chicken production: present status [J]. Toxicon, 2021, 200(3): 55 − 68.
    [4] 张杏, 岳晓凤, 丁小霞, 等. 中国西南花生产区黄曲霉菌分布、产毒力及花生黄曲霉毒素污染[J]. 中国油料作物学报, 2019, 41(5): 773 − 780.

    ZHANG Xing, YUE Xiaofeng, DING Xiaoxia, et al. Distribution and aflatoxin contamination by Aspergillus flavus in peanut from the southwest China [J]. Chin J Oil Crop Sci, 2019, 41(5): 773 − 780.
    [5] FAN Tingting, XIE Yanli, MA Weibin. Research progress on the protection and detoxification of phytochemicals against aflatoxin B1-Induced liver toxicity [J]. Toxicon, 2021, 195(suppl 3): 58 − 68.
    [6] ENGIN A B, ENGIN A. DNA damage checkpoint response to aflatoxin B1 [J]. Environ Toxicol Pharmacol, 2019, 65: 90 − 96.
    [7] ZHANG Xian, WANG Zuohuan, XIE Hui, et al. Development of a magnetic nanoparticles-based screen-printed electrodes (MNPs-SPEs) biosensor for the quantification of ochratoxin A in cereal and feed samples[J/OL]. Toxins, 2018, 10(8)[2021-11-20]. doi: 10.3390/toxins10080317.
    [8] CHAUHAN R, SINGH J, SACHDEV T, et al. Recent advances in mycotoxins detection [J]. Biosens Bioelectron, 2016, 81: 532 − 545.
    [9] WANG Yuankai, YAN Yaxian, LI Shuqing, et al. Simultaneous quantitative determination of multiple mycotoxins in cereal and feedstuff samples by a suspension array immunoassay [J]. J Agric Food Chem, 2013, 61(46): 10948 − 10953.
    [10] ZHANG Xian, SUN Mengjiao, KANG Yue, et al. Identification of a high-affinity monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay [J]. Toxicon, 2015, 106: 89 − 96.
    [11] WANG Yuankai, YAN Yaxian, JI Wenhui, et al. Rapid simultaneous quantification of zearalenone and fumonisin B1 in corn and wheat by lateral flow dual immunoassay [J]. J Agric Food Chem, 2013, 61(21): 5031 − 5036.
    [12] 戴煌, 黄周梅, 李占明, 等. 免疫法在食品黄曲霉毒素检测中的应用[J]. 中国食品学报, 2021, 21(10): 287 − 304.

    DAI Huang, HUANG Zhoumei, LI Zhanming, et al. Application of immunoassays in food aflatoxins detection [J]. J Chin Inst Food Sci Technol, 2021, 21(10): 287 − 304.
    [13] 王蕾, 张莉蕴, 王玉可, 等. 快速检测技术在食品真菌毒素检测中的研究进展[J]. 食品研究与开发, 2021, 42(4): 187 − 192.

    WANG Lei, ZHANG Liyun, WANG Yuke, et al. Research progress of rapid detection technology in the detection of mycotoxins in food [J]. Food Res Dev, 2021, 42(4): 187 − 192.
    [14] ZHOU Jingming, YANG Qingbao, LIANG Chao, et al. Detection of ochratoxin A by quantum dots-based fluorescent immunochromatographic assay [J]. Anal Bioanal Chem, 2021, 413(1): 183 − 192.
    [15] REN Wenjie, XU Yang, HUANG Zhibing, et al. Single-chain variable fragment antibody-based immunochromatographic strip for rapid detection of fumonisin B1 in maize samples [J/OL]. Food Chem, 2020, 319: 126546[2021-11-20]. doi: 10.1016/j.foodchem.2020.126546.
    [16] WU Shiwei, YU Yao’an, LIU Binghui, et al. Development of a sensitive enzyme-linked immunosorbent assay and rapid gold nanoparticle immunochromatographic strip for detecting citrinin in monascus fermented food [J/OL]. Toxins, 2018, 10(9)[2021-11-20]. doi: 10.3390/toxins10090354.
    [17] ZHANG Daohong, LI Peiwu, YANG Yang, et al. A high selective immunochromatographic assay for rapid detection of aflatoxin B1 [J]. Talanta, 2011, 85(1): 736 − 742.
    [18] 章先, 付子贤, 周一钊, 等. 赭曲霉毒素A和玉米赤霉烯酮-二联胶体金免疫层析试纸条的制备及应用[J]. 微生物学通报, 2019, 46(5): 1235 − 1245.

    ZHANG Xian, FU Zixian, ZHOU Yizhao, et al. Dual flow immunochromatographic assay for simultaneous determination of ochratoxin A and zearalenone in cereal and feed samples [J]. Microbiol China, 2019, 46(5): 1235 − 1245.
    [19] WANG Shuo, QUAN Ying, LEE Nanjun, et al. Rapid determination of fumonisin B1 in food samples by enzyme-linked immunosorbent assay and colloidal gold immunoassay [J]. J Agric Food Chem, 2006, 54(7): 2491 − 2495.
    [20] LATTANZIO V M T, NIVARLET N, LIPPOLIS V, et al. Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals [J]. Anal Chim Acta, 2012, 718: 99 − 108.
    [21] WANG Yuankai, SHI Yibo, ZOU Qi, et al. Development of a rapid and simultaneous immunochromatographic assay for the determination of zearalenone and fumonisin B1 in corn, wheat and feedstuff samples [J]. Food Control, 2013, 31(1): 180 − 188.
    [22] ZHANG Xian, HE Ke, FANG Yun, et al. Dual flow immunochromatographic assay for rapid and simultaneous quantitative detection of ochratoxin A and zearalenone in corn, wheat, and feed samples [J]. J Zhejiang Univ Sci B, 2018, 19(11): 871 − 883.
    [23] KOLOSOVA A Y, SAEGER S D, SIBANDA L, et al. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol [J]. Anal Bioanal Chem, 2007, 389(7/8): 2103 − 2107.
    [24] SHIM W B, DZANTIEV B B, EREMIN S A, et al. One-step simultaneous immunochromatographic strip test for multianalysis of ochratoxin a and zearalenone [J]. J Microbiol Biotechnol, 2009, 19(1): 83 − 92.
    [25] KOLOSOVA A Y, SUBANDA L, DUMOULIN F, et al. Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges [J]. Anal Chim Acta, 2008, 616(2): 235 − 244.
    [26] SHIM W B, KIM K Y, CHUNG D H. Development and validation of a gold nanoparticle immunochromatographic assay (ICG) for the detection of zearalenone [J]. J Agric Food Chem, 2009, 57(10): 4035 − 4041.
  • [1] 尚林雪, 王群, 张国哲, 赵雨, 顾翠花.  紫薇LiCMB1基因的克隆及表达特性分析 . 浙江农林大学学报, 2023, 40(2): 330-337. doi: 10.11833/j.issn.2095-0756.20220333
    [2] 郝燕敏, 陈柯俐, 冯丽君, 李菲菲, 崔敏龙, 朴春兰.  欧洲千里光SvAPETALA1基因的克隆及功能分析 . 浙江农林大学学报, 2022, 39(4): 821-829. doi: 10.11833/j.issn.2095-0756.20210651
    [3] 黄屹杰, 张加龙, 胡耀鹏, 程滔.  高山松地上生物量遥感估算的不确定性分析 . 浙江农林大学学报, 2022, 39(3): 531-539. doi: 10.11833/j.issn.2095-0756.20210473
    [4] 周疆, 郑凯妮, 朱斐.  中草药在水产动物免疫上的应用 . 浙江农林大学学报, 2019, 36(2): 406-414. doi: 10.11833/j.issn.2095-0756.2019.02.023
    [5] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [6] 石林, 吴瑗, 巴少波, 刘正奎, 陈琳, 王磊, 邵春艳, 孙静, 周莹姗, 王晓杜, 宋厚辉.  猪圆环病毒2型Taqman探针法实时荧光定量PCR检测方法的建立 . 浙江农林大学学报, 2018, 35(6): 1133-1138. doi: 10.11833/j.issn.2095-0756.2018.06.018
    [7] 李冰冰, 刘国峰, 魏书, 黄龙全, 张剑韵.  烟草NtPLR1基因克隆与表达分析 . 浙江农林大学学报, 2017, 34(4): 581-588. doi: 10.11833/j.issn.2095-0756.2017.04.003
    [8] 于静, 劳秀杰, 陈彦永, 何小江, 代兵, 赵阿勇, 王晓杜, 宋厚辉.  猪圆环病毒2型实时荧光定量PCR检测方法的建立 . 浙江农林大学学报, 2016, 33(2): 357-363. doi: 10.11833/j.issn.2095-0756.2016.02.023
    [9] 朱致翔, 时浩杰, 雷飞斌, 张传清.  实时荧光定量PCR定量检测山核桃干腐病病菌潜伏侵染量方法的建立 . 浙江农林大学学报, 2016, 33(2): 364-368. doi: 10.11833/j.issn.2095-0756.2016.02.024
    [10] 黄巧莲, 金庆日, 章先, 周一媚, 陈彦永, 徐露凝, 杨永春, 程昌勇, 田广燕, 桂海娈, 方维焕, 宋厚辉.  基于侧向层析原理的赭曲霉毒素A快速检测试纸条的研制 . 浙江农林大学学报, 2016, 33(3): 531-536. doi: 10.11833/j.issn.2095-0756.2016.03.023
    [11] 沈红霞, 韩秀杰, 赵凡凡, 张保新, 余风艳, 王晓杜.  猪日本乙型脑炎病毒NS1基因的表达和抗体制备 . 浙江农林大学学报, 2013, 30(3): 396-400. doi: 10.11833/j.issn.2095-0756.2013.03.015
    [12] 张磊, 张含国, 邓继峰, 贯春雨.  杂种落叶松苗高生长稳定性分析 . 浙江农林大学学报, 2010, 27(5): 706-712. doi: 10.11833/j.issn.2095-0756.2010.05.011
    [13] 段爱国, 杨文忠, 张建国, 张俊佩, 何彩云.  苗木离体叶片水分状况的叶绿素荧光参数定量诊断 . 浙江农林大学学报, 2010, 27(4): 529-537. doi: 10.11833/j.issn.2095-0756.2010.04.009
    [14] 王正加, 黄有军, 夏国华, 郑炳松, 金松恒, 黄坚钦.  山核桃APETALA1同源基因的克隆与序列分析 . 浙江农林大学学报, 2008, 25(4): 427-430.
    [15] 何莹, 韦新良, 蔡霞, 李可追, 王珍.  生态景观林群落结构定量分析 . 浙江农林大学学报, 2007, 24(6): 711-718.
    [16] 曾曙才, 俞元春.  苗圃土壤肥力评价及肥力系数与苗木生长的相关性 . 浙江农林大学学报, 2007, 24(2): 179-185.
    [17] 马焕成, 吴延熊, 陈德强, JackA.McConchie.  元谋干热河谷人工林水分平衡分析及稳定性预测 . 浙江农林大学学报, 2001, 18(1): 41-45.
    [18] 吴礼栋, 廖立洪, 华文礼, 毛军华, 胡金根.  竹叶吸收的甲胺磷残留量分析 . 浙江农林大学学报, 2000, 17(2): 232-233.
    [19] 吴延熊, 郭仁鉴, 周国模.  区域森林资源系统稳定性的预警分析 . 浙江农林大学学报, 1999, 16(1): 66-69.
    [20] 余学军, 田荆祥.  浙江速生杉木化学成分分析* . 浙江农林大学学报, 1997, 14(4): 330-332.
  • 期刊类型引用(3)

    1. 刘德桃,王艳,张雨怡,韩天杰,杨悦,暨文浩,陈永豪,罗瑶,林锐寅,付时雨. 纤维素增塑策略及其塑性加工技术. 造纸科学与技术. 2025(02): 1-13 . 百度学术
    2. 陈凯强,龙克莹,初石民,林兰英,陈勇平,张涛. 自然老化对古建筑木材细胞壁结构与成分的影响. 木材科学与技术. 2023(05): 30-37 . 百度学术
    3. 卢芸,梁振烜,付宗营,张世锋. 木材细胞壁纳米技术研究进展与展望. 林业工程学报. 2022(05): 1-11 . 百度学术

    其他类型引用(17)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210772

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/5/1096

图(9) / 表(2)
计量
  • 文章访问数:  1098
  • HTML全文浏览量:  221
  • PDF下载量:  100
  • 被引次数: 20
出版历程
  • 收稿日期:  2021-11-29
  • 修回日期:  2022-03-31
  • 录用日期:  2022-04-01
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-10-20

黄曲霉毒素B1高灵敏定性定量免疫层析检测方法的建立

doi: 10.11833/j.issn.2095-0756.20210772
    基金项目:  浙江省重点研发计划项目(2021C02058);国家自然科学基金资助项目(32002358);国家级大学生创新创业训练计划项目(202010341040)
    作者简介:

    章先(ORCID: 0000-0003-4903-3009),讲师,博士,从事病原生物学研究。E-mail: zhangxian073@163.com

    通信作者: 宋厚辉(ORCID: 0000-0001-6530-5794),教授,博士,从事病原生物学研究。E-mail: songhh@zafu.edu.cn
  • 中图分类号: S859.84

摘要:   目的  真菌毒素可污染农产品和动物源性食品,其中黄曲霉毒素B1(AFB1)毒性强、危害大,建立AFB1快速、高灵敏和便捷的检测方法对于监测相关产品中AFB1污染水平,保障人和动物健康均具有重要意义。基于侧向层析技术原理,采用竞争模式,优化建立免疫层析检测方法,以实现AFB1的快速定性检测和定量分析。  方法  通过比较分析不同粒径金颗粒标记抗体效果,优化确定免疫层析各组分材料类型、相关缓冲液配方及最佳使用质量浓度,建立AFB1高灵敏定性定量免疫层析检测方法。  结果  优化建立的AFB1免疫层析检测法在实际样本中的定性和定量检测限分别为2.5和0.5 μg·kg−1,灵敏度高、特异性强,与其他常见真菌毒素无交叉反应,加标回收实验结果显示:该方法准确稳定,且对AFB1天然污染样本的定量检测结果与商品化试剂盒及LC-MS/MS一致性较好。  结论  本研究制备的免疫层析检测法可用于样本中AFB1污染的快速定性检测与定量分析,适合缺乏实验条件的基层检验检疫机构和农产品加工企业对大量样本进行快速筛查,样本检测结果疑似阳性再采用仪器法进行确认,可降低检测成本,提升检测效率,同时为建立其他病原微生物免疫层析检测方法提供参考。图9表2参26

English Abstract

孙海燕, 王玉荣. 木材细胞壁超微构造的形成、表征及变化规律[J]. 浙江农林大学学报, 2019, 36(2): 386-393. DOI: 10.11833/j.issn.2095-0756.2019.02.021
引用本文: 章先, 王继璇, 程高钏, 等. 黄曲霉毒素B1高灵敏定性定量免疫层析检测方法的建立[J]. 浙江农林大学学报, 2022, 39(5): 1096-1103. DOI: 10.11833/j.issn.2095-0756.20210772
SUN Haiyan, WANG Yurong. Formation, characterization and change of ultrastructure in wood cell wall[J]. Journal of Zhejiang A&F University, 2019, 36(2): 386-393. DOI: 10.11833/j.issn.2095-0756.2019.02.021
Citation: ZHANG Xian, WANG Jixuan, CHENG Gaochuan, et al. A highly sensitive qualitative and quantitative immunochromatographic method for the detection of aflatoxin B1[J]. Journal of Zhejiang A&F University, 2022, 39(5): 1096-1103. DOI: 10.11833/j.issn.2095-0756.20210772
  • 黄曲霉毒素(aflatoxins, AFs)主要是由黄曲霉Aspergillus flavus和寄生曲霉Aspergillus parasiticus产生的有毒次级代谢物,可通过污染食品和饲料进入食物链,严重威胁动物和人类健康[1]。目前,国内外已发现超20种AFs,其中黄曲霉毒素B1(AFB1)毒性最强,危害最大,已被国际癌症研究机构(IARC)列为Ⅰ类致癌物[2-4]。AFB1具有强烈的“致突变、致癌和致畸作用”和免疫毒性,过量摄入可破坏人和动物的肝脏组织,引发急性中毒,长期摄入则会引发各组织器官癌变[5-6]。建立快速、高灵敏的AFB1检测方法对于保障食品安全具有重要意义。在AFB1检测手段中,仪器法如高效液相色谱法(HPLC)、气相色谱法(GC)和液相色谱-串联质谱法(LC-MS/MS)等虽灵敏度高,准确性和重现性较好,但设备耗材昂贵且操作繁琐,难以用于样本的初筛和在基层使用[7-10];相比仪器分析法,基于抗原抗体反应的免疫分析法因操作简单、灵敏度高且特异性好,在真菌毒素检测领域应用较广,特别是免疫层析法,省时高效且无需借助复杂仪器,尤其适合大量样本的现场筛查[11-16]。本研究基于免疫层析技术原理,采用金颗粒标记AFB1单克隆抗体,在竞争反应模式下,优化金颗粒尺寸、层析体系各组成材料及相关缓冲液配方,最终建立AFB1高灵敏定性定量免疫层析检测法,通过肉眼直接对检测结果定性判定,或借助便携式信号读取设备实现定量分析,以满足对AFB1污染情况快速筛查的检测需求。

    • 牛血清白蛋白(BSA)、卵白蛋白(OVA)、N-羟基琥珀酰亚胺(NHS)、羧甲基羟胺半盐酸盐(CMO)、N,N-二环已基碳二亚胺(DCC)、二甲基亚砜(DMSO)、各真菌毒素标准品购自Sigma公司;AFB1单克隆抗体(Anti-AFB1)、硝酸纤维素膜和玻璃纤维等免疫层析耗材购自奥唯生物;黄曲霉毒素B1商品化检测试剂盒购自无锡景麒生物;其他试剂购自上海国药;谷物样本由浙江省检验检疫科学技术研究院提供。

    • 选取不同载体蛋白(BSA和OVA)制备AFB1完全抗原。步骤:AFB1标准品(2 mg)溶解于甲醇-吡啶溶液(体积比1∶1),加入5 mg CMO震荡至完全溶解,70 ℃下搅拌活化2 h;活化产物自然干燥后,加入1 mL蒸馏水并使用氢氧化钠溶液(1 mol·L−1)调pH至8.0,为去除体系中未反应的AFB1,使用5 mL苯溶液抽提3次,pH调至3.0 (0.2 mol·L−1盐酸),产物经5 mL乙酸乙酯抽提3次后干燥得到AFB1肟化物AFB1O;所得AFB1O溶解于2 mL二甲基甲酰胺(DMF),分别加入DCC (8.9 mg)和NHS (5.0 mg)室温搅拌活化4 h;BSA (14.0 mg)或OVA (9.3 mg)溶解于1 mL碳酸氢钠溶液(0.1 mol·L−1,pH 9.5),将上一步所得的AFB1O活化产物缓慢滴加至载体蛋白溶液,室温混匀反应2 h;反应结束后在磷酸盐缓冲液(0.01 mol·L−1,pH 7.4)中4 ℃透析72 h,每12 h换液,产物即为AFB1完全抗原,经酶联免疫检测法(ELISA)鉴定后保存备用。

    • 采用柠檬酸钠还原法分别制备不同粒径的金颗粒(20和40 nm)用于单克隆抗体的标记[17]。具体步骤:250 mL三角烧瓶(在浓硫酸-重铬酸钾溶液中浸泡并使用去离子水冲洗干净)置于磁力搅拌加热器,加入100 mL质量分数为0.01%氯金酸溶液加热至沸腾,迅速加入0.750或0.375 mL质量分数为2%的柠檬酸钠溶液分别制备20和40 nm粒径的金颗粒,搅拌加热至混合液颜色至酒红色,调低功率继续加热5 min,室温自然冷却后即得到金颗粒溶液,采用目测法和透射电镜扫描鉴定后备用。

    • 金颗粒标记抗体最佳pH和抗体标记最佳结合质量浓度参考文献[18]。金颗粒标记抗体步骤:使用10 mmol·L−1Tris-HCL溶液(pH 7.4)稀释单克隆抗体Anti-AFB1至最佳结合质量浓度,金颗粒溶液经0.2 mol·L−1碳酸钾调节至抗体标记最佳pH;取50 mL已调节pH的金颗粒溶液,边搅拌边加入待标记抗体,室温混匀30 min;反应结束后加入BSA溶液(终质量分数为1%),混匀30 min后4 ℃ 2 000 g离心30 min,弃沉淀;上清8 000 g 离心30 min,将所得沉淀重悬于10 mL 2 mmol·L−1含质量分数为1% BSA的硼酸盐缓冲液(pH 7.4),8 000 g离心20 min去除未结合的抗体,重复2次;所得沉淀溶解于5 mL硼酸盐缓冲液,4 ℃保存备用。

    • 定性定量免疫层析检测法如图1所示。检测线包被AFB1完全抗原,质控线包被山羊抗鼠二抗,金颗粒标记的Anti-AFB1固定于金标垫。滴加待检样品,经层析作用后,可通过肉眼观察检测线与质控线颜色差异进行定性判定或经便携式信号读取仪检测线信号值进行定量分析。

      图  1  黄曲霉毒素B1定性定量免疫层析检测法示意图

      Figure 1.  Schematic diagram of the qualitative and quantitative immunochromatographic assay for the detection of aflatoxin B1

    • 免疫层析法检测效果受多种参数影响,如标记抗体所用金颗粒粒径、检测线包被抗原类型、层析各组分材料品种(包括硝酸纤维素膜、金标抗体固定垫和样品垫)和各组分材料前处理液的类型和浓度[19-21]。优化策略:采用不同粒径金颗粒标记单克隆抗体,评价稳定性和敏感性,选取最优;对不同硝酸纤维素膜(Millipore 135、Millipore 180、Pall 170和Sartorius CN 140)、金标抗体固定垫(Ahlstrom 8964、Ahlstrom 6613、国产GF06和国产GF08)和样品垫(国产SB08和SB06)层析效果进行比较;以金标抗体稳定性和检测效果为标准,优化金标抗体保存液、抗原包被液、金标抗体固定垫和样品垫前处理液的最佳配方与浓度;确定样本萃取液稀释倍数,在消除基质影响的同时,获得最佳检测灵敏度。上述各参数优化均参考文献[22]进行。

    • 优化处理后的样品垫、金标固定垫、硝酸纤维素膜和吸水板按图2所示粘贴于PVC底板,相邻部分依次重叠,压实并切割成条(宽0.5 cm)。取100 μL梯度质量浓度的AFB1标准液滴至加样孔,15 min后判定检测结果。

      图  2  免疫层析体系各组分组成结构示意图

      Figure 2.  Sketch map of the immunochromatographic system

    • 样本萃取:取待检样本5 g置于250 mL三角烧瓶,分别加入1 g氯化钠和25 mL甲醇-水溶液(体积比7∶3),剧烈震荡15 min,4 000 g离心5 min后过滤,所得萃取液经超纯水稀释后待检。样本加标:阴性样本烘干后研磨过筛,加入AFB1标准品溶液,充分混匀后,室温过夜放置后待检。

    • 采用37 ℃加速试验判定稳定性[18]。组装密封好的试纸条置于37 ℃恒温箱,不同天数(7、15、30 d)后取出,对其检测灵敏度进行评价,预测常温储存保存期。

    • 采用免疫层析检测法、商品化检测试剂盒和LC-MS/MS平行检测天然AFB1阳性样本,并对检测结果的一致性进行分析。

    • 采用AFB1单克隆抗体对AFB1-BSA/OVA进行ELISA鉴定,结果如图3所示,完全抗原组D(450)与对照比值(BSA/OVA)远大于2.1,表明制备成功,可用于免疫学方法的建立。

      图  3  AFB1完全抗原AFB1-BSA和AFB1-OVA的ELISA鉴定

      Figure 3.  Absorbance of the AFB1 conjugates by indirect ELISA using their specific monoclonal antibodies

    • 制备的金颗粒溶液颜色澄清鲜艳,40 nm金颗粒溶液颜色较20 nm深,无颗粒沉淀(图4A),透射电镜扫描结果显示颗粒粒径与预期相符,尺寸均匀(图4B),可用于后续抗体的标记。

      图  4  目测法(A)和透射电镜(B)对金颗粒的鉴定

      Figure 4.  Colloidal solution of 20 nm and 40 nm diameter gold nanoparticles by visualization by naked eye (A) and images from TEM (B)

    • 40和20 nm金颗粒标记物层析效果相当,但4 ℃储存时前者性质更稳定,可保存4周,因此综合考虑灵敏度和稳定性,后续试验将采用40 nm金颗粒进行单克隆抗体的标记。

    • 包被AFB1-BSA时,检测线显色清晰且灵敏度更好,后续试验将采用AFB1-BSA作为检测线包被抗原。

    • 层析组分材料会影响层析灵敏度、时间和稳定性。对各组分材料进行筛选,硝酸纤维素膜的比较结果显示:Sartorius CN 140相较于其他,流动性更佳且检测线不易弥散,层析15 min后即可判定结果,背景值低,为最优,封闭液为含质量分数为0.5%吐温20 (Tween-20)、1%聚乙二醇2000 (PEG 2000)、2%BSA和0.01%叠氮钠(NaN3)的10 mmol·L−1磷酸盐缓冲液(pH 7.4,PBS);金标抗体固定垫的比较结果显示:Ahlstrom 8964上固定的金标抗体可在15 min内释放完全且无聚沉,为最优,处理液为含质量分数为4%蔗糖、1%BSA和0.25%表面活性剂TritonX-100的50 mmol·L−1硼酸盐缓冲液(pH 7.4,BB);样品垫的比较结果显示:国产SB08对含甲醇、纤维素和蛋白质的样本承载能力和缓冲能力更强,为最优,前处理液种类与金标固定垫相同。

    • 对含不同质量浓度海藻糖、NaN3和OVA的10 mmol·L−1硼酸盐缓冲液(pH 7.4,BB)在4 ℃条件下对金标抗体的储存和稀释效果进行比较,结果显示:在质量分数为10%海藻糖、1% BSA的条件下,金标抗体复溶效果较好且可稳定保存30 d,最终确定金标抗体存储稀释液为含质量分数为10%海藻糖、1%BSA和0.05%NaN3的10 mmol·L−1的硼酸盐缓冲液(pH 7.4,BB)。抗原包被液优化结果显示:含体积分数为3%甲醇的10 mol·L−1硼酸盐缓冲液(pH 9.0,BB)可使检测线颜色更加均匀和清晰。

    • 为获得最佳的检测效果,对完全抗原包被质量浓度和金标抗体的使用质量浓度进行优化,最终确定AFB1-BSA的包被质量浓度为0.4 g·L−1,10倍稀释后的金标AFB1单克隆抗体喷涂量为20 μL·cm−2

    • 图5所示:与对照相比,随着AFB1质量浓度的升高,检测线逐渐变浅直至消失,肉眼条件下,使检测线质量浓度发生明显变化的最低标准品质量浓度即为检测限,因此,本免疫层析法的检测限为0.10 μg·L−1。配制系列梯度质量浓度的AFB1标准品溶液进行检测,层析结束后使用便携式信号读取仪分析检测线信号强度。以标准品质量浓度(x)为横坐标,检测线信号强度抑制率(y)为纵坐标,绘制标准抑制曲线,进行线性回归分析(图6),线性方程为y=0.631 9x+1.159 1,R2=0.984 3,定量区间为0.03~0.27 μg·L−1,检测下限为0.02 μg·L−1

      图  5  免疫层析法对黄曲霉毒素B1的定性检测限

      Figure 5.  Detection limits of immunochromatographic assay for aflatoxin B1

      图  6  免疫层析法对黄曲霉毒素B1的抑制曲线(A)和定量标准曲线(B)

      Figure 6.  Tri-parametric curve fitting of log concentration of aflatoxin B1 vs inhibition rate by immunochromatographic assay (A) and the calibration curve for quantification of aflatoxin B1 (B)

    • 以谷物类样本中其他常见真菌毒素如赭曲霉毒素A(OTA)、玉米赤霉烯酮(ZEN)、伏马毒素B1 (FB1)和呕吐毒素(DON)作为竞争抗原,进行特异性验证,结果如图7所示,建立的免疫层析检测法对上述毒素均不存在交叉反应,特异性较好,质量浓度均为5.00 μg·L−1

      图  7  定性定量免疫层析法对其他真菌毒素的交叉反应性

      Figure 7.  Cross-reactivities of the qualitative and quantitative immunochromatographic assay for different mycotoxins

    • 图8所示:对玉米Zea mays样本进行加标试验,当AFB1加标质量分数为2.5 μg·kg−1可使检测线变化明显,说明该免疫层析检测法在实际样本中的定性检测限为2.5 μg·kg−1

      图  8  免疫层析法对黄曲霉毒素B1加标样本的定性检测

      Figure 8.  Qualitative detection of aflatoxin B1 spiked samples by immunochromatography

      当AFB1加标质量分数依次为1.0、2.5、5.0和15.0 μg·kg−1时,如表1所示,该免疫层析法在玉米样本中的加标回收率为89.62%~110.43%,批内变异系数为4.51%~6.58%,批间变异系数为7.28%~9.72%,说明该方法准确率较高且稳定性较好。

      表 1  免疫层析法对黄曲霉毒素B1加标样本的定量检测

      Table 1.  Quantitative detection of aflatoxin B1 spiked samples by immunochromatography assay

      AFB1加标质量
      分数/(μg·kg−1)
      批内批间
      回收
      率/%
      变异系
      数/%
      回收
      率/%
      变异系
      数/%
      1.089.62 ± 5.315.9395.72 ± 8.038.39
      2.596.47 ± 6.356.58103.56 ± 7.547.28
      5.095.16 ± 4.294.5193.25 ± 9.069.72
      10.0110.43 ± 6.155.57107.59 ± 8.567.96
        说明:数据为平均值±标准差,n=3
    • 37 ℃加速稳定性实验结果表明:建立的免疫层析试纸条放置30 d后仍能对AFB1进行定性检测与定量分析,灵敏度未受影响,表明稳定性良好,推测室温可稳定保存1 a。

    • 表2图9所示:免疫层析法检测结果与LC-MS/MS的相关性一致性较好(R2=0.863 1),与商品化试剂盒的检测结果经SPSS软件分析,同样显示显著相关(P<0.01)。综上表明:本研究建立的免疫层析检测法可适用于实际样本中AFB1的快速定量检测与分析。

      表 2  免疫层析法、商品化试剂盒和LC/MS/MS对天然样本中黄曲霉毒素B1的定量检测结果

      Table 2.  Quantitative detection of AFB1 in natural samples by the developed immunochromatography assay, commercial ELISA kit and LC-MS/MS

      样本编号AFB1/(μg·kg−1)样本编号AFB1/(μg·kg−1)
      免疫层析检测法LC/MS/MS商品化试剂免疫层析检测法LC/MS/MS商品化试剂
      15.11 ± 0.324.79 ± 0.295.65 ± 0.3781.83 ± 0.142.15 ± 0.272.71 ± 0.19
      23.17 ± 0.252.52 ± 0.162.08 ± 0.1892.09 ± 0.172.86 ± 0.253.57 ± 0.26
      31.06 ± 0.111.34 ± 0.142.33 ± 0.32108.65 ± 0.357.21 ± 0.628.94 ± 0.19
      46.63 ± 0.475.83 ± 0.435.36 ± 0.57114.63 ± 0.295.93 ± 0.384.38 ± 0.23
      52.69 ± 0.223.15 ± 0.292.25 ± 0.26125.27 ± 0.416.07 ± 0.575.66 ± 0.35
      61.82 ± 0.132.57 ± 0.153.35 ± 0.18133.28 ± 0.372.19 ± 0.183.95 ± 0.31
      77.16 ± 0.516.03 ± 0.317.82 ± 0.23
        说明:数据为平均值±标准差

      图  9  免疫层析法与LC-MS/MS定量结果相关性分析

      Figure 9.  Correlation of results obtained by immunochromatography assay and LC-MS/MS for AFB1 detection in natural samples

    • 常规免疫层析检测法采用胶体金颗粒作为抗体标记物,通过在检测线和质控线形成明显的颜色反应,因此金颗粒粒径对抗体标记效率和检测灵敏度影响较大。本研究中,40 nm金颗粒标记AFB1单克隆抗体后,与20 nm相比,虽在检测灵敏度上无明显优势,但稳定性更佳,故确定为最终的抗体标记物。作为免疫层析系统的重要组成部分,不同类型硝酸纤维素膜、金标抗体固定垫和样品垫,会直接影响检测效果[21]。本研究经对比,选用Sartorius CN 140、聚酯膜Ahlstrom 8964和玻璃纤维SB08分别作为硝酸纤维素膜、金标抗体固定垫和样品垫使用。层析体系中各缓冲液的种类和质量浓度同样影响检测效果,如检测线或质控线信号强度和清晰度、金标抗体释放效率和稳定性以及样本在硝酸纤维素膜上的迁移速率等[23-24],并且适量质量分数蔗糖/海藻糖、BSA、PEG 2000、NaN3以及表面活性剂TritonX-100或Tween-20的加入有助于获得更好的检测效果和稳定性[23-26]。本研究制备的AFB1免疫层析检测法在实际样本中的定性和定量检测限分别为2.5和0.5 μg·kg−1,满足谷物及饲料中AFB1快速定性检测和定量分析需求。相比ELISA,该定性定量免疫层析法更加简单快速且成本低,适用于大量样本的快速初筛,样本结果疑似阳性再选用仪器法进行确认分析,可大大提升检测效率。

参考文献 (26)

目录

/

返回文章
返回