Volume 37 Issue 4
Jul.  2020
Turn off MathJax
Article Contents

YAN Liangliang, YUE Kun, SONG Lihua. Correlation between fruit quality and soil fertility and leaf nutrients of Zizyphus jujuba ‘Lingwuchangzao’[J]. Journal of Zhejiang A&F University, 2020, 37(4): 631-638. doi: 10.11833/j.issn.2095-0756.20190462
Citation: YAN Liangliang, YUE Kun, SONG Lihua. Correlation between fruit quality and soil fertility and leaf nutrients of Zizyphus jujuba ‘Lingwuchangzao’[J]. Journal of Zhejiang A&F University, 2020, 37(4): 631-638. doi: 10.11833/j.issn.2095-0756.20190462

Correlation between fruit quality and soil fertility and leaf nutrients of Zizyphus jujuba ‘Lingwuchangzao’

doi: 10.11833/j.issn.2095-0756.20190462
  • Received Date: 2019-08-05
  • Rev Recd Date: 2019-12-01
  • Available Online: 2020-07-21
  • Publish Date: 2020-07-21
  •   Objective  To establish a scientific fertilization system for Zizyphus jujuba ‘Lingwuchangzao’, the current study is aimed to figure out the correlation of soil, leaves and fruit nutrients with the quality of the above mentioned jujube.  Method  With the soil, leaves and fruit nutrients of 5 Z. jujuba ‘Lingwuchangzao’ as the study subjects, by using the multiple linear stepwise regression analysis the relationship between fruit quality with the soil fertility and leaf nutrients was established.  Result  The soil fertility properties of different planting bases were significantly different, and Mn was generally lacking in planting bases. The longitudinal diameter of fruit was negatively correlated with the soil total K, the fruit hardness and the fruit N content. The fruit titration acid content was positively correlated with the content of soil available K, leaf P and fruit N, but negatively correlated with the content of fruit Fe. The content of fruit N was positively correlated with the content of soil organic matter, leaf Fe and fruit Zn, but negatively correlated with the content of soil Se. The K content of fruit was negatively correlated with the effective Fe content of soil, but positively correlated with the total P content of soil. The content of Zn in fruits was positively correlated with the content of available K in soil, Zn in leaves and N in fruits.  Conclusion  The application amount of organic fertilizer and trace element fertilizer should be increased in the planting bases of Z. jujuba ‘Lingwuchangzao’, especially that of Mn, while that of Fe should be reduced. [Ch, 11 tab. 24 ref.]
  • [1] HU Yingbing, JIN Jin, TONG Zhipeng, WU Jiasen.  Soil fertility in Carya cathayensis plantation: a review . Journal of Zhejiang A&F University, 2021, 38(5): 1066-1075. doi: 10.11833/j.issn.2095-0756.20210501
    [2] JIANG Shikun, ZHOU Yunchao, TAN Wei, CHEN Zhu, HUANG Jianfeng.  Soil fertility of Pinus massoniana forests under different near-natural management measures . Journal of Zhejiang A&F University, 2020, 37(5): 876-882. doi: 10.11833/j.issn.2095-0756.20190549
    [3] MA Shanshan, ZHAO Keli, DING Lizhong, HUANG Sha, CAI Ling, ZHAO Weiming, YE Zhengqian.  Soil fertility in Carya cathayensis orchards for major towns of Lin'an City, China . Journal of Zhejiang A&F University, 2016, 33(6): 953-960. doi: 10.11833/j.issn.2095-0756.2016.06.005
    [4] WU Haibing, LI Aiping, FANG Hailan, HAO Guanjun.  Green-belt soil testing methods for porosity and the importance of porosity on soil fertility evaluation . Journal of Zhejiang A&F University, 2015, 32(1): 98-103. doi: 10.11833/j.issn.2095-0756.2015.01.014
    [5] WEN Yue, SU Shuchai, MA Lüyi, WANG Xiangnan, YANG Shaoyan.  Effects of gibberellins on flower bud formation and fruit quality in Camellia oleifera . Journal of Zhejiang A&F University, 2015, 32(6): 861-867. doi: 10.11833/j.issn.2095-0756.2015.06.006
    [6] CHEN Feng, SU Shuchai, ZHANG Bing, CHEN Zhigang, WANG Wenhao.  Hazelnut yield and fruit quality with foliar N, P, K fertilizer . Journal of Zhejiang A&F University, 2014, 31(6): 932-939. doi: 10.11833/j.issn.2095-0756.2014.06.016
    [7] AN Xiaoqin, LIAO Kang, SUN Huiying, LIU Juan, LI Yongxian, LIAO Xiaolong, WANG Yun.  Effect of different cultivars pollinating on fruit setting and fruit quality of Armeniaca vulgaris ‘Luntaibaixing’ . Journal of Zhejiang A&F University, 2013, 30(2): 187-193. doi: 10.11833/j.issn.2095-0756.2013.02.005
    [8] ZHENG Rong.  Canonical correlation and principal components analysis of different production areas of Dendrocalamopsis oldhami with quality indicators of bamboo shoots and its soil nutrients . Journal of Zhejiang A&F University, 2012, 29(5): 710-714. doi: 10.11833/j.issn.2095-0756.2012.05.012
    [9] FAN Huai-fu, DU Chang-xia, ZHU Zhu-jun, LI Wen-jun, YANG Li-lin, ZHANG Ying.  Growth,fruit quality and yield of large fruit tomato Lycopersicon esculentum ‘Zheza 204’with root restriction . Journal of Zhejiang A&F University, 2011, 28(3): 343-348. doi: 10.11833/j.issn.2095-0756.2011.03.001
    [10] YAN Xiao-jie, HUANG Jian-qin, QIU Zhi-min, NURAMINA Rahman, ZHU Min-hua, WU Jia-sen.  Soil physical and chemical properties and fruit quality with grass cover in a Myrica rubra orchard . Journal of Zhejiang A&F University, 2011, 28(6): 850-854.
    [11] LI Zhang-ju, HUA Jia-qi, ZENG Yan-ru.  Oil content of Camellia oleifera fruit trees . Journal of Zhejiang A&F University, 2010, 27(6): 935-940. doi: 10.11833/j.issn.2095-0756.2010.06.022
    [12] TONG Gen-ping, WANG Wei-guo, ZHANG Yuan-yuan, XU Wen-xin, DOU Chun-ying, SHENG Wei-xing, YU Qing-ping, YE Zheng-qian.  Seasonal changes of soil and leaf nutrient levels in a Carya cathayensis orchard . Journal of Zhejiang A&F University, 2009, 26(4): 516-521.
    [13] JIANG Jun-ming, ZHU Wei-shuang, LIU Guo-hua, FEI Shi-ming, CHEN Xiu-ming.  Soil fertility in a Phyllostachys pubescens forest of southern Sichuan . Journal of Zhejiang A&F University, 2008, 25(4): 486-490.
    [14] SHAO Guo-yuan, QIN Guo-xin, WU Yu-kun, JI Kun.  Effects of leaf number on fruit quality of Vitis vinifera in greenhouse . Journal of Zhejiang A&F University, 2006, 23(6): 656-659.
    [15] CAI Li-ping, XIE Jing-sheng, LIN Jing-yi, CHEN Guang-shui.  Effect on different harness measures on lateritic red soil fertility in south subtropical zone . Journal of Zhejiang A&F University, 2001, 18(2): 131-135.
    [16] QIAN Yin-cai, GU Zhi-kang, YAO Jian-xiang, JIANG Xiao-fan, WANG Bai-po.  Effect of bagging with four types of bags on fruit quality of different varieties of pears . Journal of Zhejiang A&F University, 2000, 17(3): 276-279.
    [17] WANG Bai-po, DAI Wen-sheng, CHENG Xiao-jian, YU Wei-wu, WANG Li-zhong, BAO Li-hong, YAN Rong-bao.  Adaptability of 8 types of commercial trees growing in the hilly regions and their effects on changes of soil nutrient . Journal of Zhejiang A&F University, 1999, 16(4): 358-364.
    [18] Liu Aiqin, Ma Xiangqing, Yu Lixuan, Luo Xuemei.  Effects of different mixed model son soil fertility in plantations of Pinus massoniana . Journal of Zhejiang A&F University, 1998, 15(3): 250-255.
    [19] Lin Kaimin, Lin Guoqing, Zhang Shenlong, Yu Lixuan..  Differences of soil Fertility between Nautral Broadleaved Forest and Replanted Chinese Fir Forest. . Journal of Zhejiang A&F University, 1995, 12(2): 221-225.
    [20] Lin Ping, Ye Zhenghuan, Zhu Changle, Hou Jianyu..  Soil Fertility in Repeated Planting Cryptomeria fortunei Land . Journal of Zhejiang A&F University, 1994, 11(2): 138-142.
  • [1]
    CAO Bing, HOU Jingdong. Innovation of cultivating techniques and industry development of Zizyphus jujuba Mill. cv. Lingwu Changzao [J]. J Agric Sci, 2011, 32(1): 46 − 49.
    [2]
    SONG Lihua, CAO Bing, ZHANG Xiangdong. Effect of different chemical treatment on ‘Lingwu Changzao’ planted in greenhouse [J]. Chin Agric Sci Bull, 2014, 30(4): 190 − 194.
    [3]
    WU Meixia, TANG Wenlin, ZHANG Hongxia. The problems of development and transformation and upgrading ideas and countermeasures of Lingwu Jujube [J]. Shanxi Fruits, 2019(4): 30 − 32.
    [4]
    MA Yaping, CAO Bing, WANG Yan. Correlation analysis between soil nutrients and fruit quality in Ziziphus jujuba Lingwuchangzao [J]. Nonwood For Res, 2017, 35(4): 106 − 111.
    [5]
    WANG Wenfang. Study on the Nutrient Requirement Characteristics and Formulated Fertilization of Ziziphus jujuba Mill. cv. Lingwuchangao[D]. Yinchuan: Ningxia University, 2019.
    [6]
    BAI Linyun, YAN Rong, CAO Bing, et al. Effects of mulch treatments on growth and fruit quality in Zizyphus jujuba Mill. cv. Lingwuchangzao under protected cultivation [J]. Nonwood For Res, 2019, 37(1): 148 − 154.
    [7]
    SUN Yaping, DANG Nana, SONG Lihua, et al. Effects of inter-row green covering on growth and fruit quality of ‘Lingwuchangzao’ jujuba [J]. China Fruits, 2018(3): 47 − 49, 57.
    [8]
    JIA Hao, LI Ling, CAO Bing. Effects of magnetized water irrigation on vegetative growth and fruit quality of Lingwuchangzao [J]. J Nucl Agric Sci, 2019, 33(11): 2280 − 2286.
    [9]
    CHEN Weiyu, CAO Bing. Analysis of fruit quality of Lingwuchangzao (Ziziphus jujuba Mill.) in different plantations [J]. J Agric Sci, 2018, 39(3): 20 − 24.
    [10]
    CHEN Weiyu. Differences of Fruit Quility and It’s Relationship with Soil Nutrients and Meteorological Factors in Jujuba Plantions of Ziziphus jujuba Mill. cv. Lingwuchangzao of Ningxia[D]. Yinchuan: Ningxia University, 2018.
    [11]
    LI Hui, LI Baiyun, WEI Tianjun. Nutritional content of soils in red jujube main producing areas in Ningxia [J]. Guizhou Agric Sci, 2019, 47(1): 30 − 35, 42.
    [12]
    LI Yonghua, WANG Wuyi, YANG Linsheng, et al. Concentration and environmental significance of water soluble-Se and water soluble-F in soils of south Shananxi Province [J]. Environ Chem, 2005(3): 279 − 283.
    [13]
    MA Jianjiang, LUO Taofeng, LI Yongfeng. Analysis of nutrient status of soil and leaves in Ziziphus jujuba cv. Junzao orchards at different yield levels [J]. Xinjiang Agric Sci, 2016, 53(5): 850 − 856.
    [14]
    WANG Lixin, YANG Tao, XIE Yiping. Study on fruit quality of red raspberry under different site conditions in Panxi area of Sichuan Province [J]. Modern Agric Sci Technol, 2007(24): 10 − 12.
    [15]
    WANG Hongan, LI Jiming, JIANG Wenguang, et al. Effects of different soil textures on wine quality of Cabernet gernischt [J]. Sino-Overseas Grapevine Wine, 2013(4): 24 − 27.
    [16]
    Kereman Saimi, YUE Chaoyang, Bahaerguli, et al. Fruit quality and mineral elements of ‘munake’ vineyards under different site condition [J]. North Hortic, 2016(18): 9 − 13.
    [17]
    ZHANG Qiang. Study on Relationship between Fruit Quality ofFujiApple and Soil Nutrition, Meteorological Factor[D]. Beijing: China Agricultural University, 2018.
    [18]
    XU Wenbo, SHAO Xinqing, WANG Yutong, et al. Research progress in physiological function of manganese and manganese poisoning in plants [J]. Grassl Turf, 2011, 31(3): 5 − 14.
    [19]
    QIAN Wubing, LI Jianshe, GAO Yanming, et al. Carbohydrate composition and sucrose-metabolizing enzyme activities of hydroponic tomato fruit with salts added to nutrient solutions [J]. J Zhejiang A&F Univ, 2018, 35(6): 1120 − 1127.
    [20]
    HE Guoqing, YU Chunlian, RAO Ying, et al. Dynamic changes in composition of mineral elements and fatty acids for hickory nuts (Carya cathayensis) during maturity [J]. J Zhejiang A&F Univ, 2019, 36(6): 1208 − 1216.
    [21]
    HAN Jianping, WANG Jingmin, LIANG Zongsuo. The relationship between mineral element and the root growth and accumulation of effective ingredient in root of traditional herbs [J]. Plant Physiol J, 2003, 39(1): 78 − 82.
    [22]
    ZHANG Qiang, WEI Qinping. Multivariate analysis and optimum proposals of the relationship between soil nutrients and fruit qualities in apple orchard [J]. Sci Agric Sin, 2011, 44(8): 1654 − 1661.
    [23]
    LIU Kepeng, HUANG Chunhui, LENG Jianhua, et al. Multivariate analysis between boil nutrients and fruit qualities in kiwifruit orchard [J]. J Fruit Sci, 2012, 29(6): 1047 − 1051.
    [24]
    ZHENG Bingsong, CHENG Xiaojian, JIANG Dean, et al. Effects of potassium on photosynthetic rate, Rubisco and RCA in plants [J]. J Zhejiang For Coll, 2002, 19(1): 104 − 108.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(11)

Article views(1467) PDF downloads(63) Cited by()

Related
Proportional views

Correlation between fruit quality and soil fertility and leaf nutrients of Zizyphus jujuba ‘Lingwuchangzao’

doi: 10.11833/j.issn.2095-0756.20190462

Abstract:   Objective  To establish a scientific fertilization system for Zizyphus jujuba ‘Lingwuchangzao’, the current study is aimed to figure out the correlation of soil, leaves and fruit nutrients with the quality of the above mentioned jujube.  Method  With the soil, leaves and fruit nutrients of 5 Z. jujuba ‘Lingwuchangzao’ as the study subjects, by using the multiple linear stepwise regression analysis the relationship between fruit quality with the soil fertility and leaf nutrients was established.  Result  The soil fertility properties of different planting bases were significantly different, and Mn was generally lacking in planting bases. The longitudinal diameter of fruit was negatively correlated with the soil total K, the fruit hardness and the fruit N content. The fruit titration acid content was positively correlated with the content of soil available K, leaf P and fruit N, but negatively correlated with the content of fruit Fe. The content of fruit N was positively correlated with the content of soil organic matter, leaf Fe and fruit Zn, but negatively correlated with the content of soil Se. The K content of fruit was negatively correlated with the effective Fe content of soil, but positively correlated with the total P content of soil. The content of Zn in fruits was positively correlated with the content of available K in soil, Zn in leaves and N in fruits.  Conclusion  The application amount of organic fertilizer and trace element fertilizer should be increased in the planting bases of Z. jujuba ‘Lingwuchangzao’, especially that of Mn, while that of Fe should be reduced. [Ch, 11 tab. 24 ref.]

YAN Liangliang, YUE Kun, SONG Lihua. Correlation between fruit quality and soil fertility and leaf nutrients of Zizyphus jujuba ‘Lingwuchangzao’[J]. Journal of Zhejiang A&F University, 2020, 37(4): 631-638. doi: 10.11833/j.issn.2095-0756.20190462
Citation: YAN Liangliang, YUE Kun, SONG Lihua. Correlation between fruit quality and soil fertility and leaf nutrients of Zizyphus jujuba ‘Lingwuchangzao’[J]. Journal of Zhejiang A&F University, 2020, 37(4): 631-638. doi: 10.11833/j.issn.2095-0756.20190462
  • 灵武长枣Zizyphus jujuba ‘Lingwuchangzao’是宁夏特色枣树栽培品种[1],其果个大,味道好,口感脆,富含维生素,有“活维生素丸”的美称[2]。目前灵武长枣的栽植面积逐年增加,已达9 467 hm2[3]。随着灵武长枣栽植面积的不断扩大,产业规模越来越大,人们对灵武长枣的品质要求也越来越高。然而近几年,由于自然环境变化、管理技术不到位等因素导致灵武长枣的果实品质良莠不齐,个别栽植基地枣树的果实品质有所下降。为了全面了解灵武长枣不同栽植基地影响果品的因子,制定科学的施肥与管理措施,研究土壤、叶片、果实养分与灵武长枣品质的关系,对建立灵武长枣科学施肥体系,提高果实品质有重要意义。马亚平等[4]研究了灵武长枣果实品质与土壤肥力之间的相关性。王文放[5]研究表明:筛选合理的施肥配方可以揭示灵武长枣养分需求的规律;白琳云等[6]研究发现:覆盖处理有利于促进设施灵武长枣营养生长与果实营养品质的提高;孙亚萍等[7]研究表明:行间种草可以改善果实品质,提高坐果率;贾昊等[8]发现:不同磁强磁化水处理能促进灵武长枣的营养增加;另外,对不同栽植基地灵武长枣果实品质[9]、土壤与果实品质的关系[10]也开展了相关的研究。但是,对灵武长枣叶片与果实、土壤与叶片的相关性研究还未见报道。基于此,本研究对5个灵武长枣栽植基地的影响因素进行调查,分析了土壤、叶片、果实养分与果实品质之间的相关性,并对筛选的影响因子进行多重线性逐步回归分析,以期为灵武长枣科学施肥提供理论依据。

  • 宁夏灵武位于38°04′42″~38°04′47″N,106°31′45″~106°31′59″E,该区海拔1 250.0 m,属中温带大陆性干旱气候,春迟秋早,四季分明、日照充足、热量丰富、蒸发强烈、气候干燥、晴天多、雷雨少,全年日照时数4 434.7 h,平均无霜期157.0 d,植物生长期持续170.0 d,有效积温3 351.3 h,年平均气温8.8 ℃,年均降水量206.2~255.2 mm。土壤为砂壤土,土质深厚肥沃,引黄河水灌溉,水源充裕,极适宜长枣的生长。本研究5个种植基地施肥情况基本一致,春季3月中旬按照每棵树0.1 kg的量施用生物有机肥,夏季5月上旬按照每棵树各施用0.4 kg磷酸二铵、1.1 kg硫酸钾。6月中旬按照每棵树施用1.0 kg的元素水溶肥料[各元素配比为m(氮)∶m(五氧化二磷)∶m(氧化钾)=9∶15∶30。硼质量分数为0.20%,锌质量分数为0.05%]。各基地基本情况见表1

    栽植基地海拔/m 地理位置株行距/(m×m)树龄/a土壤类型样地数/个样地面积/hm2
    大泉林场1 123.937°58′27″N,106°19′36″E4×212壤土 51 087
    银湖公司1 171.837°53ʹ51″N,106°23ʹ38″E4×210~12砂壤土3 925
    园艺场 1 113.438°05′20″N,106°23′26″E4×212壤土 21 200
    长枣庄园1 109.838°10ʹ57″N,106°20ʹ38″E4×210~12壤土 3 614
    中玺公司1 170.238°19′17″N,106°24′21″E4×210砂土 3 523

    Table 1.  Basic situation of Z. jujuba ‘Lingwuchangzao’ plantation

  • 于2018年9月下旬,分别在银川灵武市5个灵武长枣栽植基地,采集树龄为10~12 a的成熟期灵武长枣、叶片和栽植基地土壤为试材,土壤类型均为砂壤土。

  • 每个基地随机选取3个采样小区,每采样小区采用五点取样法采集0~60 cm土层土壤,灵武长枣根系深度分布为0~70 cm[5],各取样点土样均匀混合,取样3份,将土样装入自封袋带回实验室自然风干,研磨后分别过2.25和1.00 mm的筛,装入自封袋中保存待测。

  • 在各栽植基地分别选3个样地,每个样地选取3棵树龄、长势基本一致的枣树,分别在每棵树的东、西、南、北4个方向选取二次枝中部,各取5片健康成熟的叶,每个取样点共180片叶,并对采集的树叶进行标记,带回实验室后洗净、杀青、经80 ℃烘干,粉碎后装入自封袋中保存。

  • 在果实成熟期(2018年9月下旬),分别在各栽植基地,选取采集叶片标记的植株,分别在每棵树的东、西、南、北4个方向各取5颗枣,每个取样点共180颗枣,带回实验室冷藏并进行果实品质测定。

  • 土壤有机质采用重铬酸钾容量法,氮采用凯氏定氮法,碱解氮采用碱解扩散法,磷采用氢氧化钠-钼锑抗比色法,有效磷采用0.5 mol·L−1碳酸氢钠浸提-钼锑抗比色法,钾采用氢氟酸-高氯酸法,速效钾采用乙酸铵浸提-火焰光度计法,有效铁、有效锌、有效锰采用二乙基三胺五乙酸浸提-火焰光度计法,硒采用硝酸-高氯酸消煮荧光法。叶片和果实用硫酸-过氧化氢消煮后,采用凯氏定氮法测定氮,磷采用钼锑抗比色法测定,钾采用火焰光度计法测定,钙、镁、锌、铁、硒采用原子吸收法测定。果实品质用分析天平和游标卡尺分别测定单果质量和纵横经,用手持糖度计测定可溶性固形物,用手持果实硬度计测定硬度,采用2,6-二氯靛酚氧化滴定法测定维生素C,采用酸碱滴定法测定滴定酸,采用蒽酮比色法测定可溶性糖。叶片与果实测定时均使用鲜样。

  • 采用Excel进行数据处理,采用SPSS 25.0进行数据统计分析。

  • 表2可知:根据灵武长枣栽植基地土壤肥力性质指标分级标准[11],本次调查栽植基地有机质、全氮、速效氮的平均质量分数较低,全磷、速效磷、速效钾的平均质量分数较高。不同栽植基地有机质、速效氮、速效磷、速效钾的平均质量分数分别为7.86 g·kg−1、54.86 mg·kg−1、43.31 mg·kg−1、173.07 mg·kg−1,不同栽植基地之间有机质、氮、磷、钾有较大差异。根据宁夏土壤肥力性质指标分级标准[11]发现:本研究土壤有机质、全氮、速效氮极度缺乏。正常土壤硒为0.200 0 mg·kg−1,中国土壤硒的背景值为0.210 0 mg·kg−1,黄土高原地区的土壤硒为0.001 0~0.165 0 mg·kg−1[12],可见,本研究土壤硒的平均值为0.150 0 mg·kg−1,在黄土高原地区属于正常范围。

    项目有机质/
    (g·kg−1)
    全氮/
    (g·kg−1)
    全磷/
    (g·kg−1)
    全钾/
    (g·kg−1)
    速效氮/
    (mg·kg−1)
    速效磷/
    (mg·kg−1)
    速效钾/
    (mg·kg−1)
    有效铁/
    (mg·kg−1)
    有效锌/
    (mg·kg−1)
    有效锰/
    (mg·kg−1)
    硒/
    (mg·kg−1)
    最大值16.901.401.9219.80168.00197.00520.0066.206.8817.000.310 0
    最小值 1.790.140.3414.10 12.00 3.51 70.00 1.600.18 1.340.020 0
    平均值 7.860.590.7816.16 54.86 43.31173.0715.711.00 4.120.150 0
    标准差 5.020.380.52 1.69 42.92 49.14130.4820.381.66 3.970.090 0

    Table 2.  Soil nutrients situation of Z. jujuba ‘Lingwuchangzao’ plantation

  • 表3可以看出:不同栽植基地枣树叶片全钾和钙质量分数差异较大。与马建江等[13]对骏枣Ziziphus jujuba ‘Junzao’叶片养分的研究相比,灵武长枣叶片全磷明显偏低,钙高于骏枣,全钾略高于骏枣,铁略低于骏枣。

    项目氮/(g·kg−1)磷/(g·kg−1)钾/(g·kg−1)钙/(g·kg−1)镁/(g·kg−1)锌/(mg·kg−1)铁/(mg·kg−1)硒/(mg·kg−1)
    最大值30.803.1924.0090.0014.0032.00504.000.130 0
    最小值19.501.72 9.3054.00 5.2014.00180.000.050 0
    平均值27.952.6916.4765.50 6.4017.33262.830.080 0
    标准差 1.980.20 4.1611.01 1.06 1.89 21.620.020 0

    Table 3.  Survey data of leaf nutrients in Z. jujuba ‘Lingwuchangzao’

  • 表4表5可以看出:不同栽植基地之间果实(不包含果核)矿物质养分和果实品质有较大差异。

    项目氮/(g·kg−1)磷/(g·kg−1)钾/(g·kg−1)钙/(g·kg−1)镁/(mg·kg−1)锌/(mg·kg−1)铁/(mg·kg−1)硒/(mg·kg−1)
    最大值3.000.422.824.58563.002.0011.600.003 3
    最小值2.050.371.900.16104.001.20 3.500.001 8
    平均值2.540.392.380.63277.691.49 5.310.002 4
    标准差0.260.010.221.02 84.200.24 2.420.000 4

    Table 4.  Survey data of fruit mineral nutrients in Z. jujuba ‘Lingwuchangzao’

    项目单果质量/g纵径/mm横径/mm硬度/
    (kg·cm−2)
    可溶性固形物/
    (mg·g−1)
    维生素C/
    (g·kg−1)
    滴定酸/
    (mol·L−1)
    可溶性糖/
    ( mg·g−1)
    最大值15.9147.3127.9115.2225.84 0.165 2 0.18 18.83
    最小值11.4740.9324.4313.1518.04 0.104 1 0.14 12.94
    平均值13.9044.2226.1014.1822.20 0.136 9 0.15 16.41
    标准差 1.44 2.04 1.07 0.62 2.15 0.148 8 0.01 1.45

    Table 5.  Survey data of fruit quality in Z. jujuba ‘Lingwuchangzao’

  • 表6可见:不同土壤肥力性质与灵武长枣果实养分及品质之间存在较强的相关性。其中:土壤有机质、全氮与枣果滴定酸、氮、锌都呈显著正相关(P<0.01);土壤全磷、速效氮与果实滴定酸、可溶性糖、氮、锌都呈显著正相关(P<0.05);土壤全钾与果实纵径、滴定酸、可溶性糖、氮、锌都呈显著正相关(P<0.05);土壤速效磷与果实可溶性糖、氮、锌呈显著正相关(P<0.05);土壤速效钾与果实滴定酸、可溶性糖、锌呈显著正相关(P<0.05);土壤有效铁与果实可溶性糖、钾、锌具有显著相关性(P<0.05),其中有效铁与钾呈负相关;土壤有效锌、有效锰、土壤硒与果实锌具有显著正相关性(P<0.05)。

    果实指标有机质全氮全磷全钾速效氮速效磷果实指标有机质全氮全磷全钾速效氮速效磷
    单果质量 0.136 0.158 0.207 0.266 0.189 0.257 0.819** 0.786** 0.684** 0.794** 0.680** 0.551*
    纵径 0.426 0.455 0.484 0.542* 0.452 0.475−0.183−0.182−0.150−0.007−0.291−0.179
    横径−0.221−0.216−0.169−0.186−0.118−0.065−0.137−0.188−0.191 0.010−0.371−0.165
    硬度−0.470−0.418−0.301−0.395−0.387−0.248−0.252−0.230−0.229−0.237−0.210−0.113
    可溶性固形物−0.140−0.144−0.077−0.226 0.026−0.005−0.242−0.217−0.154−0.243−0.156−0.036
    维生素C 0.079 0.082 0.115 0.060 0.098 0.022 0.748** 0.772** 0.779** 0.771** 0.761** 0.678**
    滴定酸 0.619* 0.607* 0.586* 0.589* 0.591* 0.444−0.142−0.133−0.217−0.079−0.108−0.147
    可溶性糖 0.394 0.446 0.605* 0.530* 0.543* 0.520*−0.203−0.214−0.197−0.220−0.226−0.254
      说明:*表示在0.05水平上显著相关;**表示在0.01水平上显著相关

    Table 6.  Correlation coefficients between soil nutrients and fruit index

  • 表7可见:叶片氮、磷与果实滴定酸、可溶性糖、氮呈显著相关(P<0.05)或极显著相关(P<0.01);叶片钾与果实滴定酸(P<0.01)、氮(P<0.05)具有相关性;果实各指标与叶片钙相关不显著(P>0.05);叶片镁与果实滴定酸(P<0.05)、可溶性糖(P<0.01)具有相关性;叶片锌与果实可溶性糖(P<0.05)、氮(P<0.05)、锌(P<0.01)具有相关性;叶片铁与果实滴定酸(P<0.01)、氮(P<0.01)、锌(P<0.05)具有相关性;叶片硒与果实锌呈显著相关(P<0.05),并且以上均为正相关。而果实单果质量、纵横经、硬度、可溶性固形物、维生素C、磷、钾、钙、镁、铁、硒与所有测定的指标差异都不显著(P>0.05)。

    果实指标
    滴定酸 0.557*0.683**0.541**−0.4690.506*0.4670.637**0.244
    可溶性糖0.671**0.565*0.259−0.2800.646**0.548*0.399−0.015
    氮   0.627**0.537*0.580*−0.4790.3580.519*0.710**0.329
    锌   0.1830.3220.3930.0070.4840.812**0.513*0.640**
      说明:*表示在0.05水平上显著相关;**表示在0.01水平上显著相关

    Table 7.  Correlation coefficients between leaf nutrients and fruit index

  • 表8可知:果实氮与硬度、滴定酸具有显著相关性(P<0.01),其中果实氮与硬度呈负相关;果实镁与硬度具有显著相关性(P<0.05);果实锌与滴定酸具有显著相关性(P<0.05);果实品质与果实中的磷、钾、钙、铁、硒相关不显著(P>0.05)。

    果实指标
    单果质量  0.211−0.0610.046
    纵径    0.414−0.1590.344
    横径    −0.1320.022−0.305
    硬度    −0.673**0.542*−0.454
    可溶性固形物−0.156−0.098−0.156
    维生素C  0.2750.0340.340
    滴定酸   0.687**−0.1740.539*
    可溶性糖  0.439−0.0340.346
      说明:*表示在0.05水平上显著相关;**表示在0.01水平上     显著相关

    Table 8.  Correlation coefficients between fruit nutrients and fruit quality

  • 矿物质元素综合影响果树生长,简单的线性相关不能客观反映矿物质养分各因子对果实的综合影响。因此,本研究将果实与土壤指标进行多元线性逐步回归分析(表9)可知:影响果实纵径的因子是土壤全钾;影响果实滴定酸的因子是土壤速效钾;影响果实可溶性糖的因子是土壤速效钾;影响果实氮的因子是土壤有机质与硒;影响果实钾的因子是土壤有效铁与全磷;影响果实锌的因子是土壤速效钾。

    果实养分及品质影响果实的土壤因子回归方程FR2
    纵径(y1)全钾(x1)y1=33.066−0.693x15.834*0.213
    滴定酸(y2)速效钾(x2)y2=33.066−0.693x29.813**0.358
    可溶性糖(y3)速效钾(x2)y3=15.064+0.008x213.145**0.895
    氮(y4)有机质(x4)、硒(x5)y4=2.246+0.073x4−1.799x524.746***0.642
    钾(y5)有效铁(x6)、全磷(x7)y5=2.249−0.017x6+0.504x79.126**0.735
    锌(y6)速效钾(x2)y6=1.230+0.020x228.114**0.720
      说明:*表示在0.05水平上显著相关;**表示在0.01水平上显著相关;***表示在0.001水平上显著相关

    Table 9.  Soil factors and regression equations that affect fruit nutrient and quality

    用同样的方法,建立灵武长枣果实养分与叶片养分的回归方程。由表10可见:果实滴定酸主要受叶片磷的影响;果实可溶性糖主要受叶片磷和镁的影响;果实氮主要受叶片铁的影响;果实锌主要受叶片锌的影响。以上影响果实养分及品质的叶片因子与果实养分及品质之间均为正相关。

    果实养分及品质影响果实的叶片因子回归方程FR2
    滴定酸(y2)磷(α1)y2=0.044+0.039α112.248**0.667
    可溶性糖(y3)磷(α2)、镁(α3)y3=0.662+0.424α2+0.496α311.186**0.546
    氮(y4)铁(α4)y4=1.310+0.005α412.244**0.769
    锌(y6)锌(α5)y6=0.872+0.033α5 21.129***0.635
      说明:*表示在0.05水平上显著相关;**表示在0.01水平上显著相关;***表示在0.001水平上显著相关

    Table 10.  Selection of leaf nutrient factors and establishment of regression equation affecting fruit nutrients

    对影响果实养分及品质的主要矿物质因子进行多重线性逐步回归分析(表11)可知:果实硬度主要受果实氮的影响;果实滴定酸主要受果实氮和铁的共同影响;果实氮主要受果实锌的影响;果实钙主要受果实镁和铁的共同影响;果实镁主要受果实钙和铁的共同影响;果实锌主要受果实氮影响;果实硒主要受果实镁的影响。

    果实养分及品质果实矿物质因子回归方程FR2
    硬度(y7)氮(β1)y7=18.248−1.600β117.591**0.714
    滴定酸(y2)氮(β1)、铁(β2)y2=0.690+0.380β1−0.002β212.241**0.626
    氮(y4)锌(β3)y4=1.536+0.673β38.775*0.841
    钙(y8)镁(β5)、铁(β2)y8=−3.250+0.012β5+0.114β246.118***0.857
    镁(y9)钙(β6)、铁(β2)y9=282.122+74.399β6−9.634β249.996***0.867
    锌(y6)氮(β1)y6=0.038+0.573β18.775*0.561
    硒(y10)镁(β5)y10=0.001−3.189×10−6 β59.171**0.553
      说明:*表示在0.05水平上显著相关;**表示在0.01水平上显著相关;***表示在0.001水平上显著相关

    Table 11.  Selection of fruit mineral factors and establishment of regression equation affecting fruit nutrients

  • 土壤养分体系是一个复杂的系统,有机质与矿质元素水平间存在密切关系。王立新等[14]研究了不同立地条件下红树莓Rubus idaeus果实品质的差异性。王宏安等[15]研究了土壤质地对蛇龙珠葡萄Cabernet gernischet酿酒品质的影响,表明含砂石的壤土条件下生长的葡萄,酿酒品质较佳。克热曼·赛米等[16]研究表明:不同土壤类型下不同树龄葡萄果实品质之间存在一定的差异。本研究选取的5个试验点是灵武长枣主要产区,土壤和树体管理水平一致,但土壤类型分别属于壤土、砂壤土、砂土,存在一定差异,这种差异性也影响了灵武长枣果实的养分及品质。张强[17]研究表明:苹果Malus sieversii果园的土壤营养成分对果实品质特性的影响复杂,土壤营养元素间存在协同与拮抗作用及不同程度的相关性,用多元线性回归或逐步回归建立方程,容易导致系数不稳、系数符号相反或与生产实际不一致等问题。本研究根据灵武长枣种植基地土壤肥力性质指标分级标准[11],在分析土壤肥力和果实养分的相关性过程中发现:栽植基地土壤中全氮和速效氮低于标准。大量元素中钾和磷较高,微量元素除锰外,各微量元素也处于较高水平,微量元素在果实生长发育过程中具有不可替代的作用。本研究表明:灵武长枣栽植基地锰含量较低,锰是植物叶绿体的组成和维持叶绿体形态的必要元素,也是植物体内多种酶的激活剂[18-20],因此以后在进行施肥时应增加氮肥和微量元素中锰肥的施用。

    本研究通过相关性分析和多重线性逐步回归分析发现:灵武长枣果实养分及品质与土壤、叶片养分因子之间存在较大差异,说明一种营养元素的吸收和积蓄与其他元素具有密切关系[21],不同的营养元素之间存在着相互作用,这与在苹果和猕猴桃Actinidia chinensis上的研究结果基本一致[22-23]。土壤有机质作为土壤中矿物质养分的主要来源,有利于提高土壤的保水保肥能力,本研究土壤有机质升高可以使果实氮升高,从而促使果实蛋白质升高。

    不同的矿质营养元素对果实品质的影响各异。钾对果实品质的形成影响显著[24],相比于全钾,速效钾与果树的生长和果实品质形成的关系更加密切,速效钾的升高可使果实可溶性糖和锌提高。锌是植物正常生长发育所必需的微量营养元素,也是植物某些酶的成分。与叶绿素及生长素物质合成有关,在促进光合作用和碳水化合物的转化中具有重要作用。本研究发现:灵武长枣果实品质主要受土壤有机质、碱解氮、有效磷、钾、铁、锌锰、硒的相互影响,土壤有机质、全氮、有效钾、钙和铁对果实可溶性固形物具有较大的影响,说明不同果实品质受土壤养分的影响程度各异,不同土壤类型枣园,果实品质主要受土壤养分的共同影响因素所决定。

    本研究多重线性逐步回归分析发现:果实氮的升高可以使果实硬度降低,使滴定酸和果实锌提高,而提高土壤有机质可使果实氮增加。果实钙主要受果实镁和铁的影响,且为正相关;果实镁与果实钙为正相关,与铁为负相关。这说明果实钙与镁是相互促进的关系,果实镁与铁是拮抗关系,再次证明各元素在植物体内的相互作用不同。

    本研究各栽植基地普遍缺锰、有机质、全氮以及速效氮,其他微量元素均处于正常水平。为了提高灵武长枣果实品质和营养价值,提升灵武长枣经济价值,在各栽植基地应增加有机肥和微量元素的施用量,特别是锰,应减少铁元素的施用。在实际生产中应根据土壤质地的差异,采取不同的栽培管理措施来减轻土壤质地对灵武长枣果实品质和矿质元素的影响。如大泉林场、园艺场、长枣庄园栽植基地土壤属于壤土,应该适度控制肥水,结合配方施肥和痕量灌溉,加强微量元素的施用,以提高果实品质;银湖公司栽植基地属于砂壤土,应及时补充肥水,保证灵武长枣良好生长的同时,增加有机质施用量,可大大提高果实品质;中玺枣业栽植基地土壤为砂质土,土壤有机质严重缺乏,土壤养分差,果实脆度、含糖量明显下降,可加强生长期微量元素的补充。

Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return