Volume 34 Issue 3
May  2017
Turn off MathJax
Article Contents

ZHANG Jianyun, GAO Caihui, ZHU Hui, ZHONG Shuigen, YANG Wenyan, ZHENG Junlong, WU Shengchun, SHAN Shengdao, WANG Zhirong, ZHANG Jin, CAO Zhihong, Peter CHRISTIE. Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil[J]. Journal of Zhejiang A&F University, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
Citation: ZHANG Jianyun, GAO Caihui, ZHU Hui, ZHONG Shuigen, YANG Wenyan, ZHENG Junlong, WU Shengchun, SHAN Shengdao, WANG Zhirong, ZHANG Jin, CAO Zhihong, Peter CHRISTIE. Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil[J]. Journal of Zhejiang A&F University, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021

Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil

doi: 10.11833/j.issn.2095-0756.2017.03.021
  • Received Date: 2016-06-13
  • Rev Recd Date: 2016-11-04
  • Publish Date: 2017-06-20
  • The applications of biochar, a pyrolytic product of biomass under the oxygen-free conditions, in improving soil fertility and other physicochemical properties as well as remediating heavy metal contaminated soil have become one of hotspots in the frontiers of environmental research. This paper reviewed the up-to-date progresses of the research concerning biochar, in an attempt to illustrate the mechanisms related to the interactions between heavy metals and biochar, including physical adsorption, ionic adsorption and exchange, precipitation and complexation, by which the bioavailability, mobility, and biotoxicity of heavy metals in soil could be effectively reduced. However, there still exist some problems, especially regarding how to enhance the long-term stability of biochar in immobilizing the metal ions. Meanwhile, the consortium study concerning the biochar-soil-crops-human health is urgently needed in the near future.
  • [1] PAN Lixia, JIANG Zhenhui, ZHANG Wenyi, ZHOU Jiashu, LIU Juan, CAI Yanjiang, LI Yongfu.  Effects of straw and its biochar application on soil ammonia-oxidizing microorganisms and N cycling related enzyme activities in a Phyllostachys edulis forest . Journal of Zhejiang A&F University, 2024, 41(1): 1-11. doi: 10.11833/j.issn.2095-0756.20230388
    [2] SUN Jingyu, SUN Xiangyang, LI Suyan, WANG Chenchen, YUE Zongwei.  Sources and contamination assessment of heavy metals in the green land soils in Tongzhou District, Beijing . Journal of Zhejiang A&F University, 2024, 41(): 1-9. doi: 10.11833/j.issn.2095-0756.20230435
    [3] WANG Jiayu, ZHU Lingjiao, HUANG Chengpeng, JIANG Peikun, ZHA Qiangwei, CHEN Linhai.  Effects of silicon fertilizer and biochar on active silicon components in Phyllostachys edulis soil . Journal of Zhejiang A&F University, 2024, 41(3): 1-10. doi: 10.11833/j.issn.2095-0756.20230366
    [4] GU Shaoru, YANG Xing, CHEN Hanbo, YANG Bingshuang, DAI Zhinan, CHEN Junhui, FANG Zheng, WANG Hailong.  Effects of biochar from Procambarus clarkii shells and Ficus microcarpa branches on soil nutrients and bioavailability of Cd and Pb . Journal of Zhejiang A&F University, 2023, 40(1): 176-187. doi: 10.11833/j.issn.2095-0756.20220182
    [5] QU Tianhua, LI Yongfu, ZHANG Shaobo, LI Linlin, LI Yongchun, LIU Juan.  Effects of biochar application on soil nitrogen transformation and N2O emissions: a review . Journal of Zhejiang A&F University, 2021, 38(5): 926-936. doi: 10.11833/j.issn.2095-0756.20200549
    [6] ZHU Guangyao, HE Lizhi, QIN Peng, YANG Xing, LU Kouping, LIU Xingyuan, WANG Hailong.  Dead pig-derived biochar treatments and soil adsorption of Pb2+ . Journal of Zhejiang A&F University, 2019, 36(3): 573-580. doi: 10.11833/j.issn.2095-0756.2019.03.019
    [7] QIAN Qian, YANG Xing, GUO Ming, QIN Peng, XU Song, WANG Hailong.  Adsorption of Zn2+ from a Zn2+-DEP (diethyl phthalate)composite solution using biochars in soil . Journal of Zhejiang A&F University, 2019, 36(6): 1051-1061. doi: 10.11833/j.issn.2095-0756.2019.06.001
    [8] BAO Junyao, ZHAO Yingzhi, YAN Shuxian, BAI Shan, LI Songhao, XU Qiufang, YE Zhengqian, SHEN Ying, CHEN Junhui.  Soil amelioration with biochars pyrolyzed from different feedstocks of an acidic bamboo (Phyllostachys violascens) plantation . Journal of Zhejiang A&F University, 2018, 35(1): 43-50. doi: 10.11833/j.issn.2095-0756.2018.01.006
    [9] YE Chaojun, WU Jiasheng, ZHONG Bin, CHEN Junren, GUO Jia, XU Meizhen, LIU Dan.  Effects of EDTA and organic acid on phytoremediation of heavy metal contaminated soil by Phyllostachys edulis . Journal of Zhejiang A&F University, 2018, 35(3): 431-439. doi: 10.11833/j.issn.2095-0756.2018.03.006
    [10] ZHANG Jianyun, WU Shengchun, WANG Minyan, SHAN Shengdao, CAO Zhihong, ZHANG Jin.  Tobacco stalk biochar in heavy metal contaminated soil amendments with tobacco production . Journal of Zhejiang A&F University, 2018, 35(4): 674-683. doi: 10.11833/j.issn.2095-0756.2018.04.013
    [11] ZHANG Su, LIANG Peng, WU Shengchun, ZHANG Jin, CAO Zhihong.  Temporal and spatial distribution of heavy metal contamination in Gaohong, Lin'an, Zhejiang Province . Journal of Zhejiang A&F University, 2017, 34(3): 484-490. doi: 10.11833/j.issn.2095-0756.2017.03.014
    [12] XU Weijie, GUO Jia, ZHAO Min, WANG Renyuan, HOU Shuzhen, YANG Yun, ZHONG Bin, GUO Hua, LIU Chen, SHEN Ying, LIU Dan.  Research progress of soil plant root exudates in heavy metal contaminated soil . Journal of Zhejiang A&F University, 2017, 34(6): 1137-1148. doi: 10.11833/j.issn.2095-0756.2017.06.023
    [13] LU Kouping, GUO Xi, HU Guotao, YANG Xing, XU Xiaoli, WANG Hailong.  Physiological and biochemical characteristics of pig versus bamboo biochars and their effects on ammonia volatilization in greenhouse vegetable production . Journal of Zhejiang A&F University, 2017, 34(4): 647-655. doi: 10.11833/j.issn.2095-0756.2017.04.010
    [14] LIU Shenshen, ZHANG Zhen, HE Jinling, MA Youhua, HU Hongxiang, ZHANG Chunge.  Purification effect of aquatic plants on nitrogen, phosphorus and heavy metal polluted water . Journal of Zhejiang A&F University, 2016, 33(5): 910-919. doi: 10.11833/j.issn.2095-0756.2016.05.025
    [15] ZHONG Bin, CHEN Junren, PENG Danli, LIU Chen, GUO Hua, WU Jiasen, YE Zhengqian, LIU Dan.  Research progress of heavy metal phytoremediation technology of fast-growing forest trees in soil . Journal of Zhejiang A&F University, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [16] YAN Wenbo, LIU Dan, PENG Danli, LI Song, CHEN Junren, YE Zhengqian, WU Jiasen, WANG Hailong.  Technology advances of ecological restoration and environmental remediation of heavy metal mines . Journal of Zhejiang A&F University, 2015, 32(3): 467-477. doi: 10.11833/j.issn.2095-0756.2015.03.021
    [17] SUN Tao, LU Kouping, WANG Hailong.  Advance in washing technology for remediation of heavy metal contaminated soils: effects of eluants and washing conditions . Journal of Zhejiang A&F University, 2015, 32(1): 140-149. doi: 10.11833/j.issn.2095-0756.2015.01.021
    [18] HU Yangyong, MA Jiawei, YE Zhengqian, LIU Dan, ZHAO Keli.  Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil . Journal of Zhejiang A&F University, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
    [19] ZHANG Tao, LI Yongfu, JIANG Peikun, ZHOU Guomo, LIU Juan.  Research progresses in the effect of land-use change on soil carbon pools and soil respiration . Journal of Zhejiang A&F University, 2013, 30(3): 428-437. doi: 10.11833/j.issn.2095-0756.2013.03.021
    [20] LI Dong-lin, JIN Ya-qin, ZHANG Ji-lin, RUAN Hong-hua.  Heavy metal soil pollution in the Qinhuai River riparian zone . Journal of Zhejiang A&F University, 2008, 25(2): 228-234.
  • [1]
    WANG Yujun, CHEN Huaiman. Several critical issues in the studies of soil environmental quality affected by heavy metals[J]. J Agro-Environ Sci, 2013, 32(7):1289-1293.
    [2]
    ZHOU Dongmei, WANG Yujun, CHEN Huaiman. Independence and dependence of soil environmental quality standard for heavy metals[J]. J Agro-Environ Sci, 2014, 33(2):205-216.
    [3]
    ZHAO Fangjie, MA Yibing, ZHU Yongguan, et al. Soil contamination in China:current status and mitigation strategies[J]. Environ Sci Technol, 2015, 49(2):750-759.
    [4]
    XIONG Yanjun. Pollution status and control measures of soil in China[J]. Mod Agric Sci Technol, 2010(8):294-295, 297.
    [5]
    LUO Yongming. Current research and development in soil remediation technologies[J]. Pro Chem, 2009, 21(supp 1):558-565.
    [6]
    JIA Xiaofei, CUI Ying, LI Yong. Analysis on the present situation of remediation of contaminated soil in China[J]. Technol Innov, 2016(4):147.
    [7]
    HOUBEN D, EVRARD L, SONNET P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.)[J]. Biom Bio, 2013, 57(11):196-204.
    [8]
    JONES D A, LELYVELD T P, MAVROFIDIS S D, et al. Microwave heating applications in environmental engineering:a review[J]. Res Conserv Recycl, 2002, 34(2):75-90.
    [9]
    ARTHUR E L, RICE P J, RICE P J, et al. Phytoremediation-an overview[J]. Crit Rev Plant Sci, 2005, 24(2):109-122.
    [10]
    SUN Yuebing, WANG Pengchao, XU Yingming, et al. Immobilization remediation of Cd and Pb contaminated soil:remediation potential and soil environmental quality[J]. Environ Sci, 2014, 35(12):4720-4726.
    [11]
    LIANG Xuefeng, HAN Jun, XU Yingming, et al. In-situ remediation of Cd polluted paddy soil using sepiolite and combined amendments[J]. Chin J Environ Eng, 2015, 9(9):4571-4577.
    [12]
    ZHU Qihong, HUANG Daoyou, LIU Guosheng, et al. Effects and mechanism of lime and sepiolite on remediation of Cd contaminated soils[J]. J Soil Water Conserv, 2009, 23(1):111-116.
    [13]
    LIU Jieyun, SHEN Jianlin, QIU Husen, et al. Effects of biochar amendments on net emissions of greenhouse gases from croplands:a review[J]. J Agro-Environ Sci, 2015, 34(2):205-212.
    [14]
    YOO G, KANG H. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment[J]. J Environ Qual, 2012, 41(4):1193-1202.
    [15]
    LI Hongying, YE Xinxin, GENG Zhigang, et al. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils[J]. J Hazard Mater, 2016, 304:40-48.
    [16]
    GROSSMAN J M, O'NEILL B E, TSAI S M, et al. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy[J]. Microb Ecol, 2010, 60(1):192-205.
    [17]
    LÜHonghong, GONG Yanyan, TANG Jingchun, et al. Advances in preparation and applications of biochar and its composites[J]. J Agro-Environ Sci, 2015, 34(8):1429-1440.
    [18]
    LEHMAN J. A handful of carbon[J]. Nature, 2007, 447(7141):143-144.
    [19]
    SOHI S P, RULL E, LOPEZ-CAPEL E, et al. Chapter 2-A review of biochar and its use and function in soil[J]. Adv Agron, 2010, 105:47-82.
    [20]
    LEE Y, PARK J, RYU C, et al. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500℃[J]. Bioresour Technol, 2013, 148:196-201.
    [21]
    SAMSURI A W, SADEGH-ZADEH F, SEH-BARDAN B J. Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals[J]. Int J Environ Sci Technol, 2014, 11(4):967-976.
    [22]
    MENG Jun, WANG Lili, LIU Xingmei, et al. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment[J]. Bioresour Technol, 2013, 142(4):641-646.
    [23]
    TSAI W T, LIU S C, CHEN H R, et al. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment[J]. Chemosphere, 2012, 89(2):198-203.
    [24]
    CHEN Zaiming, CHEN Baoliang, ZHOU Dandan. Composition and sorption properties of rice-straw derived biochars[J]. Acta Sci Circumst, 2013, 33(1):9-19.
    [25]
    HUANG Yizong, HAO Xiaowei, LEI Ming, et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. J Agro-Environ Sci, 2013, 32(3):409-417.
    [26]
    HUANG Daikuan, LI Xinqing, DONG Zeqin, et al. Soil environmental influence of biochar and its application in soil heavy metal restoration[J]. Guizhou Agric Sci, 2014, 42(11):159-165.
    [27]
    YUAN Jinhua, XU Renkou. Progress of the research on the properties of biochars and their influence on soil environmental functions[J]. Ecol Environ Sci, 2011, 20(4):779-785.
    [28]
    YUAN Jinhua, XU Renkou, ZHANG Hong. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresour Technol, 2011, 102(3):3488-3497.
    [29]
    LI Baoqiang, LIU Jun, LI Ruiyang, et al. Biochars preparation and its applications in energy and environment field[J]. Biol Chem Eng, 2012, 46(1):34-38.
    [30]
    KONG Sifang, YAO Xingcheng, ZHANG Jiangyong, et al. Review of characteristics of biochar and research progress of its applications[J]. Ecol Environ Sci, 2015, 24(4):716-723.
    [31]
    LI Ji, HUANG Yizong, HU Ying, et al. Effect of several amendments on fractionation and bio-accessibility of antimony in contaminated soil[J]. Environ Chem, 2015, 34(6):1043-1048.
    [32]
    CUI Liqiang, YANG Yage, YAN Jinlong, et al. Speciation and season change characteristic of lead in contaminated soil with biochar amendment[J]. Chin Agric Sci Bull, 2014, 30(2):233-239.
    [33]
    MAO Yide, TIE Boqing, YE Changcheng, et al. Effects of biochar on forms and uptake of cadmium by rapeseed in cadmium-polluted soil[J]. J Ecol Rural Environ, 2015, 31(4):579-582.
    [34]
    LIU Jingjing, YANG Xing, LU Kouping, et al. Effect of bamboo and rice straw biochars on the transformation and bioavailability of heavy metals in soil[J]. Acta Sci Circumst, 35(11):3679-3687.
    [35]
    LI Mingyao, ZHANG Yan, DU Liyu, et al. Influence of biochar and zeolite on the fraction transform of cadmium in contaminated soil[J]. J Soil Water Conserv, 2014, 28(3):248-252.
    [36]
    CHU Yingchao, LI Jianhong, WU Weidong. Adsorption of Cd (Ⅱ), As (Ⅲ), Cr (Ⅲ) and Cr (Ⅵ) by coconut fiber-derived biochars[J]. Chin J Environ Eng, 2015, 9(5):2165-2170.
    [37]
    KONG Dehua, WEI Yudong. Preparation of cotton stalk-based biochar and its application in adsobtion of heavy metal ion Pb2+ and Cd2+[J]. Inner Mongolia Petrochem Ind, 2015(1):11-13.
    [38]
    XU Nannan, LIN Dasong, XU Yingming, et al. Adsorption of aquatic Cd2+ by biochar obtained from corn stover[J]. J Agro-Environ Sci, 2014, 33(5):958-964.
    [39]
    ZHAO Lingyu, WANG Yanhua, YANG Hao, et al. Adsorption of Hg (Ⅱ) by biochars produced from sawdust and rice straw[J]. J Agro-Environ Sci, 2015, 34(3):556-562.
    [40]
    TANG Xingcan, CHEN Jinlin, LI Wenqing. Cu2+ Adsorption characteristic of biochar and its influential factor[J]. J Anhui Agric Sci, 2014, 42(5):1467-1470.
    [41]
    GAPORALE A G, PIGNA M, SOMMELL A, et al. Effect of pruning-derived biochar on heavy metals removal and water dynamics[J]. Biol Fertil Soils, 2014, 50(8):1211-1222.
    [42]
    CHEN Xinxiang, GENG Zengchao, WANG Sen, et al. Effects of biochar amendment on microbial biomass and enzyme activities in loess soil[J]. J Agro-Environ Sci, 2014, 33(4):751-758.
    [43]
    FORJÁN R, ASENSION V, RODRÍGUEZ-VILA A, et al. Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing[J]. Catena, 2016, 137:120-125.
    [44]
    REES F, STERCKEMAN T, MOREL J L. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar[J]. Chemosphere, 2016, 142:48-55.
    [45]
    CHEN De, GUO Hu, LI Ruiyue, et al. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice-a field study over four rice seasons in Hunan, China[J]. Sci Total Environ, 2016, 541:1489-1498.
    [46]
    LI Haili. Effect and Mechanism of Biochar on Soil Remedia on of Plumbum and Cadmium Multiple Contaminated Paddy Soil[D]. Hangzhou:Zhejiang University, 2015:37-38.
    [47]
    ZHAO Baowei, SHI Xiaying, MA Fengfeng. Influential factors in adsorption of Cu (Ⅱ) on biochars derived from flap and rape biomasses and mechanisms[J]. China Sci Pap, 2015, 10(24):2888-2893.
    [49]
    AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99(3):19-33.
    [50]
    LIANG Yuan, LI Feiyue, YANG Fan, et al. Immobilization and its mechanisms of heavy metal contaminated soils by phosphate-containing amendment and biochar[J]. J Agro-Environ Sci, 2013, 32(12):2377-2383.
    [51]
    CAO Xinde, MA L Q, GAO Bin, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environ Sci Technol, 2009, 43(9):3285-3291.
    [52]
    EL-SHAFEY E, COX M, PICHUGIN A A, et al. Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution[J]. J Chem Technol Biotechnol, 2002, 77(4):429-436.
    [53]
    LI Li, LU Yuchao, LIU Ya, et al. Adsorption mechanisms of cadmium (Ⅱ) on biochars derived from corn straw[J]. J Agro-Environ Sci, 2012, 31(11):2277-2283.
    [54]
    WANG Zhenyu, LIU Guocheng, XING M, et al. Adsorption of Cd (Ⅱ) varies with biochars derived at different pyrolysis temperatures[J]. Environ Sci, 2014, 35(2):4735-4734.
    [55]
    CHENG Qiming, HUANG Qing, LIU Yingjie, et al. Adsorption of cadmium (Ⅱ) on peanut shell and its biochar[J]. J Agro-Environ Sci, 2014, 33(10):2022-2029.
    [56]
    WU Min, NING Ping, WU Di. Heavy metal sorption characteristics of biochars derived from dianchi lake sediment[J]. J Kunming Univ Sci Technol Nat Sci Ed, 2013, 38(2):102-106.
    [57]
    DONG Xiaoling, MA L Q, LI Yuncong. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. J Hazard Mater, 2011, 190(1/3):909-915.
    [58]
    ZHAO Baowei, SHI Xiaying, MA Fengfeng. Interacion between Cr (Ⅵ) and Cu (Ⅱ) adsorption onto biochars derived from flax and rape biomasses[J]. Environ Chem, 2016, 35(2):323-329.
    [59]
    AGRAFIOTI E, KALDERIS D, DIAMADOPOULOS E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge[J]. J Environ Manage, 2014, 133C:309-314.
    [60]
    JIN Baodan. Application Research on Cellulose Modification and Adsorption on Heavy Metalions[D]. Fuxin:Liaoning Technical University, 2010.
    [61]
    WU Yu, XU Gang, LÜYingchun, et al. Effects of biochar amendment on soil physical and chemical properties:current status and knowledge gaps[J]. Adv Earth Sci, 2014, 29(1):68-79.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(3736) PDF downloads(945) Cited by()

Related
Proportional views

Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil

doi: 10.11833/j.issn.2095-0756.2017.03.021

Abstract: The applications of biochar, a pyrolytic product of biomass under the oxygen-free conditions, in improving soil fertility and other physicochemical properties as well as remediating heavy metal contaminated soil have become one of hotspots in the frontiers of environmental research. This paper reviewed the up-to-date progresses of the research concerning biochar, in an attempt to illustrate the mechanisms related to the interactions between heavy metals and biochar, including physical adsorption, ionic adsorption and exchange, precipitation and complexation, by which the bioavailability, mobility, and biotoxicity of heavy metals in soil could be effectively reduced. However, there still exist some problems, especially regarding how to enhance the long-term stability of biochar in immobilizing the metal ions. Meanwhile, the consortium study concerning the biochar-soil-crops-human health is urgently needed in the near future.

ZHANG Jianyun, GAO Caihui, ZHU Hui, ZHONG Shuigen, YANG Wenyan, ZHENG Junlong, WU Shengchun, SHAN Shengdao, WANG Zhirong, ZHANG Jin, CAO Zhihong, Peter CHRISTIE. Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil[J]. Journal of Zhejiang A&F University, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
Citation: ZHANG Jianyun, GAO Caihui, ZHU Hui, ZHONG Shuigen, YANG Wenyan, ZHENG Junlong, WU Shengchun, SHAN Shengdao, WANG Zhirong, ZHANG Jin, CAO Zhihong, Peter CHRISTIE. Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil[J]. Journal of Zhejiang A&F University, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
  • 土壤圈位于生物圈、大气圈、水圈、岩石圈的交汇处,时刻与各圈层进行物质、信息、能量的交换,对环境的自净能力和容量有着重大贡献。因而,土壤质量的好坏直接影响环境的健康状况。近年来,由于不合理的土地利用、工业废弃物的排放以及滥用农业化学品,中国农田土壤遭受不同程度的污染,导致土壤肥力退化及环境质量持续下降,对农业安全生产构成威胁;而且土壤中的污染物可通过淋溶作用渗透到深层土壤中,导致地表地下水污染[1-2]。国家环境保护部最新的土壤调查显示,中国有将近19%农业土壤受到了污染,其中主要是重金属和类金属污染[3]。因土壤污染减产粮食超过1 000万t·a-1,造成各种经济损失约200亿元·a-1。这不仅造成了巨大的经济损失,同时导致一系列环境问题,危害人体健康,引发癌症和其他疾病[4]。土壤污染的危害已经引起了各级政府的高度关注。为了切实加强土壤污染防治,逐步改善土壤环境质量,国务院2016年5月印发了《土壤污染防治行动计划》。土壤修复常用的方法有物理修复、化学修复、生物修复及其联合修复方法[5]。物理修复和化学修复方法主要是通过固定稳定化技术、热处理技术、性能改良技术、氧化还原技术、电动力学修复等技术去除污染物[6]。该方法修复过程复杂,费用高,存在二次污染风险,为降低因食物链造成的健康风险,因而不适合在污染农田土壤中大规模使用[7]。生物修复方法主要有植物修复与微生物修复,虽然该修复方法经济、有效,但所需时间较长且易受外界环境条件制约,修复效果难以保证[8-9]。因此,国际上普遍认为联合修复技术是目前高效、经济、合理的污染农田修复方式,如采用石灰或海泡石粉等化学物质与植物结合的方式修复污染土壤[10-12]。然而过量使用石灰或海泡石粉会导致土壤板结、质地恶化,因此,寻找对土壤环境无害的新型修复材料迫在眉睫。近年来,一种新型材料——生物质炭引起了国内外研究人员的广泛关注。生物质炭不仅是一种新型能源[13]和新型碳汇[14]材料,而且由于其具有独特的物理化学性质,使它们在改善土壤结构、提高土壤质量[8]、去除土壤中的污染物等[15]方面均有一定的成效,在土壤改良和环境修复领域有巨大应用前景。本文将首先介绍生物质炭的基本性质,然后综述国内外利用生物质炭在改善土壤结构、提高土壤肥力和微生物的活性研究以及污染土壤修复等方面的最新研究进展,并对当前生物质炭在土壤修复中应注意的问题进行概述,同时对未来研究的热点和趋势进行展望。

  • 生物质炭一词最先出现于有关亚马逊河流域生态和农业方面的研究论文[16]。研究人员将生物质炭定义为:富含碳的生物质在缺氧或者无氧的条件下通过高温裂解或者不完全燃烧生成的一种含碳量大、孔隙结构复杂的固体物质[17]。可制备生物炭的原料多种多样,包括植物类废弃物[18-19](如秸秆、稻草、砻糠、树枝等),动物粪便[20-21](如猪粪、牛粪、鸡粪等),城市污水处理厂污泥[22],轻工业固体废弃物,大分子藻类[23]等。不同的生物质原料制备的生物质炭其基本性质也会存在差别。另外,生物质炭的制备温度是影响生物炭结构和性质的重要因素。随着温度的升高,多孔性也会随之增加,甚至比表面积增至原生物质表面积的数千倍[24-25]。生物质炭主要由单环和多环的芳香族化合物组成,具有较高的化学和生物学稳定性;主要由碳、氢、氧、氮等元素组成,同时含有大量磷、硫、钾、钙、镁、硅、铝等植物所需的营养元素[26];一般呈碱性(pH 7~12);表面含有丰富的—COOH,—OH和—CO等含氧官能团和碱性离子[如钾离子(K+)和钠离子(Na+)]及碳酸盐(如碳酸钙和碳酸镁)[27-28]。这些性质是影响生物炭吸附能力以及阳离子交换能力的重要因素。由于生物质炭的特殊性质使其在土壤改良剂、固碳、氮减排、缓释肥料载体、污水治理、烟气净化、土壤修复、固体成型燃料、燃料电池、固体酸催化剂和电极材料等领域具有巨大的应用前景[29-30]

  • 重金属对环境和人体危害最大的是其有效态,因此,降低重金属在土壤中的有效态是降低重金属毒性的有效措施。生物质炭在土壤重金属钝化固定修复中的应用是当前生物质炭研究的热点之一。已有很多研究表明:生物质炭施入土壤可提高土壤pH值及有机质含量,降低土壤重金属的有效态,从而降低土壤重金属的生物毒性。

    李季等[31]采用室内培养法研究水稻Oryza sativa生物质炭对锑污染土壤修复过程中发现,培养1~2个月后,5%的生物炭处理促进了锑从铁/锰氧化态向有机结合态的转化,原因可能是生物炭上的羟基、羧基、芳香基等官能团与土壤中的重金属进行有机配位络合,从而增加有机结合态锑的含量。5%的生物质炭处理导致土壤锑的生物可利用性比对照显著降低了20%。生物质炭对土壤重金属形态的转化与季节及田间作物有着密切的关系。崔立强等[32]研究发现:修复铅污染土壤过程中,加入生物质炭可使铅酸溶态、还原态和氧化态组分显著降低并向残渣态转化。酸溶态、还原态和氧化态三者含量分别降低;而残渣态铅含量却显著升高。其中,上述4种形态的各个处理在2011年小麦Triticum aestivum季显著高于2010年水稻季9.1%~28%,原因在于不同水分条件导致氧化还原电位的变化。

    另外,重金属在土壤中的形态转化与生物质炭的原料、粒径及施用量有关。毛懿德等[33]用竹炭和柠条Caragana korshinskii炭作为生物质炭原料进行盆栽实验,研究生物质炭对土壤中镉形态的影响。结果表明:与对照相比,0.1%和1.0%的竹炭及柠条生物质炭处理可使交换态镉含量分别降低4.99%,5.44%和9.44%,16.64%。土壤经生物炭处理后,镉活性指数有所降低,降幅最大的是1.0%柠条生物质炭处理(降低0.18个单位),可知1.0%的柠条炭处理的钝化效果最显著。刘晶晶等[34]在重金属混合污染土壤中添加不同粒径的生物质炭,发现5%稻草秸秆(0.25 mm)处理对降低土壤中镉、铜、铅和锌有效态含量的效果最佳,分别减少了34.5%,50.1%,52.5%和52.1%,在粗粒径(1.00 mm)竹炭处理下,酸溶态铜和锌向可还原态、可氧化态和残渣态转化。李明遥等[35]在污染土壤中施入玉米Zea mays秸秆炭后发现,土壤交换态镉的含量降低,碳酸盐结合态、铁锰氧化物结合态、有机结合态以及残渣态含量增加。

    土壤中重金属的各形态状况与生物质炭改变土壤有机质、pH值有着密切的关系。崔立强等[32]、毛懿德等[33]、刘晶晶等[34]研究表明:根据欧盟参比司(European Community Bureau of Reference)土壤重金属形态连续提取法(简称BCR法)分级得出的铅有效态与pH值、有机质呈显著负相关关系,土壤pH值与土壤可交换态镉含量呈显著负相关关系。

  • 生物质炭可以作为土壤改良剂使用,以增加土壤保肥能力、改善土壤团聚体结构,也可作为重金属钝化剂,提高土壤对重金属的吸附固定能力,降低重金属的迁移性,减少二次污染,增加作物产量。诸多研究证明,生物质炭对土壤中镉、砷、铬、铜、铅[36-38]等有良好的吸附效果,对土壤中的汞也有一定的吸附作用[39]。由于生物质炭呈碱性且含有丰富水溶性有机碳和有效磷,在酸性土壤中施加生物质炭可有效降低土壤中重金属的有效性[40]。GAPORALE等[41]通过等温线研究证明,同种处理吸附重金属的能力有差异。在单因素系统中,生物质炭对重金属的吸附强弱表现为铅>铬>铜,在双因素系统中铅对铬、铜表现出抑制作用,与单因素系统相比生物质炭对铬和铜的吸附量降低了36.2%和73.5%。

    研究表明:生物质炭的吸附性能远大于其在土壤环境中的解析能力[42-43],因此,生物质炭可以作为土壤污染修复剂使用。REES等[44]通过根箱实验研究了黑麦草Lolium perenne与天蓝遏蓝菜Noccaea caerulescens对施入生物质炭的土壤中镉、铅、锌的吸附能力。结果表明:生物质炭降低了这些重金属的毒性,同时由于生物质炭提供了一定的营养物质(如钾、钙、钠、镁等)从而促进了锌/镉超富集植物天蓝遏蓝菜的根系生长,降低了非富集植物黑麦草根系重金属的含量。CHEN等[45]通过田间试验种植四季水稻,发现生物质炭对第一季水稻镉的含量没有显著影响,但后三季水稻中的镉含量与空白相比分别减少了61%,86%和57%,土壤中有效锌的含量也有所降低。原因可能是生物质炭施用提高了土壤的pH值,增加了土壤有机碳(soil organic carbon, SOC)的含量,从而降低了镉的植物有效性[45]

    综上所述,生物质炭对重金属污染土壤有着良好的修复效果。在大量盆栽实验的基础上,近几年生物质炭作为一种修复剂也投入到了重金属污染农田中的应用。崔立强等[32]大田试验研究证明:生物质炭的施用可有效降低铅元素的生物可利用性和生态毒性。李海丽[46]大田试验研究证明:施加生物质炭后可有效降低镉的植物毒性。与对照组比较,该处理中稻米中铅、锌和镉含量下降分别了2.0%,19.4%和43.1%。然而由于生物质炭原料及制备条件各异,生物质炭对重金属污染土壤的修复效果有所不同。因此,探究生物质炭对重金属污染土壤的修复机制至关重要。

  • 研究生物质炭去除重金属的机制,对合理使用生物质炭,改善土壤环境,提高生物质炭的生态效益具有指导意义。由于生物质炭生产原料来源广泛,制备条件多样,而土壤重金属污染类型及程度不一等因素,使生物质炭对重金属的固定和钝化机制也不尽相同[47]。根据目前已有的研究成果,生物质炭对重金属的修复主要包括物理吸附、离子吸附、离子交换、沉淀络合、交互作用等多种作用机制[48-49]

  • 物理吸附也称范德华吸附,是吸附质分子与吸附剂表面原子或分子间以物理力进行的吸附作用,这种物理力是范德华力,但这种作用力比较弱,一般是可逆的[49]。梁媛等[50]用含磷材料、牛粪生物炭和水稻秸秆生物炭修复铅、锌、镉复合污染土壤。结果表明:牛粪生物质炭固定铅离子(Pb2+)的作用机理包括吸附、沉淀、离子交换等,水稻生物质炭固定Pb2+的机制主要为吸附、离子交换,而镉离子(Cd2+)主要通过离子交换作用固定在土壤中。CAO等[51]研究奶牛粪生物炭去除Pb2+时,也发现表面吸附对生物炭吸附重金属离子有一定的作用。

  • 离子交换即为金属阳离子与炭表面的电离质子的离子交换作用。生物质炭表面含有较高的阳离子交换量,当生物质炭施入土壤后会提高土壤对金属阳离子的交换作用。EL-SHAFEY等[52]用纤维束生物炭吸附镉离子(Cd2+)等重金属离子,研究发现该种生物炭对重金属离子的吸附机制主要是在生物炭表面发生离子交换作用,随着金属离子被吸附的过程水中质子数有所增加。李力等[53]用玉米秸秆炭对Cd2+的吸附实验中发现,生物质炭对镉的吸附机制主要以离子交换为主。

  • 生物质炭表面的某些官能团(如—COOH,—COH,—OH)可与土壤中重金属离子发生络合反应,生成稳定的络合物[54]。另外,生物质炭可提高土壤pH值,氢氧根离子(OH-)可与重金属离子发生反应生成沉淀物,降低重金属的迁移性[55]。此外,某些生物质炭(如污泥基生物炭)还含有磷酸盐和碳酸盐,磷酸根与碳酸根可与重金属离子发生沉淀反应。吴敏等[56]采用Langmuir等温曲线研究污泥生物质炭对铜离子(Cu2+)和铅离子(Pb2+)的吸附作用。结果表明:表面络合可能是金属在生物炭上吸附的主要机制。DONG等[57]研究了甘蔗Saccharum officenarum渣生物质炭吸附重铬酸根离子(Cr2O42-)机制,揭示了在酸性条件下生物炭对铬的吸附主要是通过静电引力的作用。

  • 生物质炭含有丰富的孔隙结构,对重金属有很好的吸附作用。由于污染土壤大多是混合污染型,因此,重金属吸附在生物质炭表面有竞争关系。GAPORALE等[41]研究证明:在单因素系统中,生物质炭对重金属的吸附强弱表现为铅>铬>铜,在双因素系统中铅对铬、铜均表现出抑制作用。

  • 离子之间存在竞争关系外同时还存在交互作用。赵保卫等[58]以胡麻Sesamum indicum和油菜Brassica campestris的秸秆为生物质炭原料研究生物质炭对重金属铬(Ⅵ)和铜(Ⅱ)的吸附作用。研究表明:生物质炭对铬(Ⅵ)的吸附量比单一体系铜(Ⅱ)的略高但不显著,而铬(Ⅵ)的吸附量较单一铜(Ⅱ)体系明显增大。原因是铬(Ⅵ)大多以HCrO4-形式存在并被吸附到生物炭表面[59],而HCrO4-具有较大的离子空间体积,随着时间的推移被吸附的HCrO4-越来越多,构成的离子框架空间逐渐增大,负电性的框架结构与溶液中游离态的铜(Ⅱ)相互吸引,进而达到对铜(Ⅱ)较好的吸附效果[60]。表明2种金属在2种生物炭上的吸附存在交互作用,为协同吸附作用。

  • 生物质炭以农林废弃物和污泥为原料,不仅解决了废弃物安全处置问题,减少它们对环境造成的影响,同时生物质炭制备过程中产生的生物油和气可进一步进行资源化和能源化利用。生物质炭能改善土壤团聚结构、保持土壤养分、滋养土壤微生物、固定土壤污染物,有望在土壤改良中发挥重要作用。然而,利用生物质炭修复土壤这项新技术还存在一些不完善的地方,尤其是生物质炭的使用带来的负面影响更不容忽视。在未来的研究中,如何合理使用生物质炭,减轻它们对土壤环境造成的负面影响将成为热点问题。

    由于生物质炭的原料多种多样,制备温度也各异,使其理化性质有较大差异,又由于土壤污染类型及污染程度各异,使它们对土壤的改良效果也存在着较大的差异,因此,很难对其结果进行有效的整合。今后的研究应当在充分了解土壤的污染类型及程度,污染土壤修复后的用途,筛选合适的生物质炭材料,制定合理的生物质炭施用量,以期达到最佳修复效果及最高经济效益。此外,也应开展生物质炭标准的制定研究。

    在现有的研究中,生物质炭对污染土壤的研究主要集中在对某一污染物的修复效果上。现实中土壤污染大多属复合型污染,因此,日后应当研究生物质炭对复合污染土壤的修复效果,及其修复机制以及影响修复效果的环境因素等。

    目前,中国生物质炭的应用研究主要集中在中东部地区,国际上对生物质炭的利用研究也主要集中在热带及亚热带地区[61]。因此,未来的研究应当扩大区域范围,以全面了解生物质炭对不同土壤类型、不同气候区域的修复效率。

    生物质炭具有芳香环结构且具有很强的吸附性能。这使生物质炭稳定性强,且能降低土壤中污染物的移动性。然而芳香环化合物,如多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是一类致癌物,对生物体具有一定的毒害作用。此外,由于生物质炭原材料(如污泥)含有有毒有害物质(重金属和有机物等),过量使用可能会影响土壤性质,降低作物品质。因此,对生物质炭原材料进行安全化处理至关重要。尽管生物质炭的自然衰减过程可达到一个世纪之久,但最终将会被降解,且生物质炭对污染物的吸附有一个饱和点,所以生物质炭的使用对土壤长期安全依然存在风险。故今后应在原位条件下对生物质炭进行长期动态追踪研究。

    目前,多数生物质炭研究主要集中在室内、大棚或小面积的田间试验。因此,今后的研究应当扩大田间使用范围,结合当地气候及田间作物生长规律进行长期定位实验,拟定最佳修复方案,并建立示范基地,加以推广。

    生物质炭含有丰富的孔隙结构及植物生长所需的营养物质。生物质炭的使用可能会对微生物群落结构和功能及土壤结构产生深远影响,从而影响作物生长及质量安全,最终通过食物链影响人体健康。因此,开展生物质炭—土壤结构—微生物—作物系统—人体健康连续体的研究有极其重要的意义。

Reference (61)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return