留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

暗影饰皮夜蛾线粒体基因组全序列测定与分析

李妍 舒金平 华克达 张亚波 应玥 张威

陈诗燕, 程鸿浩, 吴筱萌, 等. 基于Fuzzy分析的茶园游猎蛛取食小贯小绿叶蝉的种间竞争作用[J]. 浙江农林大学学报, 2023, 40(5): 1008-1017. DOI: 10.11833/j.issn.2095-0756.20220753
引用本文: 李妍, 舒金平, 华克达, 等. 暗影饰皮夜蛾线粒体基因组全序列测定与分析[J]. 浙江农林大学学报, 2024, 41(4): 724-734. DOI: 10.11833/j.issn.2095-0756.20240138
CHEN Shiyan, CHENG Honghao, WU Xiaomeng, et al. Interspecific competition of wandering spiders feeding on Empoasca onukii in tea plantations based on Fuzzy analysis[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1008-1017. DOI: 10.11833/j.issn.2095-0756.20220753
Citation: LI Yan, SHU Jinping, HUA Keda, et al. Sequencing and analysis of the complete mitochondrial genome of Garella ruficirra[J]. Journal of Zhejiang A&F University, 2024, 41(4): 724-734. DOI: 10.11833/j.issn.2095-0756.20240138

暗影饰皮夜蛾线粒体基因组全序列测定与分析

DOI: 10.11833/j.issn.2095-0756.20240138
基金项目: 中国林业科学研究院基本科研业务费专项资金项目(CAFYBB2022SY011)
详细信息
    作者简介: 李妍(ORCID: 0000-0001-7780-1285),博士研究生,从事森林病虫害防治研究。E-mail: liyan941030@126.com
    通信作者: 张威(ORCID: 0000-0001-6567-2500),副研究员,博士,从事森林病虫害防治研究。E-mail: zwlzhi@126.com
  • 中图分类号: S763.3

Sequencing and analysis of the complete mitochondrial genome of Garella ruficirra

  • 摘要:   目的  对薄壳山核桃Carya illinoensis害虫暗影饰皮夜蛾Garella ruficirra线粒体基因组进行测序和分析,并在基因组水平上探讨其在夜蛾科Noctuidae中的分类地位,为探索夜蛾科昆虫的系统发育关系以及演化进程提供参考。  方法  利用二代测序技术从头组装获取暗影饰皮夜蛾的线粒体基因组,并对线粒体基因组结构特点和碱基组成进行分析;同时,采用最大似然法和贝叶斯法联合构建了夜蛾科5个属、12个种的线粒体基因组系统发育树,分析暗影饰皮夜蛾在夜蛾科中的系统发育地位。  结果  暗影饰皮夜蛾线粒体基因组全长共为15 294 bp,其中包括13个蛋白质编码基因、22个转运RNA基因、2个核糖体RNA基因以及鳞翅目Lepidoptera昆虫典型的腺嘌呤(A)+胸腺嘧啶(T),即A+T富含区,该区域的A+T含量为80.53%,具有明显的AT偏向性。暗影饰皮夜蛾的基因排列顺序为trnM-trnI-trnQ,与包括夜蛾科昆虫在内的大多数鳞翅目昆虫基因排列次序相符。13个蛋白质编码基因的起始密码子全部为ATN。22个tRNA基因中除trnS1的DHU臂缺失,其余均为典型的三叶草结构。对线粒体基因组研究发现:夜蛾科5个属之间,Garella与皮夜蛾属Nycteola亲缘关系最近,与饰夜蛾属Pseudoips亲缘关系最远。  结论  暗影饰皮夜蛾的线粒体基因组中出现了基因重排的现象,系统发育关系支持暗影饰皮夜蛾和Garella musculana聚为1个分支。图4表4参47
  • 小贯小绿叶蝉 Empoasca onukii在中国茶园广泛分布,是对茶树Camellia sinensis危害最大的害虫之一[1]。小贯小绿叶蝉对茶树嫩茎、嫩叶的刺吸会导致茶叶焦枯,抑制茶树正常生长,严重影响茶叶的产量和品质[23]。游猎性蜘蛛(游猎蛛)作为一种捕食性天敌,捕食量大、行动活跃、捕食范围广,对防治害虫、调节生态系统平衡都有重要作用[46]。利用天敌与害虫之间的捕食关系对茶园害虫进行生物防治的方法已有诸多报道[716],这些研究大都直接讨论天敌与害虫之间的关联,对于不同种天敌之间的竞争作用却极少研究。但单一地增加茶园害虫的优势种天敌等势必会导致整个茶园生态系统的不稳定[1718]。FAUST等[19]将2个物种之间的作用关系分为中性、竞争、偏害、寄生、捕食、偏利和互利共生等几种类型。天敌和害虫之间的关系分为捕食和寄生2种类型,天敌之间为了争夺资源多数是竞争关系[20]。除了天敌与害虫之间的捕食和被捕食关系外,各天敌之间的竞争关系也需要得到重视。因此,从生物多样性等多维度对茶园整个生态环境进行调控更有利于长期高效防治茶园害虫,以达到绿色环保的平衡调节作用[21]

    在昆虫种群数量生态学的研究中,对害虫及天敌数据的统计分析通常为抽样分析,采用的分级方式为连续等分分级,这会使得不同精度级宽下的结果具有主观性和偶然性。张书平等[22]将Fuzzy分级法与灰色关联度法相结合研究茶园与假眼小绿叶蝉 Empoasca vitis数量上关系密切的天敌种类,是一种较好的种间关系研究方法。多数学者对林木种间竞争的研究较多[23],未见对茶园各天敌种间竞争关系的报道,将数据按不同方式分级后再研究种间竞争关系的研究更少。为此,本研究运用灰色关联度法,并将Fuzzy分级法与竞争系数法相结合,研究‘农抗早’‘Nongkangzao’和‘平阳特早’‘Pingyangtezao’茶园游猎蛛取食小贯小绿叶蝉的种间竞争关系,并通过竞争强度指数验证所得结论,为茶园合理保护和利用种间竞争关系强的天敌,有效防治小贯小绿叶蝉提供科学依据。

    在安徽农业大学科技示范园(31°56′N,117°12′E)中共调查了2种茶园,分别为‘农抗早’和‘平阳特早’茶园,面积均为0.2 hm2。调查时间为2021年3月25日至11月19日,隔15 d调查1次,共14次。茶园互不相连,按常规措施管理。在春茶采摘结束和秋末进行茶树修剪,并且在秋末进行茶园耕翻,加强秋冬季管理,及时除草、修剪茶树和采摘茶叶,诱杀和人工捕杀害虫,不施用化学农药。

    采用平行跳跃法在茶园随机选取3行,每行茶树相隔1 m,在每行间隔1 m处设置1个2 m×1 m的样方,每行取10个样方,每个茶园取30个样方。用目测调查的方式在每个样方随机选取10片叶,调查一些不易振落的害虫及天敌的种类和数量,再用盘拍法对样方中所有枝条进行盘拍(盘拍所用搪瓷盘口长为40 cm,宽30 cm,搪瓷盘上喷洒稀释1 000倍的洗衣粉水溶液)。调查记载盘中害虫及天敌物种数和个体数,不能准确鉴定的物种样本编号保存,装瓶带回室内由专家鉴定。

    1.3.1   灰色关联度法

    将害虫数量(Yi)及其主要天敌数量(Xj)分别看作1个本征系统,害虫数量作为该系统的参照序列,天敌作为比较序列,并把不同样方的害虫及其主要天敌的数量作为该序列在第k个样方的效果白化值,进行双序列关系分析。数据经均值化后得:

    $$ Y_i=\left\{Y_i(1),\; Y_i(2),\; \cdots ,\; Y_i(n)\right\},\; i=1; $$ (1)
    $$ X_j=\left\{X_j(1),\; X_j(2),\; \cdots,\; X_j(n)\right\}, \;j=1,\;2,\; \cdots,\; M。 $$ (2)

    式(1)和式(2)中:n表示样方数,M表示天敌种类数。YiXj在第k个样方上的关联系数rij为:

    $$ {r}_{ij}=\frac{{\mathrm{min}}_{i}{\mathrm{min}}_{j}\left|{Y}_{i}\left(k\right)-{X}_{j}\left(k\right)\right|+\rho {\mathrm{max}}_{i}{\mathrm{max}}_{j}\left|{Y}_{i}\left(k\right)-{X}_{j}\left(k\right)\right|}{\left|{Y}_{i}\left(k\right)-{X}_{j}\left(k\right)\right|+\rho {\mathrm{max}}_{i}{\mathrm{max}}_{j}\left|{Y}_{i}\left(k\right)-{X}_{j}\left(k\right)\right|} 。 $$ (3)

    式(3)中:ρ 为分辨系数,取值区间为[0, 1],一般取 ρ = 0.5,为扩大各物种之间关联度的差异,本研究取 ρ = 0.8。$|Y_{i}\left(k\right)-{X}_{j}\left(k\right) |$ 为序列YiXj在第k点上差的绝对值;$ \mathrm{m}\mathrm{i}\mathrm{n}\left|{Y}_{i}\left(k\right)-{X}_{j}\left(k\right)\right| $为1级最小差,$ {\mathrm{min}}_{i}{\mathrm{min}}_{j}\left|{Y}_{i}\left(k\right)-{X}_{j}\left(k\right)\right| $ 为2级最小差。$ \mathrm{m}\mathrm{a}\mathrm{x}\left|{Y}_{i}\left(k\right)-{X}_{j}\left(k\right)\right| $与$ {\mathrm{max}}_{i}{\mathrm{max}}_{j}\left|{Y}_{i}\left(k\right)-{X}_{j}\left(k\right)\right| $ 分别为1级和2级最大差。利用该公式可求出第j种天敌(Xj)与害虫(Yi)数量间的关联度为$R({Y}_{i},{X}_{j})=1/n\displaystyle \sum _{k=1}^{M}{r}_{ij}\left(k\right)$,其大小反映害虫与天敌相互联系的紧密程度。天敌与害虫数量间关联度越大,表明天敌与害虫数量关系越密切[24]。本研究由数据处理系统软件(DPS系统)进行灰色关联度数据的运算。

    1.3.2   模糊分级法

    在论域[A1, A2, A3$, \;\cdots , $ An$, \;\cdots , $ Am]上按所求解问题的性质和要求规定的一个隶属函数μi,叫作Fuzzy分级隶属函数。将通常连续等分分级的频数作为原始数据,设原始数据为[a1, a2, a3$,\; \cdots , $ an$, \;\cdots , $ am],称${\hat{{a}}}_{{i}}=\displaystyle \sum _{{n}={i}-5}^{{i}+5}{{\mu }}_{{i}}{{a}}_{{n}}$为第i个Fuzzy等级的Fuzzy频数。它在论域上的分布曲线叫Fuzzy频数曲线[2526]。本研究规定Fuzzy分级隶属函数μi为:

    $$ {\mu }_{i}=\left\{\begin{array}{l}1.0\;n=i\\ 0.8\;n=i+1,\;i-1\\ 0.6\;n=i+2,\;i-2\\ 0.4\;n=i+3,\;i-3\\ 0.2\;n=i+5,\;i-5\\ 0.1\;n=i+5,\;i-5\\ 0\;n > i+5,\;n < i-5\end{array}\right. 。 $$ (4)

    式(4)中:n为原始数据项数,i为Fuzzy频数项数。则Fuzzy频数为$ {\hat{a}}_{i}=\displaystyle \sum _{n=i-5}^{i+5}{\mu }_{i}{a}_{n}={a}_{i}+ 0.8\left({a}_{i+1}+{a}_{i-1}\right)+0.6\left({a}_{i+2}+{a}_{i-2}\right)+0.4\left({a}_{i+3}+{a}_{i-3}\right)+0.2\left({a}_{i+4}+{a}_{i-4}\right)+0.1\left({a}_{i+5}+{a}_{i-5}\right) $。为了解茶园游猎蛛的自然种群动态,减少在对游猎蛛进行竞争关系分析时由种群数据导致的误差,本研究根据游猎蛛种群数量变化幅度,对游猎蛛的种群数据按照30个样方中5只游猎蛛的级宽进行等分分级统计(级宽不宜太宽也不宜太窄),算出各级出现的频数,再以30个样方中5只游猎蛛为级宽的频数作为原始数据即[a1, a2, a3$,\; \cdots , $ an$, \;\cdots , $ am]进行Fuzzy分级统计。由Excel 2019计算Fuzzy频数。

    1.3.3   竞争系数法

    一般用Levins的生态重叠公式计算竞争系数[27]

    $$ {\alpha }_{ij}=\sum _{k=1}^{n}\left({P}_{ik}{P}_{jk}\right)/\sum _{k=1}^{n}{P}_{ik}^{2} 。 $$ (5)

    式(5)中:$ {P}_{ik} $ 和$ {P}_{jk} $分别为种i和种j在第k个样方中的相对优势度,n为样地数。

    使用重叠的方法计算竞争系数的公式[28]

    $$ {\alpha }_{ij}=\sum _{k=1}^{n}\left({P}_{ik}{P}_{jk}\right)/\sqrt{\sum _{k=1}^{n}{P}_{ik}^{2}\sum _{k=1}^{n}{P}_{jk}^{2}} 。 $$ (6)

    式(6)中:αij为种j对种i的竞争系数,PikPjk分别是第i个物种和第j个物种使用的第k个资源的比例。αij = αji,PIANKA[28]评价该式是对称的,并称其为重叠值。MAY[2930]将该式与其他表达式进行比较,沿用了PIANKA的表达式,并将其作为按函数比例进行计算的竞争系数。本研究中所求得的竞争系数均按上述(6)式计算。

    1.3.4   竞争强度法

    本研究将关联度与竞争系数相结合,引入竞争强度指数的概念。不同天敌与同一害虫之间关联度的比值称为相对密切度,该相对密切度与2种天敌之间竞争系数的乘积即为竞争强度指数,种i对种j的竞争强度指数(C)为:

    $$ C={\alpha }_{ij}\left(\frac{{R}_{iy}}{{R}_{jy}}\right) 。 $$ (7)

    式(7)引入了害虫与天敌关系因素,RiyRjy分别为天敌XiXj与害虫Y数量上的关联度,αij为种j对种i的竞争系数。本研究中竞争系数和竞争强度指数均由 Excel 2019 对Fuzzy频数计算所得,再使用DPS数据处理系统软件用多重比较方法中的 Duncan 新复极差法进行竞争系数和竞争强度指数平均值和显著水平的分析[31]

    选取调查日期中2个茶园游猎蛛数量最多的7种蜘蛛作为主要天敌,分别为鞍型花蟹蛛Xysticus ephippiatus、三突花蟹蛛Ebrechtella tricuspidata、粽管巢蛛Clubiona japonicola、斑管巢蛛C. reichlini、斜纹猫蛛Oxyopes sertatus、黑色跳蛛Plexippus paykulli和条纹蝇虎P. setipes。它们的数量动态见表1

    表 1  2个茶园小贯小绿叶蝉与游猎蛛数量动态
    Table 1  Population dynamics of E. onukii and wandering spiders in two tea plantations
    茶树品种日期
    (月-日)
    害虫数量/头游猎蛛数量/头
    X1X2X3X4X5X6X7
    ‘农抗早’ 03-2531016323277
    04-161127107019
    05-07422600220
    05-233015005121
    06-042227150150
    06-2017520555050
    07-08594146551886380
    08-1020927231560202624
    08-224292319295933256
    09-0692199192357186
    09-173017171310311319
    10-13181204545
    11-0152429939419
    11-194711361535
    合计 1 937310250155177253155262
    ‘平阳特早’03-259230013174
    04-16110500162
    05-07311600060
    05-23573410050
    06-0425115030110
    06-201391581820101
    07-08674264624342270
    08-10318173174233130
    08-225348182148311029
    09-0616029121418391610
    09-17201312121937129
    10-134720020112
    11-01235283223
    11-1910812352624
    合计 2 339245230128128170118174
      说明:X1~X7分别指鞍型花蟹蛛、三突花蟹蛛、粽管巢蛛、斑管巢蛛、斜纹猫蛛、黑色跳蛛和条纹蝇虎数量(头)。
    下载: 导出CSV 
    | 显示表格

    用灰色关联度法求得小贯小绿叶蝉与游猎蛛数量之间的灰色关联度(表2)。由表2可知:与小贯小绿叶蝉在数量上关联度最大的前3位天敌,‘农抗早’茶园为斑管巢蛛、粽管巢蛛和黑色跳蛛;‘平阳特早’茶园为斑管巢蛛、粽管巢蛛和三突花蟹蛛。2个茶园均有斑管巢蛛和粽管巢蛛。

    表 2  2个茶园小贯小绿叶蝉与游猎蛛间的灰色关联度
    Table 2  Grey correlation between E. onukii and wandering spiders in two tea plantations
    游猎蛛‘农抗早’‘平阳特早’游猎蛛‘农抗早’‘平阳特早’
    灰色关联度排位灰色关联度排位灰色关联度排位灰色关联度排位
    鞍型花蟹蛛0.833 850.826 14斜纹猫蛛0.754 860.794 76
    三突花蟹蛛0.856 940.856 23黑色跳蛛0.857 030.802 65
    粽管巢蛛 0.890 220.857 12条纹蝇虎0.744 270.763 47
    斑管巢蛛 0.896 710.860 31
    下载: 导出CSV 
    | 显示表格

    图1图2可看出:2个茶园Fuzzy分级频数集中性明显大于等分分级频数。图1A中在第4、7和12个级宽处出现3个明显的峰值,而图1B中 7条曲线均由高到低一致趋于平缓。图2A中从第11个级宽处多数曲线已贴近横轴,而图2B中的曲线从第15个级宽开始才趋于横轴。通过Fuzzy分级法得到的新数据明显增加了原始数据的有效区间,并且Fuzzy频数由原始数据通过Fuzzy隶属函数求得,每个原始数据都与几个等级发生联系,而等分分级里每个原始数据只与1个等级发生联系,因此Fuzzy频数无明显的分级界限。对2种频数进行t检验,‘农抗早’茶园中鞍型花蟹蛛、三突花蟹蛛、粽管巢蛛、斑管巢蛛、斜纹猫蛛、黑色跳蛛和条纹蝇虎这7种蜘蛛的t值依次为2.333、2.379、2.281、2.646、3.937、3.059、1.975,‘平阳特早’茶园这7种蜘蛛的$ t $值依次为 2.176、2.048、2.153、2.477、3.151、2.090、1.591。自由度为34时,t0.01=2.728,t0.05=2.032,t0.10=1.091,除条纹蝇虎外,2个茶园各游猎蛛2种频数间的差异都显著,并且斜纹猫蛛的2种频数间差异极显著。Fuzzy频数的直接图示是曲线,可保持原始数据的精度,故用此法分级的数据进行后续竞争关系的分析,其结果更接近实际。

    图 1  ‘农抗早’茶园游猎蛛种群数量等分分级频数曲线(A)和Fuzzy频数曲线(B)
    Figure 1  Equally graded frequency curve (A) and Fuzzy frequency curve (B) of the number of wandering spiders in ‘Nongkangzao’ tea plantation        
    图 2  ‘平阳特早’茶园游猎蛛种群数量等分分级频数曲线(A)和Fuzzy频数曲线(B)
    Figure 2  Equally graded frequency curve (A) and Fuzzy frequency curve (B) of the number of wandering spiders in ‘Pingyangtezao’ tea plantation        

    以Fuzzy频数作为原始数据,计算2个茶园各游猎蛛之间的竞争系数并将结果列于表3。对各游猎蛛及其竞争对手之间的竞争系数进行方差分析,再用新复极差法分析天敌之间竞争系数的差异性(表4)。所得结果中,当竞争对手分别为鞍型花蟹蛛、三突花蟹蛛、粽管巢蛛和条纹蝇虎时,游猎蛛间差异显著,此时不同竞争对手下竞争力最强的游猎蛛不同,故暂时无法得出茶园竞争力最强的蜘蛛类别,但除斑管巢蛛和黑色跳蛛外,无论竞争对手为哪种游猎蛛,所有游猎蛛都与斜纹猫蛛差异显著,且斜纹猫蛛的均值都最小。因此,可得出结论:除斑管巢蛛和黑色跳蛛外,5种游猎蛛里斜纹猫蛛竞争力最弱。

    表 3  2个茶园各游猎蛛之间的竞争系数
    Table 3  Competition coefficients among wandering spiders in two tea plantations
    茶树品种竞争对手游猎蛛间竞争系数
    鞍型花蟹蛛三突花蟹蛛粽管巢蛛斑管巢蛛斜纹猫蛛黑色跳蛛条纹蝇虎
    ‘农抗早’ 鞍型花蟹蛛1.000 00.991 50.983 70.939 80.906 30.959 20.991 0
    三突花蟹蛛0.991 51.000 00.995 20.973 30.893 80.928 20.995 3
    粽管巢蛛 0.983 70.995 21.000 00.980 30.901 50.916 70.993 6
    斑管巢蛛 0.939 80.973 30.980 31.000 00.872 90.856 80.961 4
    斜纹猫蛛 0.906 30.893 80.901 50.872 91.000 00.959 80.871 7
    黑色跳蛛 0.959 20.928 20.916 70.856 80.959 81.000 00.915 9
    条纹蝇虎 0.991 00.995 30.993 60.961 40.871 70.915 91.000 0
    ‘平阳特早’鞍型花蟹蛛1.000 00.989 30.998 50.976 50.913 70.993 50.975 1
    三突花蟹蛛0.989 31.000 00.984 20.977 40.869 70.984 40.992 5
    粽管巢蛛 0.998 50.984 21.000 00.967 40.909 30.996 30.967 4
    斑管巢蛛 0.976 50.977 40.967 41.000 00.939 70.954 00.957 1
    斜纹猫蛛 0.913 70.869 70.909 30.939 71.000 00.880 60.826 5
    黑色跳蛛 0.993 50.984 40.996 30.954 00.880 61.000 00.967 7
    条纹蝇虎 0.975 10.992 50.967 40.957 10.826 50.967 71.000 0
    下载: 导出CSV 
    | 显示表格
    表 4  2个茶园各游猎蛛之间竞争系数新复极差法分析结果
    Table 4  Results of the new multiple range test analysis of competition coefficients among various wandering spiders in two tea plantations
    竞争对手F物种2个茶园竞争
    系数均值
    5%显著
    水平
    1%极显著
    水平
    竞争对手F物种2个茶园竞争
    系数均值
    5%显著
    水平
    1%极显著
    水平
    鞍型花蟹蛛7.530粽管巢蛛 0.991 1aA斜纹猫蛛1.203黑色跳蛛 0.920 2aA
    三突花蟹蛛0.990 4aA鞍型花蟹蛛0.910 0aA
    条纹蝇虎 0.983 0aA斑管巢蛛 0.906 3aA
    黑色跳蛛 0.976 4aA粽管巢蛛 0.905 4aA
    斑管巢蛛 0.958 2aAB三突花蟹蛛0.881 7aA
    斜纹猫蛛 0.910 0bB条纹蝇虎 0.849 1aA
    三突花蟹蛛11.356条纹蝇虎 0.993 9aA黑色跳蛛0.562鞍型花蟹蛛0.976 4aA
    鞍型花蟹蛛0.990 4aA粽管巢蛛 0.956 5aA
    粽管巢蛛 0.989 7aA三突花蟹蛛0.956 3aA
    斑管巢蛛 0.975 4aA条纹蝇虎 0.941 8aA
    黑色跳蛛 0.956 3aA斜纹猫蛛 0.920 2aA
    斜纹猫蛛 0.881 7bB斑管巢蛛 0.905 4aA
    粽管巢蛛 3.305鞍型花蟹蛛0.991 1aA条纹蝇虎12.037三突花蟹蛛0.993 9aA
    三突花蟹蛛0.989 7aA鞍型花蟹蛛0.983 0aA
    条纹蝇虎 0.980 5aA粽管巢蛛 0.980 5aA
    斑管巢蛛 0.973 9aA斑管巢蛛 0.959 2aA
    黑色跳蛛 0.956 5abA黑色跳蛛 0.941 8aA
    斜纹猫蛛 0.905 4bA斜纹猫蛛 0.849 1bB
    斑管巢蛛 1.610三突花蟹蛛0.975 3aA
    粽管巢蛛 0.973 9aA
    条纹蝇虎 0.959 2aA
    鞍型花蟹蛛0.958 2aA
    斜纹猫蛛 0.906 3aA
    黑色跳蛛 0.905 4aA
      说明:计算不同竞争对手下各游猎蛛在2个茶园竞争系数的平均值,5%水平上均数最大的标记为a,1%水平上均数最大的标记为A。向下比较,与之差异性不显著的标记相同字母,差异性显著的标记不同字母。
    下载: 导出CSV 
    | 显示表格

    结合关联度和竞争系数将所求的竞争强度指数列于表5。对竞争强度指数进行方差分析,用新复极差法进行比较(表6)。由表6可知:无论竞争对手为哪种游猎蛛,粽管巢蛛都与其他蜘蛛差异显著,其次为斑管巢蛛,且游猎蛛中斜纹猫蛛与两者差异极显著。因此,可得出结论:粽管巢蛛竞争力最强,斑管巢蛛次之,斜纹猫蛛竞争力最弱。

    表 5  2个茶园各游猎蛛之间的竞争强度指数
    Table 5  Competition intensity indices among wandering spiders in two tea plantations
    茶树品种竞争对手游猎蛛间竞争强度指数
    鞍型花蟹蛛三突花蟹蛛粽管巢蛛斑管巢蛛斜纹猫蛛黑色跳蛛条纹蝇虎
    ‘农抗早’ 鞍型花蟹蛛1.000 01.019 01.050 31.010 70.820 40.985 90.884 5
    三突花蟹蛛0.964 71.000 01.033 81.018 50.787 30.928 30.864 3
    粽管巢蛛 0.921 40.958 01.000 00.987 50.764 40.882 50.830 6
    斑管巢蛛 0.873 90.930 10.973 21.000 00.734 80.818 90.797 8
    斜纹猫蛛 1.001 21.014 71.063 21.037 01.000 01.089 80.859 4
    黑色跳蛛 0.933 20.928 10.952 20.896 50.845 31.000 00.795 3
    条纹蝇虎 1.110 41.146 11.188 61.158 50.884 21.054 81.000 0
    ‘平阳特早’鞍型花蟹蛛1.000 01.025 41.036 11.017 00.879 00.965 30.9012
    三突花蟹蛛0.954 41.000 00.985 20.982 00.807 20.922 70.884 9
    粽管巢蛛 0.962 30.983 21.000 00.971 00.843 10.932 90.861 7
    斑管巢蛛 0.937 60.972 80.963 81.000 00.868 10.890 00.849 3
    斜纹猫蛛 0.949 70.937 00.980 71.017 21.000 00.889 30.794 0
    黑色跳蛛 1.022 61.050 21.064 01.022 60.872 01.000 00.920 5
    条纹蝇虎 1.055 11.113 11.086 11.078 50.860 41.017 31.000 0
    下载: 导出CSV 
    | 显示表格
    表 6  2个茶园各游猎蛛之间的竞争强度指数新复极差法分析结果
    Table 6  Results of the new multiple range test analysis of competitive intensity indices among various wandering spiders in two tea plantations
    竞争对手F物种2个茶园竞争
    强度指数均值
    5%显著
    水平
    1%极显著
    水平
    竞争对手F物种2个茶园竞争
    强度指数均值
    5%显著
    水平
    1%极显著
    水平
    鞍型花蟹蛛32.992粽管巢蛛 1.043 2aA斜纹猫蛛2.142斑管巢蛛 1.027 1aA
    三突花蟹蛛1.022 2abA粽管巢蛛 1.022 0aA
    斑管巢蛛 1.013 8abA黑色跳蛛 0.989 5abA
    黑色跳蛛 0.975 6bA三突花蟹蛛0.975 8abA
    条纹蝇虎 0.892 9cB鞍型花蟹蛛0.975 4abA
    斜纹猫蛛 0.849 7cB条纹蝇虎 0.826 7bA
    三突花蟹蛛33.492粽管巢蛛 1.009 5aA黑色跳蛛1.575粽管巢蛛 1.008 1aA
    斑管巢蛛 1.000 2aAB三突花蟹蛛0.989 1aA
    鞍型花蟹蛛0.960 9abAB鞍型花蟹蛛0.977 9aA
    黑色跳蛛 0.925 5bBC斑管巢蛛 0.959 6aA
    条纹蝇虎 0.874 6cC斜纹猫蛛 0.858 6aA
    斜纹猫蛛 0.797 3dD条纹蝇虎 0.857 9aB
    粽管巢蛛 9.706斑管巢蛛 0.979 3aA条纹蝇虎10.533粽管巢蛛 1.137 3aA
    三突花蟹蛛0.970 6aAB三突花蟹蛛1.129 6aA
    鞍型花蟹蛛0.941 9aAB斑管巢蛛 1.118 5aA
    黑色跳蛛 0.907 7abABC鞍型花蟹蛛1.082 7aA
    条纹蝇虎 0.846 2bcBC黑色跳蛛 1.036 1aA
    斜纹猫蛛 0.803 8cC斜纹猫蛛 0.872 3bB
    斑管巢蛛 3.588粽管巢蛛 0.968 5aA
    三突花蟹蛛0.951 4abA
    鞍型花蟹蛛0.905 8abcA
    黑色跳蛛 0.854 4abcA
    条纹蝇虎 0.823 6bcA
    斜纹猫蛛 0.801 5cA
      说明:计算不同竞争对手下各游猎蛛在2个茶园竞争强度指数的平均值,5%水平上均数最大的标记为a,1%水平上均数最大的标记为A。向下比较,与之差异性不显著的标记相同字母,差异性显著的标记不同字母。
    下载: 导出CSV 
    | 显示表格

    本研究首先通过灰色关联度分析初步得出2个茶园与小贯小绿叶蝉数量相关性最大的游猎蛛均为斑管巢蛛和粽管巢蛛,再对7种游猎蛛的种群数量进行Fuzzy分级统计,将得出的Fuzzy频数作为原始数据进行竞争系数分析,结果显示:除斑管巢蛛和黑色跳蛛外,5种游猎蛛中斜纹猫蛛竞争力最弱。为验证结果准确性,综合灰色关联度和竞争系数结果引入了竞争强度指数概念,得出7种游猎蛛中斜纹猫蛛竞争力最弱,并且在任何竞争对手下粽管巢蛛都与其他蜘蛛差异显著,其次为斑管巢蛛,即在取食茶园小贯小绿叶蝉时粽管巢蛛和斑管巢蛛竞争力最强,斜纹猫蛛竞争力最弱。

    在进行Fuzzy分级统计时,并未对小贯小绿叶蝉数量进行分级,因为在进行竞争关系分析时,只需要7种游猎蛛的数量数据,故无需对小贯小绿叶蝉数量做同样的处理。在进行灰色关联度分析时,小贯小绿叶蝉和7种游猎蛛数量均未进行处理,原因是小贯小绿叶蝉数量与7种游猎蛛数量数据大小相差较大,选择过大的级宽会导致游猎蛛数量均处于第1级宽内,选择较小级宽会出现较多级层且在靠后多个级层里只有小贯小绿叶蝉数据,而游猎蛛数据均为0。对7种游猎蛛的种群数量进行Fuzzy分级,然后进行竞争关系的统计计算,使它们的数据集中性更加突出,弥补了抽样时造成的误差,是一种简洁有效的计算方法。

    2个茶园竞争力最强和最弱的蜘蛛相同。本研究的2个茶园均按常规措施管理,不使用化学农药,且于冬季除草修剪,修剪会影响天敌的虫口基数,而‘农抗早’和‘平阳特早’抗逆性和抗寒性强[32],因此在相近的受害程度后,‘农抗早’和‘平阳特早’恢复时间均较短,恢复效果均较好,害虫所处环境变化的速度一致性可能是研究结果相同的原因之一。此外,茶园竞争力最强的是斑管巢蛛,这可能与斑管巢蛛的生活习性有关。斑管巢蛛定居且游猎于树冠上被害卷叶或枯叶等阴暗干燥处,白天基本不出行,黄昏时刻,蜘蛛开始活动,主动巡游猎取食,沿着枝、叶逐一搜索前进,几乎无遗漏之处。合理保护和利用斑管巢蛛这类竞争力强的蜘蛛可达到有效防治小贯小绿叶蝉的目的。

    对茶园游猎蛛之间竞争作用的研究可以更好地理解游猎蛛之间的竞争如何影响害虫的数量和变化趋势以及如何影响生物防治的有效性[33]。至今利用害虫与天敌的种间关系对茶园害虫进行生物防治更多地还是停留在增加优势种天敌数量的方向上,分析天敌之间的竞争作用有利于选出最高效的天敌组合,在不破坏茶园原有生态环境的基础上高效防治害虫。

    本研究中的7种游猎蛛都是广食性天敌,但为了研究方便,把它们作为只取食小贯小绿叶蝉一种食饵的单食性天敌,若进行深入研究就需要考虑多种猎物(害虫)共存时天敌对食物的嗜食性,在此基础上应用竞争关系分析方法就能更加真实地反映天敌之间的关系。另外,本研究是分析天敌两两之间的竞争关系,实际上,在食饵不足时,7种天敌之间也存在竞争关系,这种情况有待进一步研究。

  • 图  1  暗影饰皮夜蛾线粒体基因组结构

    Figure  1  Structure of the mitochondrial genome of G. ruficirra

    图  2  编码蛋白质各氨基酸的百分含量

    Figure  2  Percentage of each amino acid of proteins coded

    图  3  tRNA基因二级结构比较

    Figure  3  Comparison on the secondary structure of tRNA genes

    图  4  夜蛾科昆虫线粒体基因组蛋白质编码基因序列的系统发育树

    拉丁名所代表的物种名见表1

    Figure  4  Phylogenetic tree of based on protein-coding genes sequences of Noctuidae species

    表  1  用于线粒体基因组分析的昆虫物种信息

    Table  1.   Information of the insect species for phylogenetic analysis in mitochondrial genome

    类群总科物种
    内群夜蛾科NoctuidaeGarella暗影饰皮夜蛾G. ruficirra
    G. musculana
    G. rotundipennis
    G. nilotica
    G. curiosa
    皮夜蛾属NycteolaN. indica
    亚皮夜蛾N. asiatica
    饰纹夜蛾属Antoculeora饰银纹夜蛾A. ornatissima
    Ctenoplusia白条夜蛾C. albostriata
    C. ogovana
    银纹夜蛾C. agnata
    饰夜蛾属PseudoipsP. prasinana
    外群天蛾科Sphingidae蛀野螟属Conogethes桃蛀螟C. punctiferalis
    秆野螟属Ostrinia玉米螟O. nubilalis
    下载: 导出CSV

    表  2  暗影饰皮夜蛾线粒体基因组组成

    Table  2.   Organization of the mitochondrial genome of G. ruficirra

    基因编码链位置长度/
    bp
    起始密
    码子
    终止密
    码子
    反密
    码子
    基因间隔
    核苷酸
    基因编码链位置长度/
    bp
    起始密
    码子
    终止密
    码子
    反密
    码子
    基因间隔
    核苷酸
    trnMN1~6868CATtrnNN6 062~6 12867GTT3
    trnIN69~13365GAT−3trnS1N6 132~6 19766GCT
    trnQJ131~19969TTG57trnEN6 198~6 26366TTC65
    nad2N257~1 2701 014ATTTAA−2trnFJ6 329~6 39264GAA2
    trnWN1 269~1 33668TCA−8nad5J6 395~8 1371 743ATTTAA
    trnCJ1 329~1 39163GCA2trnHJ8 138~8 20366GTG−1
    trnYJ1 394~1 45966GTA2nad4J8 203~9 5431 341ATGTAA−1
    cox1N1 462~3 0001 539ATGTAA−5nad4lJ9 543~9 836294ATGTAA2
    trnL2N2 996~3 06267TAAtrnTN9 839~9 90466TGT
    cox2N3 063~3 747685ATGT(AA)−3trnPJ9 905~9 96965TGG6
    trnKN3 745~3 81571CTTnad6N9 976~10 509534ATTTAA6
    trnDN3 816~3 88267GTCcobN10 516~11 6671152ATGTAA13
    atp8N3 883~4 044162ATTTAA−7trnS2N11 681~11 74666TGA19
    atp6N4 038~4 715678ATGTAA−1nad1J11 766~12 704939ATGTAA1
    cox3N4 715~5 503789ATGTAA2trnL1J12 706~12 77368TAG36
    trnGN5 506~5 57065TCCrrnLJ12 810~14 099129027
    nad3N5 571~5 924354ATCTAA6trnVJ14 127~14 19165TAG−1
    trnAN5 931~5 99868TGC−1rrnSJ14 191~14 972782−13
    trnRN5 998~6 06164TCG
    下载: 导出CSV

    表  3  线粒体基因组核苷酸组成

    Table  3.   Nucleotide composition of the complete mitochondrial genome

    基因序列碳基含量/% AT偏斜GC偏斜
    ACGTA+TG+C
    全基因组39.0211.557.9241.5180.5319.47−0.0309−0.1867
    蛋白质编码基因33.389.9511.1545.5278.9021.10−0.15380.0566
    密码子第1位36.139.4916.7837.6073.7326.27−0.01990.2777
    密码子第2位22.0816.1713.4248.3370.4129.59−0.3728−0.0930
    密码子第3位41.944.203.2350.6392.577.43−0.0938−0.1295
    tRNA基因42.337.5311.2338.9081.2318.770.04220.1971
    rRNA基因44.164.9710.1440.7384.8915.110.04040.3419
    控制区47.143.701.0148.1595.294.71−0.0106−0.5714
    下载: 导出CSV

    表  4  氨基酸使用频率和相对同义密码子使用度

    Table  4.   Usage of amino acids and the relative synonymous codon usage

    氨基酸密码子使用次数/次RSCU氨基酸密码子使用次数/次RSCU
    丙氨酸(Ala) GCU
    GCC
    GCA
    GCG
    48
    5
    24
    12
    2.16
    0.22
    1.08
    0.54
    脯氨酸(Pro) CCG
    CCA
    CCU
    CCC
    9
    24
    38
    16
    0.41
    1.10
    1.75
    0.74
    半胱氨酸(Cys) UGU
    UGC
    39
    13
    1.50
    0.50
    谷氨酰胺(Gln) CAG
    CAA
    24
    70
    0.51
    1.49
    天冬氨酸(Asp) GAU
    GAC
    96
    15
    1.73
    0.27
    精氨酸(Arg) CGU
    CGC
    CGA
    CGG
    10
    0
    12
    5
    0.47
    0.00
    0.56
    0.23
    谷氨酸(Glu) GAG
    GAA
    38
    76
    0.67
    1.33
    苯丙氨酸(Phe) UUU
    UUC
    488
    97
    1.67
    0.33
    酪氨酸(Tyr) UAU
    UAC
    315
    38
    1.78
    0.22
    甘氨酸(Gly) GGG
    GGA
    GGU
    GGC
    36
    56
    48
    2
    1.01
    1.58
    1.35
    0.06
    丝氨酸(Ser) UCU
    UCC
    UCA
    UCG
    77
    27
    66
    17
    1.91
    0.67
    1.64
    0.42
    甲硫氨酸(Met) AUG 68 1.00 色氨酸(Trp) UGG 23 1.00
    天冬氨酸(Asn) AAU
    AAC
    295
    33
    1.80
    0.20
    苏氨酸(Thr) ACG
    ACA
    ACU
    ACC
    7
    30
    56
    25
    0.24
    1.02
    1.90
    0.85
    赖氨酸(Lys) AAG
    AAA
    61
    250
    0.39
    1.61
    亮氨酸(Leu) UUG
    UUA
    CUG
    CUA
    CUU
    CUC
    77
    474
    28
    53
    97
    22
    0.62
    3.79
    0.22
    0.42
    0.77
    0.18
    缬氨酸(Val) GUG
    GUA
    GUU
    GUC
    18
    70
    75
    12
    0.41
    1.60
    1.71
    0.27
    组氨酸(His) CAU
    CAC
    72
    11
    1.73
    0.27
    异亮氨酸(Ile) AUA
    AUU
    AUC
    304
    373
    42
    1.27
    1.56
    0.18
    终止(End) UGA
    UAG
    UAA
    77
    82
    285
    0.52
    0.55
    1.93
    下载: 导出CSV
  • [1] 孙照鑫, 冯红. 线粒体相关内质网膜对线粒体功能的影响[J]. 自然杂志, 2023, 45(2): 127 − 138.

    SUN Zhaoxin, FENG Hong. Effect of mitochondria-associated endoplasmic reticulum membranes on mitochondrial function [J]. Chinese Journal of Nature, 2023, 45(2): 127 − 138.
    [2] CAMERON S L. Insect mitochondrial genomics: implications for evolution and phylogeny [J]. Annual Review of Entomology, 2014, 59(1): 95 − 117.
    [3] 王丹阳, 王予彤, 于良斌, 等. 绿眼赛茧蜂线粒体基因组全序列测定和分析[J]. 昆虫学报, 2020, 63(8): 1028 − 1038.

    WANG Danyang, WANG Yutong, YU Liangbin, et al. Sequencing and analysis of the complete mitochondrial genome of Zele chlorophthalmus (Hymenoptera: Braconidae) [J]. Acta Entomologica Sinica, 2020, 63(8): 1028 − 1038.
    [4] 章士美. 中国经济昆虫志: 半翅目(一)[M]. 北京: 科学出版社, 1985.

    ZHANG Shimei. Economic Insects of China: Hemiptera (1) [M]. Beijing: Science Press, 1985.
    [5] 朱国渊, 张永科, 孔祥东, 等. 二斑素瓢虫线粒体基因组全序列测定和分析[J]. 南方农业学报, 2023, 54(5): 1293 − 1302.

    ZHU Guoyuan, ZHANG Yongke, KONG Xiangdong, et al. Sequencing and of the complete mitochondrial genome of Illeis bistigmosa [J]. Journal of Southern Agriculture, 2023, 54(5): 1293 − 1302.
    [6] 杨金宏, 谢满超, 文欣茹, 等. 茶网蝽线粒体基因组全序列测定及系统发育分析[J]. 茶叶科学, 2022, 42(6): 839 − 850.

    YANG Jinhong, XIE Manchao, WEN Xinru, et al. The complete mitochondrial genome sequence and phylogenetic analysis of the Stephanitis chinensis [J]. Journal of Tea Science, 2022, 42(6): 839 − 850.
    [7] 赵乐, 贺屹成, 李钢, 等. 蚜蝇科昆虫线粒体基因组特征及系统发育研究[J]. 生命科学, 2022, 34(11): 1421 − 1430.

    ZHAO Le, HE Yicheng, LI Gang, et al. Characterization and phylogenetic analysis of the complete mitochondrial genome Srphidae (Insecta: Diptera) [J]. Chinese Bulletin of Life Sciences, 2022, 34(11): 1421 − 1430.
    [8] 赵卓, 刘晨阳, 瓮青芬, 等. 茶六斑褐锦斑蛾Sorita pulchella线粒体基因组特征与系统发育分析[J]. 河南农业大学学报, 2023, 57(2): 277 − 287.

    ZHAO Zhuo, LIU Chenyang, WENG Qingfen, et al. Characterization of the mitochondrial genome and phylogenetic analysis of Sorita pulchella [J]. Journal of Henan Agricultural University, 2023, 57(2): 277 − 287.
    [9] 李兴艳, 梁文凯, 泽桑梓, 等. 松瘤小蠹线粒体基因组测序及分析[J]. 西南林业大学学报(自然科学), 2024, 44(1): 194 − 199.

    LI Xingyan, LIANG Wenkai, ZE Sangzi, et al. Sequencing and analysis of the mitochondrial genome of Orthotomicis erosus [J]. Journal of Southwest Forestry University (Natural Sciences), 2024, 44(1): 194 − 199.
    [10] 姚余江, 陈斌, 李廷景. 土蜂科线粒体基因组序列测定和分析[J]. 昆虫学报, 2023, 66(1): 99 − 107.

    YAO Yujiang, CHEN Bin, LI Tingjing. Sequencing and analysis of the mitochondrial genome of Scoliidae [J]. Acta Entomologica Sinica, 2023, 66(1): 99 − 107.
    [11] LAU A W Y, TAN L T H, AB M N S, et al. The chemistry of gut microbiome in health and diseases[J/OL]. Progress in Microbes & Molecular Biology, 2021, 4(1): a0000175[2024-01-20]. doi: 10.36877/pmmb.a0000175.
    [12] SINGH V, SOOD A K, SHASHANK P R. New record of pecan husk feeders, Garella ruficirra (Hampson) and Conogethes sp. from India [J]. Himachal Journal of Agricultural Research, 2016, 42(1): 75 − 76.
    [13] 杨霁虹, 付香斌, 童永强, 等. 豫南板栗林栗皮夜蛾的生物学特性和防治研究[J]. 信阳师范学院学报(自然科学版), 2006, 19(4): 419 − 421.

    YANG Jihong, FU Xiangbin, TONG Yongqiang, et al. Study on biological characteristics and control of Chinese chestnut Characoma ruficirra in southern Henan Province [J]. Journal of Xinyang Normal University (Natural Science Edition), 2006, 19(4): 419 − 421.
    [14] SINGH A P, RAMOLA G C. Garella ruficirra (Hampson, 1905)[Noctuoidea: Nolidae: Chloephorinae: Sarrothripini] infesting young shoots of Quercus lanata Smith, 1819 (Fabaceae) in Kumaon region of Uttarakhand [J]. Indian Forester, 2019, 146(2): 183 − 184.
    [15] 顾建强, 陈东辉, 徐奎源, 等. 薄壳山核桃林地昆虫物种多样性、功能多样性及其相互关系分析[J]. 浙江农林大学学报, 2015, 32(1): 116 − 122.

    GU Jianqiang, CHEN Donghui, XU Kuiyuan, et al. Insect species diversity, functional diversity, and their mutual relationship in a pecan stand [J]. Journal of Zhejiang A&F University, 2015, 32(1): 116 − 122.
    [16] 吴浙东, 王政懂, 邓玉英, 等. 浙中板栗皮夜蛾的发生及防治[J]. 中国南方果树, 2001, 30(5): 60 − 61.

    WU Zhedong, WANG Zhengdong, DENG Yuying, et al. Occurrence and control of Characama ruficrra of chestnut in central Zhejiang [J]. South China Fruits, 2001, 30(5): 60 − 61.
    [17] 郑瑞杰, 王德永. 辽宁省日本栗主要虫害及防治技术[J]. 农业科技与装备, 2010(8): 73 − 75.

    ZHENG Ruijie, WANG Deyong. Main pest and control techniques for Japanese chestnut in Liaoning Province [J]. Agricultural Science &Technology and Equipment, 2010(8): 73 − 75.
    [18] PEARSON W R. Rapid and sensitive sequence comparison with FASTP and FASTA [J]. Methods in Enzymology, 1990, 183: 63 − 98.
    [19] CHEN Shifu, ZHOU Yanqing, CHEN Yaru, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018, 34(17): 844 − 847.
    [20] PRJIBELSKI A, ANTIPOV D, MELESHKO D, et al. Using SPAdes de novo assembler[J/OL]. Current Protocols in Bioinformatics, 2020, 70(1): e102[2024-01-20]. doi: 10.1002/cpbi.102.
    [21] COIL D, JOSPIN G, DARLING A E. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data [J]. Bioinformatics, 2014, 31(4): 587 − 589.
    [22] 李妍, 李志红, 张威, 等. 闽鸠蝙蛾(鳞翅目: 蝙蝠蛾科)线粒体基因组全序列测定和分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 179 − 190.

    LI Yan, LI Zhihong, ZHANG Wei, et al. Sequencing and analysis of the complete mitochondrial genome of Endoclita minanus (Lepidoptera: Hepialidae) [J]. Journal of Zhejiang University (Agriculture &Life Sciences), 2023, 49(2): 179 − 190.
    [23] ZIMIN A V, SALZBERG S L. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies[J/OL]. PLoS Computational Biology, 2020, 16(6): e1007981[2024-01-20]. doi:10.1101/2019.12.17.864991.
    [24] DRUMMOND A J, SUCHARD M A, XIE D, et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7 [J]. Molecular Biology and Evolution, 2012, 29(8): 1969 − 1973.
    [25] CHAN P P, LIN B Y, MAK A J, et al. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes [J]. Nucleic Acids Research, 2021, 49(16): 9077 − 9096.
    [26] 江宏燕, 陈世春, 廖姝然, 等. 扁刺蛾线粒体基因组全序列特征及系统发育分析[J]. 茶叶科学, 2023, 43(4): 460 − 472.

    JIANG Hongyan, CHEN Shichun, LIAO Shuran, et al. The complete mitochondrial genome sequence and phylogenetic analysis of Thosea sinensis [J]. Journal of Tea Science, 2023, 43(4): 460 − 472.
    [27] 王瑶, 孔祥波, 张苏芳, 等. 云南松毛虫线粒体基因组全序列测定和分析[J]. 林业科学研究, 2019, 32(5): 11 − 20.

    WANG Yao, KONG Xiangbo, ZHANG Sufang, et al. Sequencing and analysis of complete mitochondrial genome of Dendrolimus houi Lajonquiere (Lepidopeta: Lasiocampidae) [J]. Forest Research, 2019, 32(5): 11 − 20.
    [28] 彭艳, 陈斌, 李廷景. 黄侧异腹胡蜂线粒体基因组全序列测定和分析[J]. 昆虫学报, 2017, 60(4): 464 − 474.

    PENG Yan, CHEN Bin, LI Tingjing. Sequencing and analysis of the complete mitochondrial genome of Parapolybia crocea (Hymenoptera: Vespidae) [J]. Acta Entomologica Sinica, 2017, 60(4): 464 − 474.
    [29] WOLSTENHOLME D R. Animal mitochondrial DNA: structure and evolution [J]. International Review of Cytology, 1992, 141: 173 − 216.
    [30] 刘金凤, 赵宾, 张保贵, 等. 伏牛山区板栗主要虫害的发生特点与防治方法[J]. 现代农业科技, 2012(20): 139 − 140.

    LIU Jinfeng, ZHAO Bin, ZHANG Baogui, et al. Occurrence characteristics and control methods of main insect pests in chestnut in Funiu mountain [J]. Modern Agricultural Science and Technology, 2012(20): 139 − 140.
    [31] 王明月. 丽水板栗主要害虫危害调查与噻虫啉防治技术研究[D]. 杭州: 浙江农林大学, 2012.

    WANG Mingyue. Investigation of the Pest Insects Damaged Chestnut in Lishui and Study on Control Techniques with Thiacloprid[D]. Hangzhou: Zhejiang A&F University, 2012.
    [32] 肖云丽, 汪玉平, 程水源, 等. 我国板栗害虫研究概述[J]. 环境昆虫学报, 2014, 36(3): 441 − 450.

    XIAO Yunli, WANG Yuping, CHENG Shuiyuan, et al. Review on pests of chestnut in China [J]. Journal of Environmental Entomolog, 2014, 36(3): 441 − 450.
    [33] 陈汕, 李粉红, 兰旭娥, 等. 三种斑野螟全线粒体基因组及螟蛾总科系统发育分析[J]. 应用昆虫学报, 2017, 54(1): 22 − 34.

    CHEN Shan, LI Fenhong, LAN Xu’ e, et al. Complete mitochondrial genomes of three Spilomelinae species and a preliminary phylogenetic analysis of the Pyraloidea (Insecta: Lepidoptera) [J]. Chinese Journal of Applied Entomology, 2017, 54(1): 22 − 34.
    [34] 白天, 何叶艳, 高旭龙, 等. 网纹蟒非入侵式采样和线粒体基因组分析[J]. 浙江农林大学学报, 2019, 36(3): 444 − 450.

    BAI Tian, HE Yeyan, GAO Xulong, et al. Non-invasive sampling and mitochondrial genome analysis in Python reticulatus [J]. Journal of Zhejiang A&F University, 2019, 36(3): 444 − 450.
    [35] 冯蕊, 方颖, 方瑜, 等. 绒螨目线粒体基因组研究进展[J]. 热带病与寄生虫学, 2022, 20(1): 43.

    FENG Rui, FANG Ying, FANG Yu, et al. Research progress in the complete mitochondrial genomes of the Trombidformes [J]. Journal of Tropical Diseases and Parasitology, 2022, 20(1): 43.
    [36] 朱雷宇, 朱志煌, 方民杰, 等. 对虾科物种线粒体基因组特征和系统发育分析[J]. 上海海洋大学学报, 2023, 32(2): 292 − 302.

    ZHU Leiyu, ZHU Zhihuang, FANG Minjie, et al. Characteristics and phylogenetic analysis of mitochondrial genome in the Penaeidae [J]. Journal of Shanghai Ocean University, 2023, 32(2): 292 − 302.
    [37] LI Xinyu, LIU Yuncan, ZHANG Rrusong, et al. The mitochondrial genome of Qinghuang_1, the first modern improved strain of Chinese oak silkworm, Antheraea pernyi (Lepidoptera: Saturniidae) [J]. Journal of Insects as Food and Feed, 2021, 7(2): 233 − 243.
    [38] HUANG Yufeng, BOZDOGAN H, CHEN T H, et al. The complete mitochondrial genome of Attacus atlas formosanus Villiard, 1969 (Lepidoptera: Saturniidae) [J]. Mitochondrial DNA Part B, 2022, 7(1): 219 − 221.
    [39] CHEN Dongbin, ZHANG Rusong, JIN Xiangdong, et al. First complete mitochondrial genome of Rhodinia species (Lepidoptera: Saturniidae): genome description and phylogenetic implication [J]. Bulletin of Entomological Research, 2022, 112(2): 243 − 252.
    [40] DAI Lishang, KAUSAR S, ABBAS M N, et al. Complete sequence and characterization of the Ectropis oblique mitochondrial genome and its phylogenetic implications [J]. International Journal of Biological Macromolecules, 2018, 107: 1142 − 1150.
    [41] BOORE J L, LAVROV D V, BROWN W M. Gene translocation links insects and crustaceans [J]. Nature, 1998, 392(6677): 667 − 668.
    [42] 王维, 孟智启, 石放雄, 等. 鳞翅目昆虫比较线粒体基因组学研究进展[J]. 科学通报, 2013, 58(30): 3017 − 3029.

    WANG Wei, MENG Zhiqi, SHI Fangxiong, et al. Advances in comparative studies of Lepidoptera (Arthropoda: Insecta) [J]. Chinese Science Bulletin, 2013, 58(30): 3017 − 3029.
    [43] 陈志腾, 杜予州. 昆虫线粒体基因组重排的研究进展[J]. 环境昆虫学报, 2016, 38(4): 843 − 851.

    CHEN Zhiteng, DU Yuzhou. Rearrangement of mitochondrial genome in insects [J]. Journal of Environmental Entomology, 2016, 38(4): 843 − 851.
    [44] 张方, 米志勇. 动物线粒体 DNA 的分子生物学研究进展[J]. 中国生物工程杂志, 1998, 18(3): 25 − 31, 6.

    ZHANG Fang, MI Zhiyong. Advances in molecular biology of animal mitochondrial DNA [J]. Progress in Biotechnology, 1998, 18(3): 25 − 31, 6.
    [45] 马婷婷, 林菲, 赵楠, 等. 入侵害虫甘薯凹胫跳甲的鉴定及线粒体基因组分析[J]. 昆虫学报, 2022, 65(10): 1354 − 1366.

    MA Tingting, LIN Fei, ZHAO Nan, et al. Identification and mitochondrial genome analysis of the sweetpotato flea beetle, Chaetocnema confifinis (Coleptera: Chrysomelidae), an invasive pest in the Chinese mainland [J]. Acta Entomologica Sinica, 2022, 65(10): 1354 − 1366.
    [46] ZHANG Wenqiang, LIN Long, DING Yuhui, et al. Comparative mitogenomics of jumping spiders with first complete mitochondrial genomes of Euophryini (Araneae: Salticidae)[J/OL]. Insects, 2023, 14(6): 517[2024-01-20]. doi: 10.3390/insects14060517.
    [47] WU Hua, CAO Li, HE Meiyu, et al. Interspecific hybridization and complete mitochondrial genome analysis of two ghost moth species[J/OL]. Insects, 2021, 12(11): 1046[2024-01-20]. doi: 10.3390/insects12111046.
  • [1] 江转转, 陈红, 鲍红艳, 代雨童.  狼尾草属叶绿体基因组特征与分子标记开发 . 浙江农林大学学报, 2025, 42(2): 365-372. doi: 10.11833/j.issn.2095-0756.20240371
    [2] 陈梦瑶, 胡怡然, 郑志富, 潘天.  大豆IGT基因家族的全基因组鉴定及组织表达分析 . 浙江农林大学学报, 2025, 42(1): 64-73. doi: 10.11833/j.issn.2095-0756.20240354
    [3] 朱梦飞, 胡迎峰, 师雪芹.  濒危植物新绒苔叶绿体基因组特征及系统发育位置分析 . 浙江农林大学学报, 2025, 42(1): 55-63. doi: 10.11833/j.issn.2095-0756.20240356
    [4] 王书伟, 周明兵.  毛竹ICE基因家族的全基因组鉴定及低温胁迫下的表达模式分析 . 浙江农林大学学报, 2024, 41(3): 568-576. doi: 10.11833/j.issn.2095-0756.20230445
    [5] 魏亚楠, 龚明贵, 白娜, 苏佳杰, 姜霞.  梁山慈竹叶绿体基因组密码子偏好性分析 . 浙江农林大学学报, 2024, 41(4): 696-705. doi: 10.11833/j.issn.2095-0756.20230498
    [6] 段春燕, 王晓凌.  重瓣榆叶梅全叶绿体基因组遗传特征分析 . 浙江农林大学学报, 2024, 41(3): 577-585. doi: 10.11833/j.issn.2095-0756.20230489
    [7] 刘萱, 邹龙海, 周明兵.  黄槽毛竹叶绿体基因组及毛竹种下分类群的叶绿体基因组序列比较 . 浙江农林大学学报, 2024, 41(5): 1037-1046. doi: 10.11833/j.issn.2095-0756.20240110
    [8] 周佩娜, 党静洁, 邵永芳, 石遵睿, 张琳, 刘潺潺, 吴啟南.  荆芥HD-Zip基因家族的全基因组鉴定及分析 . 浙江农林大学学报, 2023, 40(1): 12-21. doi: 10.11833/j.issn.2095-0756.20220390
    [9] 王杰, 贺文闯, 向坤莉, 武志强, 顾翠花.  基因组时代的植物系统发育研究进展 . 浙江农林大学学报, 2023, 40(1): 227-236. doi: 10.11833/j.issn.2095-0756.20220313
    [10] 陈雪冰, 刘聪, 程赫, 姜廷波, 夏德安, 魏志刚.  毛果杨ZHD家族全基因组水平鉴定及在干旱胁迫下的表达分析 . 浙江农林大学学报, 2022, 39(3): 465-474. doi: 10.11833/j.issn.2095-0756.20210373
    [11] 刘俊, 李龙, 陈玉龙, 刘燕, 吴耀松, 任闪闪.  杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析 . 浙江农林大学学报, 2022, 39(3): 475-485. doi: 10.11833/j.issn.2095-0756.20210385
    [12] 黄元城, 郭文磊, 王正加.  薄壳山核桃全基因组LBD基因家族的生物信息学分析 . 浙江农林大学学报, 2021, 38(3): 464-475. doi: 10.11833/j.issn.2095-0756.20200454
    [13] 陈蓉芬, 黄坚钦, 陈荣, 徐川梅.  流式细胞术在测定竹类植物基因组大小中的应用 . 浙江农林大学学报, 2021, 38(1): 103-111. doi: 10.11833/j.issn.2095-0756.20200212
    [14] 阮诗雨, 张智俊, 陈家璐, 马瑞芳, 朱丰晓, 刘笑雨.  毛竹GRF基因家族全基因组鉴定与表达分析 . 浙江农林大学学报, 2021, 38(4): 792-801. doi: 10.11833/j.issn.2095-0756.20200544
    [15] 白天, 何叶艳, 高旭龙, 赵阿勇, 何珂.  网纹蟒非入侵式采样和线粒体基因组分析 . 浙江农林大学学报, 2019, 36(3): 444-450. doi: 10.11833/j.issn.2095-0756.2019.03.003
    [16] 黄笑宇, 许在恩, 郭小勤.  基于全基因组的毛竹同义密码子使用偏好性分析 . 浙江农林大学学报, 2017, 34(1): 120-128. doi: 10.11833/j.issn.2095-0756.2017.01.017
    [17] 王策, 秦静静, 甘红豪1, 李红, 罗志斌.  毛果杨全基因组磷酸根转运蛋白家族成员序列分析 . 浙江农林大学学报, 2012, 29(4): 516-526. doi: 10.11833/j.issn.2095-0756.2012.04.006
    [18] 许晨璐, 张守攻, 孙晓梅.  针叶树基因组资源及其在遗传育种中的作用 . 浙江农林大学学报, 2012, 29(5): 768-777. doi: 10.11833/j.issn.2095-0756.2012.05.021
    [19] 管雨, 杨洋, 张智俊, 罗淑萍, 汤定钦.  毛竹大片段双元细菌人工染色体基因组文库的构建 . 浙江农林大学学报, 2011, 28(4): 527-532. doi: 10.11833/j.issn.2095-0756.2011.04.001
    [20] 谢一青, 李志真, 黄儒珠, 肖祥希, 王志洁.  光皮桦基因组DNA 提取方法比较 . 浙江农林大学学报, 2006, 23(6): 664-668.
  • 期刊类型引用(0)

    其他类型引用(1)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240138

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/4/724

图(4) / 表(4)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  106
  • PDF下载量:  20
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-04-15
  • 录用日期:  2024-04-22
  • 网络出版日期:  2024-06-04
  • 刊出日期:  2024-07-12

暗影饰皮夜蛾线粒体基因组全序列测定与分析

doi: 10.11833/j.issn.2095-0756.20240138
    基金项目:  中国林业科学研究院基本科研业务费专项资金项目(CAFYBB2022SY011)
    作者简介:

    李妍(ORCID: 0000-0001-7780-1285),博士研究生,从事森林病虫害防治研究。E-mail: liyan941030@126.com

    通信作者: 张威(ORCID: 0000-0001-6567-2500),副研究员,博士,从事森林病虫害防治研究。E-mail: zwlzhi@126.com
  • 中图分类号: S763.3

摘要:   目的  对薄壳山核桃Carya illinoensis害虫暗影饰皮夜蛾Garella ruficirra线粒体基因组进行测序和分析,并在基因组水平上探讨其在夜蛾科Noctuidae中的分类地位,为探索夜蛾科昆虫的系统发育关系以及演化进程提供参考。  方法  利用二代测序技术从头组装获取暗影饰皮夜蛾的线粒体基因组,并对线粒体基因组结构特点和碱基组成进行分析;同时,采用最大似然法和贝叶斯法联合构建了夜蛾科5个属、12个种的线粒体基因组系统发育树,分析暗影饰皮夜蛾在夜蛾科中的系统发育地位。  结果  暗影饰皮夜蛾线粒体基因组全长共为15 294 bp,其中包括13个蛋白质编码基因、22个转运RNA基因、2个核糖体RNA基因以及鳞翅目Lepidoptera昆虫典型的腺嘌呤(A)+胸腺嘧啶(T),即A+T富含区,该区域的A+T含量为80.53%,具有明显的AT偏向性。暗影饰皮夜蛾的基因排列顺序为trnM-trnI-trnQ,与包括夜蛾科昆虫在内的大多数鳞翅目昆虫基因排列次序相符。13个蛋白质编码基因的起始密码子全部为ATN。22个tRNA基因中除trnS1的DHU臂缺失,其余均为典型的三叶草结构。对线粒体基因组研究发现:夜蛾科5个属之间,Garella与皮夜蛾属Nycteola亲缘关系最近,与饰夜蛾属Pseudoips亲缘关系最远。  结论  暗影饰皮夜蛾的线粒体基因组中出现了基因重排的现象,系统发育关系支持暗影饰皮夜蛾和Garella musculana聚为1个分支。图4表4参47

English Abstract

陈诗燕, 程鸿浩, 吴筱萌, 等. 基于Fuzzy分析的茶园游猎蛛取食小贯小绿叶蝉的种间竞争作用[J]. 浙江农林大学学报, 2023, 40(5): 1008-1017. DOI: 10.11833/j.issn.2095-0756.20220753
引用本文: 李妍, 舒金平, 华克达, 等. 暗影饰皮夜蛾线粒体基因组全序列测定与分析[J]. 浙江农林大学学报, 2024, 41(4): 724-734. DOI: 10.11833/j.issn.2095-0756.20240138
CHEN Shiyan, CHENG Honghao, WU Xiaomeng, et al. Interspecific competition of wandering spiders feeding on Empoasca onukii in tea plantations based on Fuzzy analysis[J]. Journal of Zhejiang A&F University, 2023, 40(5): 1008-1017. DOI: 10.11833/j.issn.2095-0756.20220753
Citation: LI Yan, SHU Jinping, HUA Keda, et al. Sequencing and analysis of the complete mitochondrial genome of Garella ruficirra[J]. Journal of Zhejiang A&F University, 2024, 41(4): 724-734. DOI: 10.11833/j.issn.2095-0756.20240138
  • 线粒体广泛存在于动物和植物的每个个体之中,作为真核细胞中一种半自主的细胞器,能够满足生命过程如生长发育、新陈代谢及移动所需要的能源需求,对诸如细胞功能调节、老龄衰退或死亡等现象发挥着重要的作用[12]。相较于其他类型的基因而言,线粒体结构简单且遵循母系遗传,同时演化速度更快,变异频率也更高[3]。昆虫线粒体基因组是一串长约14~19 bp的闭合双链环状DNA分子,共有37个基因,由13个蛋白质编码基因(PCGs)、22个转运RNA(tRNAs)以及2个核糖体RNA(rRNAs)构建而成[4]。通过线粒体基因组研究昆虫的进化规律和系统发育关系已经成为成熟的手段[5]

    线粒体基因组技术主要应用于昆虫起源、分子进化、系统发育等研究领域,涉及到包括鞘翅目Coleoptera、半翅目Hemiptera、膜翅目Hymenoptera等在内的昆虫[610]。鳞翅目Lepidoptera作为昆虫纲中第二大目,害虫种类繁多,因此在昆虫研究中具有重要的代表性[11]。暗影饰皮夜蛾Garella ruficirra隶属于鳞翅目夜蛾科Noctuidae丽夜蛾亚科Chloephorinae[12],在河北、河南、山东、江苏、浙江和江西等省均有不同程度的危害发生[13]。暗影饰皮夜蛾是薄壳山核桃Carya illinoinensis、板栗Castanea mollissima等经济林的重要害虫[12, 14],薄壳山核桃害虫种类繁多[15],近年来暗影饰皮夜蛾在薄壳山核桃林内新发生且呈现逐年上升的趋势,现有的研究多数集中在发生情况的简报和防治建议方面[1617]。对其遗传特征、与同类昆虫之间的亲缘关系研究还未见报道。因此,对暗影饰皮夜蛾进行全面的线粒体全基因组分析,除了能丰富对夜蛾科尤其是丽夜蛾亚科昆虫线粒体基因组的了解外,还能为暗影饰皮夜蛾的分子系谱、群落遗传特性以及分子生态环境等研究提供数据支持。

    本研究通过对暗影饰皮夜蛾线粒体的碱基组成、起始密码子、终止密码子、二级结构等进行研究,将其与已经公布的鳞翅目昆虫的线粒体基因组相比较,通过最大似然法和贝叶斯法联合构建系统发育树,以期分析暗影饰皮夜蛾线粒体基因组特征与系统发育关系,为暗影饰皮夜蛾的演变历程和系统发展提供分子证据。

    • 2022年10月,在江苏省东台市(32°47′42″N,120°31′08″E)薄壳山核桃林中采集暗影饰皮夜蛾幼虫危害的薄壳山核桃果实,带回实验室。解剖出来的幼虫放置在−80 ℃超低温冰箱保存,用于提取DNA。选择龄期一致的幼虫个体作为研究对象,利用DNA提取试剂盒(德国Qiagen公司)提取暗影饰皮夜蛾的总DNA,使用质量浓度为1%的琼脂糖凝胶检测该幼虫DNA的纯度和浓度。

    • 检测总DNA质量后,采用全基因组鸟枪法(WGS),使用Illumina Miseq平台进行双端测序(PE)构建文库,在得到原始序列后,通过FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc)平台对原始序列进行质量剪切和过滤:包括去除读长(reads)中的接头(adapter)序列,剪切去除5′端包含有非腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)、鸟嘌呤(G)的碱基;修剪低质量的reads末端;去除无法确定的碱基信息(N)含量大于5的reads;去掉adapter以及经过质量修剪之后长度不足25 bp的小片段,最终得到高质量的干净数据(clean data)[1819]

    • 采用A5-miseq v20150522以及SPAdes v 3.10.0软件对获得的高质量clean data进行从头组装,从而得到重叠群(contig)和支架(scaffold)序列[2022]。使用Mummer v 3.1软件进一步剔除线粒体基因组序列中模糊核苷酸和质量平均值低于G30(质量值大于等于30的碱基所占比例)的reads,进行数据重组,得到contig和scaffold。将完整的线性contigs上传到MITOS网页服务器(http://mitos2.bioinf.uni-leipzig.de/index.py)进行功能注释[2223]。选择“Genetic Code”的可选设置为05-inverterbrate,其余设置按照默认参数进行选择。使用Organella Genome Draw网络服务器工具(http://ogdraw.mpimp-golm.mpg.de/)对样本的环状线粒体基因组进行可视化处理[22, 24]。按照拼接序列的测序深度,使用美国国家生物技术信息中心(NCBI)中的nt文库进行高测序深度的BLAST分析,并将其与拼接后的序列进行比较,获得预测基因的注释信息[22]。将序列上传至NCBI数据库中,获得登录号为ON125428。

    • 使用https://www.bioinformatics.org/cgview/gallery网址进行暗影饰皮夜蛾线粒体基因组圈图的绘制,接着使用MEGA 6软件计算G. ruficirra包括AT含量、AT偏斜以及GC偏斜等在内的核苷酸组成情况,同时对蛋白质编码基因的氨基酸使用情况和相对同义密码子使用度(RSCU)进行分析[22]。应用tRNAscan-SE Search Server v1.21[25]预测暗影饰皮夜蛾tRNA基因的二级结构模型,分析暗影饰皮夜蛾的碱基组成差异。结合区域、螺旋、螺旋跨膜区域和其他不规则区域,对ATP8蛋白的二级结构进行预测,同时对ATP8蛋白的氨基酸组成和编码序列组成进行分析。

    • 基于夜蛾科13个种昆虫线粒体全基因组的核苷酸序列,选择天蛾科Sphingidae 2个种作为外群,使用http://www.phylo.org网址联合建立最大似然法(ML)和贝叶斯法(BI)系统发育树。

      以NCBI下载的12种夜蛾科昆虫的序列作为参考,与3种天蛾科昆虫的序列联合进行系统发育分析。通过贝叶斯框架和BEAST v 1.6.1软件包对克隆进化的分化时间进行估算,同时选用J model test软件得到最佳替代模型GTR+I+G (表1)。

      表 1  用于线粒体基因组分析的昆虫物种信息

      Table 1.  Information of the insect species for phylogenetic analysis in mitochondrial genome

      类群总科物种
      内群夜蛾科NoctuidaeGarella暗影饰皮夜蛾G. ruficirra
      G. musculana
      G. rotundipennis
      G. nilotica
      G. curiosa
      皮夜蛾属NycteolaN. indica
      亚皮夜蛾N. asiatica
      饰纹夜蛾属Antoculeora饰银纹夜蛾A. ornatissima
      Ctenoplusia白条夜蛾C. albostriata
      C. ogovana
      银纹夜蛾C. agnata
      饰夜蛾属PseudoipsP. prasinana
      外群天蛾科Sphingidae蛀野螟属Conogethes桃蛀螟C. punctiferalis
      秆野螟属Ostrinia玉米螟O. nubilalis
    • 暗影饰皮夜蛾线粒体基因组全长为15 294 bp,呈闭合环状的双链结构,整个线粒体基因组编码了37个基因,其中包括13个蛋白质编码基因(PCGs)、22个tRNA基因、2个rRNA基因(rrnLrrnS)以及1个A+T富含区域。其中,9个蛋白质编码基因以及14个tRNA基因编码在N链上,其余14个基因编码在J链上。其线粒体基因组在25个不同的位置存在长度约1~66 bp的基因间间隔区,最长间隔序列位于trnEtrnF基因之间,其中有6对基因为重叠状态,重叠长度在1~7 bp,5对基因相邻,包括trnV-rrnS (图1表2)。

      图  1  暗影饰皮夜蛾线粒体基因组结构

      Figure 1.  Structure of the mitochondrial genome of G. ruficirra

      表 2  暗影饰皮夜蛾线粒体基因组组成

      Table 2.  Organization of the mitochondrial genome of G. ruficirra

      基因编码链位置长度/
      bp
      起始密
      码子
      终止密
      码子
      反密
      码子
      基因间隔
      核苷酸
      基因编码链位置长度/
      bp
      起始密
      码子
      终止密
      码子
      反密
      码子
      基因间隔
      核苷酸
      trnMN1~6868CATtrnNN6 062~6 12867GTT3
      trnIN69~13365GAT−3trnS1N6 132~6 19766GCT
      trnQJ131~19969TTG57trnEN6 198~6 26366TTC65
      nad2N257~1 2701 014ATTTAA−2trnFJ6 329~6 39264GAA2
      trnWN1 269~1 33668TCA−8nad5J6 395~8 1371 743ATTTAA
      trnCJ1 329~1 39163GCA2trnHJ8 138~8 20366GTG−1
      trnYJ1 394~1 45966GTA2nad4J8 203~9 5431 341ATGTAA−1
      cox1N1 462~3 0001 539ATGTAA−5nad4lJ9 543~9 836294ATGTAA2
      trnL2N2 996~3 06267TAAtrnTN9 839~9 90466TGT
      cox2N3 063~3 747685ATGT(AA)−3trnPJ9 905~9 96965TGG6
      trnKN3 745~3 81571CTTnad6N9 976~10 509534ATTTAA6
      trnDN3 816~3 88267GTCcobN10 516~11 6671152ATGTAA13
      atp8N3 883~4 044162ATTTAA−7trnS2N11 681~11 74666TGA19
      atp6N4 038~4 715678ATGTAA−1nad1J11 766~12 704939ATGTAA1
      cox3N4 715~5 503789ATGTAA2trnL1J12 706~12 77368TAG36
      trnGN5 506~5 57065TCCrrnLJ12 810~14 099129027
      nad3N5 571~5 924354ATCTAA6trnVJ14 127~14 19165TAG−1
      trnAN5 931~5 99868TGC−1rrnSJ14 191~14 972782−13
      trnRN5 998~6 06164TCG
    • 暗影饰皮夜蛾线粒体基因组A、T、C、G含量分别为39.02%、41.51%、11.55%和7.92%,线粒体基因组的A+T含量为80.53%,表现为A、T碱基偏向性(表3),蛋白质编码基因的A+T含量在71.42% (cox1)~90.74% (atp8)范围内[22]

      表 3  线粒体基因组核苷酸组成

      Table 3.  Nucleotide composition of the complete mitochondrial genome

      基因序列碳基含量/% AT偏斜GC偏斜
      ACGTA+TG+C
      全基因组39.0211.557.9241.5180.5319.47−0.0309−0.1867
      蛋白质编码基因33.389.9511.1545.5278.9021.10−0.15380.0566
      密码子第1位36.139.4916.7837.6073.7326.27−0.01990.2777
      密码子第2位22.0816.1713.4248.3370.4129.59−0.3728−0.0930
      密码子第3位41.944.203.2350.6392.577.43−0.0938−0.1295
      tRNA基因42.337.5311.2338.9081.2318.770.04220.1971
      rRNA基因44.164.9710.1440.7384.8915.110.04040.3419
      控制区47.143.701.0148.1595.294.71−0.0106−0.5714

      整个核苷酸链显示轻微的AT偏斜和中度的GC偏斜(表3图2)。在鳞翅目其他昆虫的线粒体基因组中同样存在AT偏斜和GC偏斜的情况[2528]。暗影饰皮夜蛾的蛋白质编码基因和密码子第1位的AT偏斜为负,GC偏斜为正,密码子第2位和第3位产生的AT偏斜与GC偏斜均为负,tRNA和rRNA产生的AT偏斜和GC偏斜全部为正,蛋白质编码基因中T和G的占比高于A和C。

      图  2  编码蛋白质各氨基酸的百分含量

      Figure 2.  Percentage of each amino acid of proteins coded

    • 在暗影饰皮夜蛾线粒体基因组编码的13个蛋白质基因中,有9个基因编码在N链上,另外4个基因编码在J链上(图2),蛋白质编码基因总长为11 224 bp,占全基因组的73.39% (表2)。

      暗影饰皮夜蛾13个蛋白质编码基因都是以ATN作为起始密码子,多数都是以ATG作为起始密码子,nad3以ATC作为起始密码子,而nad2、atp8、nad5、nad6以ATT作为起始密码子(表2)。大多数蛋白质编码基因都是以TAA作为终止密码子,只有cox2以不完整的T作为终止密码子,这与多数昆虫线粒体基因组以TAA或TAG作为终止密码子的情况相同[29]

      对暗影饰皮夜蛾蛋白质编码基因的氨基酸使用情况和相对同义密码子使用度(RSCU)的分析结果(表4)表明:除终止密码子外,暗影饰皮夜蛾线粒体基因组共有3 745个密码子,与多数昆虫线粒体编码出来的蛋白质密码子在3 585~3 746的范围一致。线粒体基因组中使用频率最高的4个密码子分别是UUU (苯丙氨酸Phe)、UUA (亮氨酸Leu)、UAU (酪氨酸Tyr)、AUA (异亮氨酸Ile),这4个密码子在线粒体基因组中的使用次数分别为488、474、315、304次,因此,蛋白质编码基因中编码最频繁的氨基酸依次为Leu (17.0%)、Ile (16.3%)、Phe (11.0%)、Tyr (8.0%)。使用最少的氨基酸是色氨酸Trp (0.52%),以C和G为结尾的密码子出现频率较低,以U和A为结尾的密码子通常RSCU大于1,说明U和A为基因组密码子中的偏爱碱基,C和G为基因组密码子中的非偏爱碱基。

      表 4  氨基酸使用频率和相对同义密码子使用度

      Table 4.  Usage of amino acids and the relative synonymous codon usage

      氨基酸密码子使用次数/次RSCU氨基酸密码子使用次数/次RSCU
      丙氨酸(Ala) GCU
      GCC
      GCA
      GCG
      48
      5
      24
      12
      2.16
      0.22
      1.08
      0.54
      脯氨酸(Pro) CCG
      CCA
      CCU
      CCC
      9
      24
      38
      16
      0.41
      1.10
      1.75
      0.74
      半胱氨酸(Cys) UGU
      UGC
      39
      13
      1.50
      0.50
      谷氨酰胺(Gln) CAG
      CAA
      24
      70
      0.51
      1.49
      天冬氨酸(Asp) GAU
      GAC
      96
      15
      1.73
      0.27
      精氨酸(Arg) CGU
      CGC
      CGA
      CGG
      10
      0
      12
      5
      0.47
      0.00
      0.56
      0.23
      谷氨酸(Glu) GAG
      GAA
      38
      76
      0.67
      1.33
      苯丙氨酸(Phe) UUU
      UUC
      488
      97
      1.67
      0.33
      酪氨酸(Tyr) UAU
      UAC
      315
      38
      1.78
      0.22
      甘氨酸(Gly) GGG
      GGA
      GGU
      GGC
      36
      56
      48
      2
      1.01
      1.58
      1.35
      0.06
      丝氨酸(Ser) UCU
      UCC
      UCA
      UCG
      77
      27
      66
      17
      1.91
      0.67
      1.64
      0.42
      甲硫氨酸(Met) AUG 68 1.00 色氨酸(Trp) UGG 23 1.00
      天冬氨酸(Asn) AAU
      AAC
      295
      33
      1.80
      0.20
      苏氨酸(Thr) ACG
      ACA
      ACU
      ACC
      7
      30
      56
      25
      0.24
      1.02
      1.90
      0.85
      赖氨酸(Lys) AAG
      AAA
      61
      250
      0.39
      1.61
      亮氨酸(Leu) UUG
      UUA
      CUG
      CUA
      CUU
      CUC
      77
      474
      28
      53
      97
      22
      0.62
      3.79
      0.22
      0.42
      0.77
      0.18
      缬氨酸(Val) GUG
      GUA
      GUU
      GUC
      18
      70
      75
      12
      0.41
      1.60
      1.71
      0.27
      组氨酸(His) CAU
      CAC
      72
      11
      1.73
      0.27
      异亮氨酸(Ile) AUA
      AUU
      AUC
      304
      373
      42
      1.27
      1.56
      0.18
      终止(End) UGA
      UAG
      UAA
      77
      82
      285
      0.52
      0.55
      1.93
    • 暗影饰皮夜蛾线粒体基因组的22个tRNA基因总长度为1 458 bp (表2),在暗影饰皮夜蛾线粒体全基因组中占比为9.53%,在N链上编码14个tRNA基因,J链上编码8个tRNA基因。暗影饰皮夜蛾线粒体基因组的22个tRNA基因个体长度分布在63 bp (trnC)~71 bp (trnK)范围。rrnL分布在trnLtrnV之间、J链上的rrnS则分布在trnV和线粒体控制区(CR)之间。rrnL长度为1 290 bp,rrnS长度为782 bp,rrnL的A+T含量为84.81%,rrnS的A+T含量为85.04%。从表3可以看出:AT偏斜和GC偏斜都表现为正数,说明暗影饰皮夜蛾在A和G碱基具有偏向性。

      通过http://mitos.bioinf.uni-leipzig.de/网址分析暗影饰皮夜蛾tRNA基因的二级结构模型,其中21个tRNA均具有典型的三叶草形态,只有trnS1的DHU臂被环结构取代,无法形成三叶草形态(图3)。暗影饰皮夜蛾的tRNA二级结构中,有22对碱基出现了错配现象,在普遍的U-G错配中,氨基酸接受臂上存在4对,TΨC臂上存在2对,反密码子臂存在4对,DHU臂上存在10对,其余2对错配分别为DHU臂上存在1对A-A错配,TΨC臂上存在1对A-A错配。

      图  3  tRNA基因二级结构比较

      Figure 3.  Comparison on the secondary structure of tRNA genes

    • 系统发育树结果(图4)表明:5个夜蛾属Garella与皮夜蛾属Nycteola亲缘关系最近,饰纹夜蛾属AntoculeoraCtenoplusia属亲缘关系最近,与GarellaNycteola稍远,这4种夜蛾与饰夜蛾属Pseudoips亲缘关系最远。Garella属的5种夜蛾之间,暗影饰皮夜蛾与G. musculana亲缘关系最近,G. rotundipennisG. nilotica亲缘关系最近,与暗影饰皮夜蛾与G. musculana稍远,这4种夜蛾与G. curiosa亲缘关系最远。

      图  4  夜蛾科昆虫线粒体基因组蛋白质编码基因序列的系统发育树

      Figure 4.  Phylogenetic tree of based on protein-coding genes sequences of Noctuidae species

    • 20世纪80年代暗影饰皮夜蛾在河南、山东等省已有发现,分布范围逐步扩大,在多个地区已成为板栗的主要害虫[3032],近年来在薄壳山核桃主栽区逐年持续暴发。本研究表明:暗影饰皮夜蛾线粒体基因组长度为15 294 bp,在鳞翅目昆虫线粒体基因组报道的长度范围内[33]。其线粒体基因组所有区域表现出AT偏向性,与网纹蟒Reticulated python、绒螨目Trombidiformes螨类、对虾科Penaeidae物种相同[3436]。而trnM-trnI-trnQ的基因排列方式在鳞翅目多个物种中均有存在[3740],这种重排方式十分典型[4143]。暗影饰皮夜蛾线粒体基因组所有蛋白质编码基因均以ATN为起始密码子,这与大多数鳞翅目昆虫一致[29]。暗影饰皮夜蛾cox1的起始密码子均为ATG,ATG是最常用的起始密码子,这与多数夜蛾科昆虫一致,与果蝇Drosophila melanogaster的起始密码子(ATT)不同[4445]。除cox2以不完整的T为终止密码子外,其余13个蛋白质编码基因的终止密码子都是TAA,蛋白质编码基因中使用不完全终止密码子在无脊椎动物中十分常见[4647]。其线粒体基因组有21个tRNA为典型的三叶草构造,只有tRNASer(AGN)缺少DHU臂,这在多种昆虫中均有出现,是夜蛾科的普遍特征[2526]

      夜蛾科是鳞翅目中最大的一个科,而目前对夜蛾科线粒体基因组的研究种类较少,研究内容不全面,尤其是Garella属,目前除暗影饰皮夜蛾以外,其他物种均未进行线粒体基因组测定,因此需要补充大量夜蛾科各属昆虫线粒体全基因组序列的信息,为进一步探讨夜蛾科各属之间的系统发育关系提供基础数据。

    • 暗影饰皮夜蛾的线粒体全基因组的碱基含量为T>A>C>G,表现为AT偏向性,基因组排列顺序为trnM-trnI-trnQ,存在基因重排现象。暗影饰皮夜蛾线粒体基因组的二级结构为典型的三叶草构造。系统发育分析表明:暗影饰皮夜蛾和G. musculana的亲缘关系最近。

参考文献 (47)

目录

/

返回文章
返回